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Measures of Growth

and Reproduction
Ansley J. Coale

The numerical increase of a population during any period
equals the number of births minus the number of deaths plus
the number of net immigrants. Dividing these numbers by
the number of person-years lived during the period gives the
rate of increase, the birth rate, the death rate, and the rate of
net migration. The difference between the birth and death
rates is called the rate of natural increase. The birth rate, the
death rate, and the rate of natura] increase are determined by
the age composition of a population as well as by the fertility
and mortality rates to which it is subject. Specifically, the
birth rate is the sum (or the integral) of the product of the
proportion of the population at each age consisting of fe-
males at that age and the specific rate of childbearing. Simi-
larly the death rate is the sum of the product of proportions
by age and age specific mortality rates. Thus the birth rate in
one of two populations with the same schedule of fertility
rates can be much higher than in the other when the first
Ppopulation has a higher proportion of women in the ages of
high fertility. Similarly, the death rate is strongly affected
by the proportion of persons at the ages of highest morality,
particularly at the older ages. In many years the death rate of
Mexico has been lower than the U.S. rate, although the
mortality rate at every age was higher than in the 1.8,
because the Mexican Population had much higher propor-
tions at ages of low mortality. Because of this strong influ-
ence on rates of age composition (as opposed to the risks of
death and childbearing), population birth rates, death rates
and rates of natural increase are referred to as “crude” rates.
Various measures of fertility and mortality have been intro-
duced that are independent of age structure. The commonest
of these are the total fertility rate and the expectation of life
at birth and its reciprocal, the stationary death rate. These
measures are derived entirely from age scheduies of fertility
and mortality, and are independent of the age composition of
the population experiencing the rates. The total fertility rate
(TFR) is the sum of the single-year fertility rates in a speci-
fied period, and is equal to the average total number of
children bome by a hypothetical group of women subject
through their lives to these rates. The expectation of life at
birth is the mean age at death in a hypothetical group, subject
between birth and the highest age artained, to the death rates
at each age of the period in question. Its reciprocal is the
death rate in a “stationary” population, whose age distribu-
tion is wholly determined by the mortality schedule.

e

There are also conventional measures of the rate of repro-
duction of a female (or a male) population. The logic of thess
measures is that they indicate the ratio of the number ar
daughters to the number of mothers {or of one generation :2
the next earlier) implied by the fertility (or the fertility ang
mortality) of a given period. The Gross Reproduction Raza
(GRR) is a measure of the numbers of daughters per womzn
that would be borne according to specified rates of bearing
daughters to a group of women not subject to mortaliry.
(*Gross” indicates that their is no allowance for the effect of
mortality.) The Net Reproduction Rate (NRR) is a measura
of the number of daughters per woman that would be bornz
according to specified rates of mortality and of bearing
daughters to a group of women subject through life to thess
rates. The GRR is a measure of the hypothetical ratio of
successive generations with specified fertility and no moral-
ity; the NRR is the ratio with specified fertility and mortal-
ity. Since there is little evidence of consequential differ-
ences according to maternal age in the proportion of births
that are female, the GRR equals the TFR multiplied by the
fraction (female births)/(total births).

The NRR is useful in developing the concept of the stable
population, discussed in detail in the later parts of this chap-
ter. The stable population, a population with a fixed age
distribution and a constant birth tate, death rate, and rate of
increase, is the population that emerges from the long con-
tinuation of any specified combination of a fertility schedule
and a mortality schedule. The characteristics of the stable
population are fully determined from these two schedules.
The NRR is a characteristic of the stable population; as the
ratio of daughters to mothers according to prevailing fertiliry
and mortality, it is the ratio of one generation of women to
the next preceding: it is the multiplier of the size of the
stable population in one generation. The stable population
with an annual rate of increase of r is multiplied by e™ in N
years, hence it is multiplied by e in T years, where T is the
mean length of the female generation. The calculation of
GRR, NRR, the stable rate of increase, and the mean length
of generation are illustrated in the following example, using
data for Peru in 1961 (taken from Shryock and Siegel, 1973).

