Universitetet i Oslo
Økonomisk institutt
K. S.

ECON3120/4120 - Mathematics 2, fall term 06

Problems for Seminar 1, 4/9-8/9-06
1 Consider the function f defined by

$$
f(x)=\frac{3-x}{3 x-3}
$$

(a) Where is $f(x)$ defined? Compute $f(x)$ when $x=-3, x=-1 / 2, x=1 / 4$, $x=3 / 2, x=3$ and $x=9$.
(b) Where is $f(x) \leq 0$? Where is $f(x) \leq 1$?
(c) Draw the graph of f and see if your answers to (b) are confirmed.
(d) Define $g(x)=\ln [f(x)]$. Where is $g(x)$ defined? Where is $g(x)>0$?

2 Use l'Hôpital's rule (or other methods) to find:
(a) $\lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x-3}$
(b) $\lim _{x \rightarrow 0} \frac{e^{-3 x}-e^{-2 x}+x}{x^{2}}$
(c) $(*) \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+\frac{1}{2} x}-x\right)$

3 (a) The equation $e^{L}+K L=K e^{K}$ defines L as a differentiable function of K. Find an expression for $d L / d K$.
(b) If $z=F(u, v, w)$ and $u=f(x, y), v=e^{-x}$, and $w=\ln y$, find an expression for $\partial z / \partial x$ and $\partial z / \partial y$.

4 Find the differential of z expressed in terms of the differentials of u and v :
(a) $z=u v^{2}$
(b) $z=u^{2} / v^{3}$
(c) $z=F\left(u^{2}, v^{3}\right)$
(d) $z=u^{2}-f(u+v)$

5 The following system defines u and v as C^{1} functions of x and y around the point $P=(x, y, u, v)=(1,2,1,1)$:

$$
\begin{aligned}
u^{2}+v^{2} & =x y \\
x u^{2}+y v^{2} & =x+y
\end{aligned}
$$

Differentiate the system. Then find the values of $\partial u / \partial x, \partial u / \partial y, \partial v / \partial x$ and $\partial v / \partial y$ at the point P.

