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Required reading:  

 “Stable and stationary models”. Chapter 9 in D. Rowland Demographic Methods and 

Concepts. Oxford University Press 2003, pp. 300-306, 312-339.  

 

Model populations are used to show various links between population variables, such as the 

numbers of births and deaths, the age distribution, total population size, etc. The intention is 

to simplify reality, without losing main characteristics. 

Starting point: we consider a closed population, of which the members only experience birth 

and death. In addition: we break the population down by just two characteristics: age and sex. 

Definition: a population of this kind is called stable when both its growth rate and its relative 

age distribution do not change over time. 

 

Hence the size of a stable population grows or diminishes at a constant rate, but each age 

group has a constant share. The size of each age group grows/diminishes with the same 

(constant) rate as the size of the whole population. 

 

Property 1: The number of births and the number of deaths in a stable population change with 

the same rate. This rate is constant, and it equals the growth rate of the population. Thus the 

crude birth rate (CBR) is also constant, and so is the crude death rate (CDR) – although the 

CBR and the CDR are usually not equal to each other.  

 

In other words: growth rate (= natural growth rate) = CBR – CDR = constant. 
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Property 2: Any two sets of time-constant age-specific birth rates and age-specific death rates, 

when applied to a population with a certain initial age distribution, will in the long run result 

in a stable population, of which the growth rate and the age distribution only depend of the 

birth rates and the death rates. The ultimate (stable) age distribution will have a regular form 

(cf. below). This is the case even if the initial age distribution was not stable – for instance 

was very irregular. We say that a stable population has “forgotten” its history.  

This property is known as the principle of strong ergodicity (Lotka (1911), Euler (1760)). 

 

The use of stable population theory 

Stable population theory is frequently used when we lack certain population data (for example 

the CBR) while we know some of the other data (for example the age distribution) with 

certainty. As an example 

Brazil 1960:  

 from the Census of 1960 we know the age distribution in five-year age groups 

 we assume that the population in Brazil in 1960 is stable 

Now we can compute (“estimate”) the CBR, the CDR, the life expectancy, the Gross 

Reproduction Rate, etc., by using the theoretical mathematical relationships that exist in a 

stable population between these variables and the age distribution. See Rowland Table 9.7 (p. 

336). 

 

Estimation techniques of this kind (“Indirect estimation methods”) are frequently used for 

developing countries, but also for historical populations in developed countries. Cf. Appendix 

1 on the Norwegian population census of 1801, using “Regional Model Stable Populations” to 

be discussed later. 

 

Using the strong ergodicity principle 

Given a set of age-specific birth rates and one of age-specific death rates, it is possible to 

compute the annual growth rate and the relative age distribution of the stable population that 

these rates imply. The annual growth rate summarizes, in one number, the age-specific birth 

and death rates. 

 

Definition: the annual growth rate of a stable population is called the intrinsic growth rate. 
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Note: the intrinsic growth rate is generally NOT the same as the growth rate for an actual 

population. These two rates are only equal when the actual population is stable (and closed for 

migration). Otherwise the intrinsic growth rate is merely a theoretical notion. 

 

Given two sets of age-specific rates for fertility and mortality, how do we compute  

 the intrinsic growth rate? 

 the stable age distribution? 

 

We limit ourselves to the female part of the population. Hence age-specific birth rates are 

restricted to female births. 

Write the intrinsic growth rate as r. 

Two approaches will be presented: an approximate one, and an exact one. 

 

1. Approximate calculation of the intrinsic growth rate and the stable age distribution 

We use the Net Reproduction Rate (NRR), which can be computed on the basis of the age 

specific rates for fertility and mortality. See Rowland p. 246 (not required reading in this 

course). On page 305 he writes the NRR as R0. NRR represents the average number of 

daughters per woman. 

 

Below I will derive an approximate expression for the intrinsic growth rate that is somewhat 

easier to understand and simpler to compute than the one that Rowland gives on page 306 

(with an example in Table 9.1). Usually the two formulas give results that are very close. 

 

Assume that the average generation distance between mothers and daughters equals T years. 

In other words, mothers are, on average, T years older than their daughters. Then we know 

that NRR represents the relative increase in the stable population over a period of T years. The 

annual growth rate in the stable population equals r. Therefore we can write 

 

(1) NRR = (1 + r)
T
. 

 

Now we can find r, by solving expression (1): 

 

(2) 1)(1 /1  TT NRRNRRr . 



 4 

 

NRR follows from the age-specific birth and death rates. But T?  