(Table 1),

Table 1
Determination of GRR, NRR, Intrinsic Rate of Increase,
and Mean Length of Generation

4y (2) 3 e (3)
of Rate of
Age Bearing L, 1, W

Woman Female Net Fertility

Children =01993 ~=.020138
15-19 0.0389 3.8870 0.1512 0.1067 0.1063
20-24 0.1134 37980 0.4307 0.2751 0.2738
25-29 0.1200 3.6880 0.4425 0.2558 0.2543
30-34 0.0986 3.5730 0.3522 0.1843 0.1831]
35-39 0.0748 34540 0.2585 0.1224 0.1215
40-44 0.0338 33260 0.1123 0.0481 0.0447
45.49 0.0109 3.1800 0.0348 0.0135 0.0134
Sum  (x5)2.4520 --- 1.782 1.0059 1.0000

(GRR) (NRR)




CHAPTER 19. MODELS OF POPULATION CHANGE

The rate of increase of the stable population is the value of
r that satisfies the equation f lf"e"'p(n}m(a)daﬂ1, where p(a) is
the proportion surviving from birth to age a according to the
given mortality schedule, and m{a) is the proportion of
Wwometl at age @, giving birth to a female child. In this
example r is determined by a simple process of successive
approximation. An approximate value of  is substituted in
the integral given above, which is evaluated numetically, If
the value of r were correct, the integral would equat 1.0. The
etror in the value of the integral provides an adjustment to
the approximation of r, because if » is the value of the
integral, differentiation shows that dy/dr equals -A, where A
is the mean age of childbearing in the stable population,
Hence a slightly erroneous r yields an integral that differs
from 1.0 by -A times the error in », and the correct value of r
can be estimated as the first approximation plus the differ-
ence of the integral from 1.0, divided by A. The correct
value of r is also (In(NRR))T; but the algebraic determina-
tion of T is complicated. The process of successive approxi-
mation applied to the integral equation for r can proceed by
assigning the crude figure of 29 years to both A and T (which
are not in fact exactly equal to each other). Thus the first
approximation of r is (INNRR)/29, or .01993; when this value
is used in the integral expression, the sum is 1.0059 instead
of 1.0.. The second approximation is .01993 plus the error in
the value of the integral (.0059) divided by 29 (as a crude
approximation of the mean age of maternity in the stable
population), or .020133, With this r the integral is 100015,
| and the calculation of r is surely more precise than the
population data on which it as based. {Further iteration
yields an » of 020138 giving an integral equal to 1.0 to six
| decimal places, a clearly redundant refinement), When the
value of r has been thus determined, the birth rate, death rate
and age composition of the stable age distribution can be
calculated from equations in a later section of this chapter,
| entitled “stable population theory.”

| Editor®s Note:
Relations in Populations with Fixed and
Variable Rates of Fertility, Mortality, and Migration
An early, complete and integrated treatment of stable
i populations, The Concept of the Stable FPopulation, was pub-
. lished by the United Nations in 1966 (Demographic Studies
| No. 39). Its principal author, Jean Bourgeois-Pichat, was at
the time a member of the staff of the Population Division.
Because it is a long document, it could not be included in
these readings. Because it uses its own internally consistent
but unique terminology, it is not practical to include excerpts.
The following reading has been used in its place.
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AnsleyJ, Coale
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“Stable Population.” The New Palgrave: A4 Dictionary of
nomics, vol. 4. Lonidon: MacMiilan Press, 1987, pp. 466-69,

~)

stable population theory. Many years ago AL Lotka (1911)
proved that a population (of one sex; for simplicity this
discussion will be restricted to females) not gaining or losing
by migration, and subject to an unchanging age-schedule of
death rates and rates of childbearing, has an age distribution,
birth rate, death rate, and rate of increase that do not change.
All of these fixed chatacteristics are determined by the
mortality and fertility schedules to which the population is
subject. Lotka called such a population stable, using the term
in & technjcal sense borrowed from physics; if the population is
perturbed by & momentary change in fertility or mortality,
*stability implies thal it returns ufter a while to its equilibrivm
state of constant birth rate, death rate, and age structure,

Lotka’s proof of stability implies that u closed population
experiencing fixed mortality and fertility schedules arrives at a
fixed and determinate age structure, no matier what arbitrary
and irregular age distribution and population had at an early
point. This property of converging to a fixed form was labelled
'strong ergodicity’ by John Hajnul {1958). Strong ergodicity
medns that when fixed rates have long prevailed, (he
unchanging age structurs of the stable population i3
independent of its form at any much eartier time; figuratively,
it can be said that a stable population forgets its past.

