Incomplete information: Bayesian Nash equilibrium – knowing yourself but not your

opponent.

Lectures in Game Theory

Fall 2012, Lecture 5

• Incomplete information: At least one player does not know who his opponents are.

- An illustrating example
- Definition of
 Bayesian games,
 Bayesian normal form,
 Bayesian Nash equilibrium
- First-price sealed-bid auction as an example.
- **Cournot competition** as an example

ability and Bayesian Nash equilibrium

A Bayesian game specifies

- *Players*: {1, ..., i, ..., n}
 For each player, an *action set*: A_i
 For each player, a *type set*: T_i
- A probability distribution over type profiles: p
 For each player, a payoff function: u_i
 Bayesian game: G = (A₁,...,A_n;T₁,...,T_n; p;u₁,...,u_n)

Player *i*'s type $t_i \in T_i$ is private information.

Player *i*'s *payoff* $u_i(a_1,\ldots,a_n;t_1,\ldots,t_n)$

depends on the action and type profiles.

Strategy **Definition** : In the Bayesian game $G = (A_1, \dots, A_n; T_1, \dots, T_n; p; u_1, \dots, u_n)$ a strategy for player *i* is a function $S_i(\cdot)$ that, for each type $t_i \in T_i$, specifies a feasible action $s_i(t_i)$. The Bayesian normal form specifies • Players: $\{1, ..., i, ..., n\}$ For each player, the strategy set: S_i For each player, the *expected payoff function* **Definition**: A Bayesian Nash equilibrium of a Bayesian game is a Nash equilibrium of the Bayesian normal form. **Definition**: A *Bayesian Nash equilibrium* of a Bayesian game is a Nash equilibrium of the Bayesian normal form.

English: A *Bayesian Nash equilibrium* is strategies for player 1 of type, player 1 of type 2,... and player 2 of type 1, player 2 of type 2,...

player n of type 1, type 2,... such that none of them would regret if they hear of the strategies of the other players of all types.

Note: A player needs to consider the strategies of herself had she been someone else.Why? The other players do not know who I am.

1st price sealed bid auction w/private values **Bid**: $b_i \in A_i = [0, 1000], i = 1, 2$ Valuations: $v_i \in T_i = [0, 1000], i = 1, 2, are distributed$ independently and uniformly : For each *i*, $Pr(v_i \le x) = \frac{x}{1000}$. $u_i(b_i, b_j; v_i) = \begin{cases} v_i - b_i & \text{if } b_i \text{ is bigger than the other bid.} \\ 0 & \text{otherwise.} \end{cases}$

One must bid less than true value in order to earn if one wins. This must be traded off against the fact that a lower bid reduces the probability for having a winning bid.

Consider strategies of the following form:
$$b_i(v_i) = \frac{1}{2}v_i$$