 

Consider a group of women at age 50. They have finished their reproductive career. 

They have given birth to various numbers of daughters at various ages. When the mothers are 

50 years of age, the daughters are between 0 and 35 years old. Define Gx as the number of 

daughters currently of age x of mothers aged 50, x = 0, 1, 2, …, 35. Then the average distance 

between the generation of mothers (all 50) and daughters (between 0 and 35) equals 
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Thus the average generation distance T equals the difference between two ages: the age of the 

mothers (50) and the average age of the daughters. Assume now that this age difference 

equals the mean age of mothers when they gave birth to these daughters computed from the 

net fertility rates (see page 6; see also column E in Rowland’s Table 9.1). The latter mean age 

is written as µ (R1/R0 in Table 9.1).  

 

We assume that the average generation distance between mothers and daughters is equal to 

the mean age of the mothers when they give birth to the daughters, in other words we assume 

that T = µ. 

 

This assumption is only 100 per cent correct in case r = 0, in other words when the stable population 

neither increases nor diminishes (stationary population, cf. below). In that case the number of women 

does not change over time, and the mean age computed based on absolute numbers (T) equals the 

mean age computed from age-specific rates (µ). For intrinsic growth rates different from zero, is 

T different from µ (r > 0: µ > T; r < 0: µ < T). 

 

Assuming that T = µ, we use expression (2) to find an approximate solution for r as 

 

(3) 1


NRRr . 
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For example (Bangladesh 1974) when µ = 28, and NRR = 2.3737, we find that 28 2.3737 1r    

= 1.031 – 1, or 3.1 per cent per year. 

 

After the intrinsic growth rate r has been calculated, we can find the stable age distribution for 

the female population in two stages. First, compute an initial share of age group (x, x+1) as 

 

 Cx = (1 + r)
-(x+½)

.(Lx/l0). 

 

Here Lx and l0 follow from the life table that is computed from the age-specific death rates: Lx 

is the column of exposure times, and l0 is the radix. 

 

The sum of these quantities Cx is not equal to one, as should be the case for a proper share. 

Assume that this sum equals C = ∑x Cx. Next, compute the final shares cx = Cx/C. For a proof, 

see Appendix 2 (not required reading). See also Rowland pages 307-311 (not required 

reading). 

This formula for the age distribution is exact, given r. 

 

2. Exact calculation of the intrinsic growth rate and the stable age distribution 

In Appendix 2 I prove the following exact expression for the intrinsic growth rate r: 
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Here r is expressed as a function of age-specific birth rates fx (only female births) and age-specific 

mortality Lx/l0 (to be computed from a life table, which itself is based on the age-specific death rates 

mx for these women). This expression is called Lotka’s fundamental equation of stable population 

theory. You do not have to remember this expression by heart, but you should be able to interpret and 

use it. 

 

How can we find the intrinsic growth rate r, when we are given age-specific fertility (fx) and mortality 

(Lx/l0)? Expression (4) is too complicated for a direct solution. We find r by “trial and error”, as 

follows. Choose a starting value r1 for the intrinsic growth rate. Check whether the left-hand side of 

(4) equals 1 with this value (and given the age-specific fertility and mortality). If not, choose a new 
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value: r2. Check (4) again … etc., until you have found a value for the intrinsic growth rate that results 

in a value for the left-hand side of (4) that is close enough to 1. 

 

 

Systematic search: 

 Choose 11 


NRRr , in other words, the approximate solution 

 Check the sum in the left-hand side of (4) with r = r1: is sum(r1) = 1? 

 If not, choose a new value r2 for r: r2 = r1 + [sum(r1) – 1]/µ 

 Check now the new sum against one: is sum(r2) = 1? If not, repeat the previous step as often 

as is necessary 

 r3 = r2 + [sum(r2) – 1]/µ 

 r4 = r3 + [sum(r3) – 1]/µ 

 … 

 … 

 etc. 

 

Usually, this procedure results in only a few steps in a value for the intrinsic growth rate that is 

accurate enough, in other words that produces a value for the left-hand side of expression (4) which is 

close enough to one. 

Example: Peru 1961 (Coale ; see website ECON 3710). PC-exercise Egypt 1997, Norway 1987. 

Rowland does not present this method for the exact calculation of the intrinsic growth rate. 

 

Comments 

1. Fertility rates fx are zero at all ages below 15 or above 50. Thus in practice, the sum in expression 

(4) is limited to ages x = 15, 16, 17, …, 49. 