More than forty years later, Coale (1957) made the
conjecture that all humen populations forget their past,
Obviously, when fertility and mortality schedules constantly
change, the age structure of the population constantly
changes. The changing age structure is ncvertheless indepen-
dent of the remote past, The age distribution of Francs is no
longer much affected by excess mortality and reduced numbers
of births during the Napoleonlc wars, and the age distribution
of Greeee is no longer affecied at all by the Peloponncsian
Wars, The independence of a changing age distribution from
long past influences is called ‘weak ergodicity’. Any
populalion, whethet or not stable, has forgotten the remote
past; the stable population, in addition to forgetting the past,
has u fixed form, and fixed birth and death rales, A
mathematical proof of the weak ergodicity of human
population was provided by Alvaro Lopez (1961).

BASIC EQUATIONS OF THE STABLE POPULATION, A proof of weak

ergodicity when population density is treated as 8 continuous
fanction of age and time (Lopez, 1967) provides a convenient
background for the equations that characlerize a stable
pepulation,
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in any closed population, the number of persons at age a at
time ¢ is

Na.f) = B(t —a)p(a. 1), {)

when B(t) is the number of births'at time ¢, and p(a, 1) is the

propostion surviving from birth to age a of those born at time

{ —a. The number of births, in turn is determined as follows:

7
B{t)= J‘ Na, tymia, 1) da, @

where m{a, 1) is the proportion of women at age a at time
bearing a female child, and « and f are the lower and upper
limits of the age-span in which childbearing occurs.

Lopez proved that age structure is independent of the remote
past by showing that the birth sequences in two populations
subject 10 the same succession of mortality and fertility
schedules approach a consiant ratio one to the other, no
matter how different the two populations may be at some
initial moment. In other terms, the ratio B {1)/BN)
approaches a constant K as populations 1 and 2 remain
subject to the same changing sequences of fertility and
mortality schedules,

Let y{1) = B,(1)/B,{¢). 1t follows from equations (1) and (2)
that

B/(1)= .r B,(t ~a}p(a, ym(a, 1) da, &)

and that B,(r) conforms 1o the same eguation with a change
only in subseript. But By(t —a}=7y( —a)B,(1 — a); hence

'
Bi(r) = I y{t — a)B,(t —a)p(a, Nm(a, 1) da. (4)
Since B,(1)/8,(1) is ¥(),
’
e =J 1t — ) Byl — a)pla, Dma, /B (0} da.  (3)

The expression in brackels in equation (5) is the proporlicnate
distribution by age of mother, By(r) of the births at time ¢
in the second population. Thus the expression in brackets is 2
frequency distribution, f{(a, ¢), summing to 1.0 when added over
ages « to f. Hence equalion (5) can be rewritien as

’
r(l)=J’ (it~ a)f(a, 1) da. (6)

The ratio of B,(t) to By{¢) is the weighted average of Lhe
sequence of ratios of By(1) to (1) « and B years in the past.
Continued application of such avcraging over many generalions
ultimately brings the ratio B,(1)/B,(1) 1o a constant. When the
ratic has been constant for w years (w the highest age allained)
and mortality in Lhe two populatians is the same, the ratio
N(a, 1){¥,(a, 1) is also the same at all ages; the populations
differ in size, bul have the same proporlionaie age composilion.
If two populations with arbitrarily diffcrent initial conditions
come 16 have the same age distribution when subject lo the
same sequence of fertility and mortality schedules, they may be
said to have forgotten the past. The full proofl (not tepealed
here) of weak ergodicity includes a formal demonstration of the
intuilively appealing proposition that repeated averuging by a
continuous weighting function with positive values over a
finite range leads to a constant value of Lhe ratio. The essential
feature, then, of human fertility that leads to weak ergodicity
is the prevalence in all large populations of positive lertility
rates in an extended span of ages. If, on the contrary, fertility
were concentrated at a single age, there would be no averaging,
no convergence of B,(¢)/8,(t) to a constant, and no “forgetting’
of the remote past.

