Universitetet i Oslo
Økonomisk institutt
K. S.

ECON3120/4120 - Mathematics 2, fall term 06

Problems for seminar 7, 23/10-27/10.
1 (Exam problem 30/5-05)
(a) Calculate the determinant of $\mathbf{A}_{t}=\left(\begin{array}{rrr}0 & t & 1 \\ 4 & -2 & 8 \\ 1 & 1 & 1\end{array}\right)$
(b) Find x, y and z such that

$$
\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & 0
\end{array}\right)-\left(\begin{array}{ll}
x & y \\
z & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{rr}
5 & -2 \\
0 & 1
\end{array}\right)
$$

2 Exam problem 142.
3 Find the general solution of the differential equation

$$
\dot{x}+\frac{2}{t} x=e^{t}
$$

Find, in particular, the integral curve passing through $(t, x)=(1,1)$.
4 Given the matrix

$$
\mathbf{A}_{t}=\left(\begin{array}{rrr}
1 & t & 0 \\
-2 & -2 & -1 \\
0 & 1 & t
\end{array}\right)
$$

(a) Calculate $\left|\mathbf{A}_{t}\right|$ and show that \mathbf{A}_{t}^{-1} exists for all t.
(b) Show that for a certain value of t we have $\mathbf{A}_{t}^{3}=\mathbf{I}_{3}$, where \mathbf{I}_{3} is the identity matrix of order 3 .
(c) Find the inverse of \mathbf{A}_{1}.
(d) Suppose that \mathbf{A} and \mathbf{B} are invertible $n \times n$-matrices. Show that if $\mathbf{A}^{\prime} \mathbf{A}=$ \mathbf{I}_{n}, then $\left(\mathbf{A}^{\prime} \mathbf{B A}\right)^{-1}=\mathbf{A}^{\prime} \mathbf{B}^{-1} \mathbf{A}$.