2. The product (fx.Lx/l0) is called the net fertility rate, often written as φx. We recognize the sum ∑x φx 

as the Net Reproduction Rate. Indeed, when we assume no growth in the stable population and 

insert r = 0 in expression (4), we find ∑x φx = 1. Or, the Net Reproduction Rate equals one in this 

case! 

3. When the age x is given in five-year intervals instead of one-year intervals, expression (4) is 

written as follows: 

  5
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 where x represents intervals 15-19, 20-24, …, 45-49. 

4. As soon as we have computed the exact value of the intrinsic growth rate r, we can also compute 

the exact value of the generation distance T, as follows. We know that NRR = (1 + r)
T
.  
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 Next we can solve for T : T = log(NRR)/log(1 + r). 

5. The fundamental equation (4) is often written as follows: 
 .)().(. dxxpxfe rx

In that case, age is a 

continuous variable – not a discrete variable (as in our case – one-year age groups, or five-year age 

groups). Therefore  

 - integral sign ∫, instead of summation ∑ 

 - e
-rx

, instead of (1+r)
-(x+½)

 

 - p(x), instead of Lx/l0; p(x) equals lx/l0, the individual survival probability from birth to exact age x 

 At the same time we have that  NRR = e
rT

;  instead of NRR = (1 + r)
T
 

     and r = (1/T).ln(NRR) instead of 1 T NRRr . 

 

 Whether you use discrete or continuous age in a stable population model has in general very little 

effect on the numerical results, unless you use too wide age intervals. Five-year intervals give 

results that are accurate enough for our purpose. 

6. After you have computed the exact value for the intrinsic growth rate, you can compute the stable 

age distribution using the method described on page 5. 

 

 

 

Stationary populations 

A stationary population is a stable population in which the intrinsic growth rate is zero. In other words, 

none of the population variables in a stationary population change over time: the annual number of 

births, the annual number of deaths, population size, the size of a certain age group, etc. are all 

constant. 

 

We can derive a number of simple expressions for these variables in a stationary population. Here I 

will mention them, and try to give an intuitive justification. Appendix 2 contains a formal derivation of 

those expressions. The expressions for stationary populations in this section are required reading, 

those in Appendix 2 are not. 

 

Fertility 

Given age-specific rates for fertility and mortality for women. These rates are combined into net 

fertility rates φx = fx(Lx/l0). Since a stationary population is a stable population with zero growth rate, 

we can insert r = 0 in expression (4) and find  

      

x x

xx
xr .1.)1( ½)(   
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We know that the sum ∑x φx equals the Net Reproduction Rate. Thus we see that a stationary 

population has NRR equal to 1. We find the same result when we start from the expression 

 NRR = (1+r)
T
, which holds for every stable population. Inserting r = 0 results in NRR = (1+0)

T 
= 1. 

Also the other way round: a closed stable population that has NRR equal to one is stationary. 

 

Mortality 

The life expectancy at birth e0 equals the mean age at death of the stationary population. In other 

words, individuals die at age e0 on average. The annual number of deaths in a stationary population is 

constant. Write this number as D. Population size, written as N, is also constant. Each year, a share 

1/e0 in the population dies. Thus we find that D = N/e0. 

This leads to the following expression for the Crude Death Rate (CDR) in a stationary population: 

 

 CDR = D/MYP = D/N = 1/e0, 

 

because the mid-year population MYP equals ½(N+N)=N. 

 

The link between fertility and mortality in a stationary population 

In a stable population we have that the growth rate equals the difference between crude birth rate and 

crude death rate. But in a stationary population the growth rate is zero. Thus we find for a stationary 

population that  

 

(5) CDR = CBR = 1/e0. 

 

Write the annual number of births as B. Since CBR = B/N = 1/e0, we find the following simple 

expression for total population size in a stationary population: 

 

(6) N = B.e0. 

 

The age structure of a stationary population 

The life expectancy e0 is defined in general as e0 = T0/l0 = ∑x Lx/l0, see life table theory. Inserting this 

expression for e0 in expression (6), we find that total population size in a stationary population equals 

B.∑x Lx/l0. Meanwhile one can prove that the size of age group (x,x+1) in a stationary population 

equals B.Lx/l0. 

 

B and l0 do not depend of age x - only Lx varies with age. This is the reason why Lx (the Lx-column in a 

life table) is sometimes called "age structure of the stationary population". See Rowland page 307. 
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Appendix 1. Application of stable population theory to Norway’s age 

distribution in 1801 

 

In the example below I analysed the age structure of Norway 1801 by comparing it with the age 

distributions of a series of model stable populations. After I found a model population whose age 

pyramid resembled the empirical one closely enough, I could read off the life expectancy.  