Strong ergodicity is an immediate corollary of weak er-
godicity. If a population expetiences unchanging fertility and
mortality schedules for a long time, Ihis year's history is the
same as last year's. Two poputations with the same history of
fertility and mortality have the same age distribution. It follows
that unchanging fertility and mortality produce zn unchanging
age distribution ~ the age distribution of a stable population.

Let c(a)da be the proportion of the stable population in the
age interval a 1o @ + da; then c{g) = N(a){[3 N{a)da, where w
is the highest age attained. In any female populzation, the
vith-rate is b= fsc(aym{a)da, and the death-rate is
d = [ c(a)u(a)da, where p(a} is the death-rate al age a. Since
the age distribution in a population with fixed fertility and
mortality schedules is unchanging, it follows that the birth-rate
and death-rate do not change, Hence the rate of increase r
(which equals b — d) is fixed.

An exact expression for the unchanging age distribution of
a stable population is implied by the mortality and [lertility
schedules to which it is subject. The formula for thc age
distribution of a stable age distribution is derived as follows.
The proportion at age a,¢(a), is defined as N(a, e} Ny,
where Np{1) is the lotal population al lime . But
Nia, 1) = 8(t —a)pla, 1), and B - a)=b-N{t —a). More-
over, Nyt —a)=Ny(r}e *; hence c(a)=hN,{1)e " pla)]
Ne(), or

cla)=be " pla) M
Since ¥ c(a)da = 1.0, it follows that
b= I/J‘. e~"p(a)da. (#)
o

There remains the determination of r. Tn any (emale poptlation
the birth rate is determincd by the age distribution and he age
schedule of bearing female children; thatis, b = [2 e(a)m(a) da.
Thus b = b f#2=~p(a)m(g) du, from which it ollows that

»
J. ce-"p({a)m(a)da = 1.0. (¢]

Equation (9) provides the means for calculating the rate of
increase r in the stable population by successive approximation,
given the maternity schedule, m(a), and the mortality schedule,
u{a). [The proportion surviving, p(2) equals {3e™*dx.] The
numerical value of the integral in cquation (9} is a mono-
tonicalty decreasing function of r; the integral for any specified
value of r can be determined by standard numerical methods,
and trial and error can quickly find the value of r that causes
the integral to cqual 1.0. When r is known, h can be calculated
from cquation (8), c(a) from cqualion (7).

The description to this point of stable population theory is
expressed in terms of fertility and mortality schedules and age
distributions that are continuous functions of age. The theory
has allernatively been formufated with distributions and
schedules expressed as discrete  variables. A population
distributed in discrete age intcrvals at a given moment can be
considered a vector that is Iransformed into the cnsuing
population  vector through multiplication by 2 transition
matrix, the Leslie matrix (Leslic, 1945). The terms ‘weak’ and
‘strong’ ergodicity were first applied to finite Markov chains
{Hajnal, 1958); weak crgodicity as a properiy of populations
was first proved by employing matrix algebra and discrete age
distributions (Lopez, 1961).

USE OF STABLE POPULATED CONCEPTS AND RELATIONS BEFURE
L0TXA, Mathemalicians, actuaries and demographers made use
of. the charactcristics of a stable population long before
Lotka's discovery of what Hajnal calied strong crgodicity,
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In any closed population, the number of persons at age a at
time 1 is

N(a- ‘) = B(’ - a)p(a, ’)l (')

when B(¢) is the number of births at time 1, and p(a, 1) is the

proportion surviving fram birth to age a of those born at time

{ —a. The number of births, in furn is determined as follows:

A .
B() = I N{a, t)m(a. () da, @

where mia, 1) is the proportion of women at age a at time ¢
bearing a femate child, and « and § are the lower and upper
limits of the age-span in which childbearing occurs.

Lopez proved that age structure is independent of the remote
past by showing that the birth sequences in two populations
subject to the same succession of mortality and  fertllity
schedules approach a constant ratio one o the other, no
malter how different the wwo populations may be al some
initill moment. In other lerms, the ratio  B,(/B:N
approaches a constant K as populations 1 and 2 remain
subject to the same changing sequences of fertility and
mortality schedules.

Let y(t) = B, ()51 It follows from cquations (1) and (2)
t

B = -r B,(t ~a)pla, )m(a, ) da, 3)

and that B,(r) conforms to the same equalion with a change
only in subscript. Bul B,{f —.0)=7(f — a)B,(i — a); hence

»
B{) =.[ y(t —a)By(t — a)p{a, ym(a, 1) da. @

Since 8,(1)/B,(1) is ¥{1)
il
10 =J y(t = a)By(t — 2)p(a, yma, By} da. (5)

The expression in brackets in equation (5) is the proporlionate
distribution by age of mother, B,(¢), of the births at time 1
in the secand population. Thus the expression in brackets is a
frequency distribution, f{a, £), summing to 1.0 when added over
sges « to f. Hence equation (5) can be rewritten as

'
7(‘)=J‘ 1t —a)fla, 1) da. (6}

The matio of B,(1) to By(1) is the weighted average of the
scquence of ratios of B,(1) to B,() a and fi years in the past.
Continued application of such averaging over many gencrations
ultimately brings the ratie 8,(1)/8,(f) 1o a constant. When the
ratio has been constant for w years (o the highest age attained)
and morlslity in the two populations is the same, the ratio
Nla, DiNy{a, 1) is also the same at all ages; the populations
difTer in size, but have the same proporiionate age compasition.
If two populations with arbitrarily different initial conditions
come 1o have the same age distribution when subject to Lhe
same sequence of fertility and mortality schedules, they may be
said to have forgotten the past. The full proof (not repeated
here) of weak ergodicity includes a formal demonstration of the
intuilively appealing proposition that repealed averaging by a
continuous weighting function with positive values over a
finite range leads to a constant value of the ratio. The esscnlial
feature, then, of human fertility that leads to weak ergodicity
is the prevalence in all large populations of positive fertility
rates in an extended span of ages. If; on the contrary, fertility
were concentrated at a single age, there would be no averaging,
no convergence of B,(t)/5,(1) to a constant, and no ‘forgetting'
of the remote past.

Strong ergodicity is an immediate corollary of weak er-
godicity. If a populalion experiences unchanging fertility and
mortality schedules for a long time, this year's history is the
same as last year's, Two populations with the same history of
fertility and mortality have the same age distribution. 1t follows
that unchanging fertility and mortality produce 2n unchanging
age distribution —the age distribution of a stable population.

Let c{a)da be the proportion of the stable population in the
age inteval @ to a + da; then c(a) = N(a){f§ N{(a) da, where @
is the highest age allained. In any female population, the
birth-rate is b = [c(a)n(a)da, and the death-rate is
d = [§e(a)u(a)da, where ple) is the death-rate at age a. Since
the age distribution in a population with Bxed fetility and
mortality schedules is unchanging, it follows that the birth-rate
and death-rate do not change. Hence the rate of increase r
(which equals & — d) is fixed.

An exact expression for the unchanging age distribution of
a stable population is implicd by the mortalily and ferility
schedules o which it is subject. The formula for the uge
distribution of a stuble age distribution is derived as follows.
The proportion at age o,c(a), is defined as N{a, )N,
where Ny{t) is the tota] population al lime ¢ But
N(a, 1) = Bl —a)p(a, 1), und Blt —a)=0 «Np(¢ — a). More-
over, Ny(t —a)=N.()c *; hencs cla)= BN 1) pla)f
Ne(D), ot

¢(a) = b e~~p(a). Q)]
Since (¥ c(a)da = L0, it follows that
b= I/J.- e~ "p(a)da. (8)
[}

There remains the determination of r. Tn any female population
the birth rate is determined by the age distribution and the age
schedule of bearing female children; thatis, b = F e(a)m(a)da.
Thus & =& [2e~*p(a)m(a)da, from which it follows that

’
I e~ "pl{a)m(a)da = 1.0 . (&)

Equation (9) provides the mecans for calculating the rate of
increase rin the stable population by successive approximation,
given the mateenity schedule, m(a), and the mortality schedule,
p{a). [The proportion surviving, p(a) equals f§c="dx.] The
numerical value of the integral in cquation (%) is a mono-
tonically decreasing function of r; the integral for any specified
value of  can be determined by standard numerical methods;
and trinl and ecror can quickly find the value of r that causes
the integral 1o cqual 1.0. When ¢ is known, b can be calculated
from equation (8), c(a) from cquation (7).