 

 

 

 

 

The Population Census of 1801 in Norway is generally believed to be of high quality (Drake 1969). The age 

pyramid below suggests that the population might have been nearly stable. Norwegian crude birth and death 

rates were rather constant at 30-32 and 24-26 per thousand respectively, in the period 1735-1801 (Drake 

1969, Table 3.6). Age groups between 25 and 45 signal non-stability, although some digit preference 

probably also contributed to the irregularities. By working with cumulated age groups, this problem will have 

only minor impact on the findings.  

Age structure, Norw ay, Census of 1801
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I compared the cumulated age distributions C(a) for men and women to those of stable populations based on 

Regional Life Tables Model North of levels 11-15, i.e. life expectancy values of 45-55 for women and 41.8-

51.4 for men. For successive values of a, I found the stable growth rate by interpolation between tabulated 

growth rates. If Norway’s population would have been perfectly stable, it should have the same interpolated 

growth rate for each a. In empirical applications, interpolated rates vary by age. Variations across levels were 

smallest for level 12, the standard deviation in the rate over ages 15-70 being 1.1 and 0.7 per thousand for the 

two sexes. The mean interpolated growth rates were equal to 12.2 and 10.2 per thousand for men and women, 

respectively. This suggests a life expectancy of around 45 years before 1801.  

For men aged 35-39 or 65-69, and women aged 30-34, 40-44, or 70-74, the estimated growth rates were 

remarkably lower than those for other age groups. Exceptionally low birth rates and high death rates in the 

1740s and 1770s explain some of these effects (Drake 1969). 
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Appendix 2. Some mathematics on stable and stationary populations 

 

We analyse a stable population that is closed for migration, and restrict the analysis to women. 

 

The aim is to find expressions for the intrinsic growth rate r and the stable age structure cx, given sets 

of age-specific rates for mortality and fertility. 

 

The number of births increases each year by a constant factor (1+r). Write the number of births in year 

t as Bt. By way of example, we note that B2000 = B1999(1+r) = B1998(1+r)
2
 = B1997(1+r)

3
 = … etc. 

Generally: 

 there are Bt  live births in year t - these were born between exact time t and exact time t+1; 

 at time t there are Nx persons aged between x and x+1; 

Then we can write 
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Thus total population size at time t equals 
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One year later, at time (t+1), population size equals  
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This implies that the mid-year population in year t can be approximated by  
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and the Crude Birth Rate in the stable population in year t equals  
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which is independent of time, see Property 1 in the main text. 
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Instead of expression (A1), we can also write 
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At the same time we can write for the share of age group (x,x+1) in the total population 
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The terms Bt in the numerator and denominator cancel, and the remainder of the denominator can be 

written as 1/{b(1+r)
½
}, because of expression (A2). Hence we find for the share of age x  
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The Crude Birth Rate b can be written as a weighted average of the age-specific birth rates fx, with the 

age shares cx as weights: b = ∑x fx.cx. Using (A3) this implies that 
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Expression (A4) is known as Lotka's fundamental equation of stable population theory, or the Lotka 

equation for short. Given age-specific fertility (fx) and age-specific mortality (Lx/l0), the intrinsic 

growth rate r is determined by Lotka's equation.  

 

When we combine expressions (A1) and (A3) we find for the age structure  
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so that, indeed,  ∑x cx = 1. 
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A stationary population is a special case of a stable population - the growth rate r is zero. 

 

1. The Lotka equation reduces to ∑x fx.(Lx/l0) = ∑x φx = NRR = 1. 

 

2. Crude Birth Rate (b): 

 Insert r = 0 in (A1) to find ,
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 with e0 the life expectancy at birth. 

 

3. Crude Death Rate (m): 

 In a stationary population, the Crude Birth Rate equals the Crude Death Rate. Therefore  

 .
1

0e
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4. Age distribution (cx): 

 Use (A3) and insert r = 0, to find 
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5. Population size (N): 

 In general, the CBR equals Bt/MYPt. In a stationary population, the number of births is 

constant (Bt=B), and so is population size. Hence MYPt equals N for a stationary population. 

Thus the Crude Birth Rate is B/N. At the same time, it is equal to 1/e0. In other words,  

 N = B.e0. 

 

6. Size of age group (x,x+1): 

 
000

0.
l

L
B

le

L
BecNN xx

xx  . 

 

 

 