“The description to this point of stable population Lheory is
expressed in terms of fertility and mortality schedules and age
distributions that are continuous functions of age. The theory
has alternatively been [ormulated with distributions and
schedules expressed as  discrete variables. A population
distributed in discrcte age intervals at a given moment can be
considered a vector that is transformed into the cnsuing
population vector through multiplication by 2 transition
matrix, the Leslic matrix (Leslie, 1945). The terms ‘weak® and
'sirong’ ergodicity were first applied to finite Markov chains
(Bajnal, 1958); weak crgodicily as a property of populations
was first proved by employing malrix algebra and discrete age
distributions (Lopez, 1961).

USE OF STABLE POPULATFD CONCEPTS ANL RELATIONS BEFURE
LOTKA. Mathemalicians, actuarics and demographers made use
of . the characteristics of a stable papulalion long before
Lotka’s discovery of what Hajnal calicd strong ergodicily.
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A century and 2 hall carlier Leonard Euler (1760) worked
out many of the relations that characterize stable populations.
He postulaied a population subject o two hypotheses; the
hypothesis of mortality, by which Euler meant a fixed life table
{or p(a) in the terminology employed here}, and the hypothesis
of multiplication (or constant valuc of r]. He noted that the
hypothesis of mortality is an assumption that the cegime of
mortality remains ever the same, and that the hypothesis of
mulliplication is equivalent 1o an assumption of a constant
birth-rate. Euler's equations trcat age and time as discrete
variables, with one-year intervals, rather than as contintous
variables. Translated into continugus notation, one of his
cqualions is N = B fye~""p(a), where N is the total population,
and B the number of births in a given year. This equation is
equivalent to equation (8) above. Euler notes that il the life
1able is known, the growth rate can be cateulated from the
birth-rate, o the birth-rate from the growth rate. He also shows
that ¥ (a) = 8 e~ p(a) [equivalent to cquation (M), and derives
a number of other cquations, including an expression for the
distribution of deaths by age in a population described by his
two hypotheses.

Euler’s work scems to have been little noted in subsequent
years except by actuaries, one of whom, Joshua Milne (1815),
cited Euler and developed himsell a full set of equations for a
constantly growing population with a fixed life table. Like
Euler, Milne used intcgral values of age and time, and
expressed growth over x years at the rate r as (1+r)*, but
explained in a footnote that a *loparithmic expression’ would
be mote precise. Milne is of special interest lo demographers
because he madc calculations to help Malthus in Malthus’s
preparation of an essay entitled Populaiion, published in 1824
in the Supplement 10 the Fourth Edition of the Encyclopuedia
Britannica. In this essay Malthus (with Milnc’s  help)
constructed 2 stable population from a life table borrowed
from Sweden and Finland and a rate of increase that causes
the populations to double every 25 years. He showed that the
age distribution of this stable population closely matched the
distribotion recorded in the United States in 1300, 1910 and
1820; and supposted his hypothesis Lhat by natural increase
alone the American population was growing st such a rapid
rate {Coale, [979).

ANALYTICAL USES OF STABLE POPULATIONS. In a single-volume
summary of his contributions to the mathematics of
population, Lotka (1939} devoted many pages Lo the analysis
of constantly growing populations with a fixed schedule of
mortalily. Only in later chupters did he introduce the relations
(including stability) that incorporate a schedule of lerlility
rates by age of mother. Apparently unawarg of the carlier
work by Euler and Milne, he designated populations that are
subject 1o an unchanging life table and grow at a constant rate
Malthusiant papulativns; not, cvidently, because he knew of the
use of the mathematics of such populalions in Malthus's last
essay on population, but rathee because of Malthus's
well-known belief that populations tend to grow at i
geometric rale unless checked.

The incorporation of a schedule of rates of chilubearing in
addition ta a mortality schedule into the mathematical analysis
of population has been quite pseful, not merely because it
permits  the proof of stability (strong ergodicity). A
fundamental and analytically useful feature of stahle popula-
tion theory is that the combination of any schedule of {ertilily
with any schedule of montality connotes a population with a
specific age structure, birth rate, dcath rate, and rate of natural
increase. The implied pepulation may never exist but it
nevertheless is implied in vl calculable detail.

For example, cquations (7) to (9) can be used 1o determine
the churacteristics of the population that would be generated
by a combination of the highest observed (or highest
imaginable) Fertility in a human population with the lowest
obscrved (or lowest imaginable) mortality rates. Some highly
fertile populations have recorded rates of childbearing thal
would yicld 8.0 to 8.5 children ever born by women who reach
age 50 subject to these rates. Other populations have recently
aftained female expectations of bfe approaching 80 years.
The stable population generated by 2 combination of this
high feriility and this low moriality would have a rate of
increase of 49.5 per thousand. IT all women survived to age
100, the rate of increase would be very slightly higher (49.7 per
thousand), the birth rate would be 50.0 per thousand, and the
death rate 0.3 per thousand. Higher fertility than in the above
example has been observed among married women in some
populations. 1f marriage werc vniversal by age 15, if the
widowed remarried immediately, and il married women
experienced these very high marital fertility rates, the mean
number of children born by age 50 would be about 12, With
an cxpectation of life at birth of 30 years, this still higher
fenility would yield a stable population with a birth raie 65.9
per thousand, a death rate of 1.1 per thousand, and a rate of
increase of 64.8 per lhousand. Again, a mortality schedule
with no deaths below age 100 would gemerate a stable
population with a slightly higher rate of increuse (65.0 per
thousand).

Another application of the stable population inherent in 2
combination of a fertility schedule and & mortality schedule is
the comparison of lhe characteristics of such & stable
population with the chatacteristics of Lhe actual population
that experiences the [ertility and mortality in question. The age
disiribution of the actual population is determined by its past
experience. Its age distribution in combination with ils current
fertility and mortality schedules, determines its birth and death
rales. A comparisen of aciual characteristics with stable
population characteristics shows how different Lh€ pepulation
would be il shaped by current birth and death cxpericnce
rather than by its past.

Table 1 illustrates this use of stable analysis.

In 1941 the observed birth-raic was higher, and the observed
death-rate lower, than actval rates, becausc history had
created an age distribution with a higher proportion in the
reproductive ages, and a lower proportion in the old ages,
where mortality is higher, than in the s1able, Note the negative
rate of increase, high proportion over 65, and high mean age
ultimately implied by the low fertility of 1941. In 1963 the
contrasts between actual and stable population are the
opposite.

SOME PRACTICAL USES OF STABLE POPULATION MATHEMATICS. The

constant fertility and constant mortalily that would establish a
stable populalion are certainly not universal features of the
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TABLE 1. Vil Rates and Age Distribution of Actual and Stable Female Populations
Compared, England and Wales, §941 and 1963

Rates per thousand persons Percent in age interval
Natural
s Birth Death increase 0-14 85+ Mean age
Year O S o 8 0 s 0 s o s 0 S
1941 131 103 113 205 13 —102 19.6 155 103 199 359 424
1953 172 2200 116 92 56 108 214 27.1 141 k0 3T 13.2

‘0" means Observed population; °S* the Stable.
Source: Keyfitz, N. and Flicger, W. (1968).

middle of the 20th a fixed rate r) over the range from 0 lo a. This cxtension
provides a much more flexible basis for estimation, and
table population analysis in most such

history of actual populations. By the
century, the mortality of most populations had fallen; in (he
more indusirialized countries, al least, fertifity was much doubtless will replace &
reduced from earlier levels. Neverthcless, the equalions uses.

rowlh, and age composition in Progenitors of stable population theory existed at least 150

relating fertility, mortality, g t
stable populations bave proven highly uscful in estimaling the years before the concept of stability was invented, and its

tsue characteristics of some populations for which accurate validity proven. The theory promises to have descendants for
and complete data are lacking. many years in the future, non-stable descendants that will
The usefulness of stable popuiation theory in making good doubiless have as much abstract and practical value as the
cstimates from faully data originates in a phenomenon called stable theory itsell.
‘quasi-stability’. A quasi-slable population i one in which Anstey J. COALE
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