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On an example from lecture 2007-11-14
First a note on concave functions: of course I managed to give (graphically) the definition

of convex functions in the lecture. A function is concave if for any two points a and b on the
graph, the straight line-segment from a to b, is nowhere above the graph. So yes, linear func-
tions are concave – they are the only functions that are both concave and convex.

To the problem: Consider the (linear programming) maximization

max−x− y subject to



p2 − p1 − 2x− y ≤ 0 (C1)
p3 − p1 − x− 2y ≤ 0 (C2)
x ≤ p2 (C3)
y ≤ p3 (C4)
−x ≤ 0 (C5)
−y ≤ 0 (C6)

where

p3 > p2 > p1 ≥ 0. (*)

The constraints define a set S in the (x, y) plane. You are given the following problem:

If conditions (C1) & (C2) hold with equality for some point (x0, y0) ∈ S with x0 > 0,
y0 > 0, then show that (x0, y0) satisfies the sufficient conditions (i.e. the necessary Kuhn-
Tucker conditions together with concavity of the Lagrangian).

The Lagrangian is then

L(x, y) = −x− y − λ1(p2 − p1 − 2x− y)− λ2(p3 − p1 − x− 2y)
− λ3(x− p2)− λ4(y − p3) + λ5x + λ6y

and the Kuhn-Tucker conditions are

0 = L′
x (KT1)

0 = L′
y (KT2)

λ1 ≥ 0 (= 0 if strict inequality in (C1)) (KT3)
λ2 ≥ 0 (= 0 if strict inequality in (C2)) (KT4)
λ3 ≥ 0 (= 0 if strict inequality in (C3)) (KT5)
λ4 ≥ 0 (= 0 if strict inequality in (C4)) (KT6)
λ5 ≥ 0 (= 0 if strict inequality in (C5)) (KT7)
λ6 ≥ 0 (= 0 if strict inequality in (C6)) (KT8)

Long, isn’t it? Well, we can get rid of two already: we are told that constraints (C5) and
(C6) are inactive, so λ5 = λ6 = 0. Also we are told that (C1) and (C2) hold with equality, so
(x0, y0) solves (

2 1
1 2

) (
x0

y0

)
=

(
p2 − p1

p3 − p1

)



which by Cramer’s rule gives

x0 = (2p2 − 2p1)− (p3 − p1))/3 = (−p3 + 2p2 − p1)/3 and
y0 = (2p3 − 2p1 − (p2 − p1))/3 = (2p3 − p2 − p1)/3

We are given the information that (x0, y0) ∈ S, so that (C3) and (C4) hold. Now we can do
one out of two:

• We can check whether conditions (C3) and (C4) are inactive.

• We can guess (from the sketch) that λ3 = λ4 = 0 – it may be necessary if (C3) resp. (C4)
hold with strict inequality – and then insert this into the Kuhn-Tucker conditions and
hope that they hold. (That’s the good thing about sufficient conditions: you can guess
first and check afterwards.)

Let us check. Those who feel lucky, can skip this paragraph: To check (C3), we observe that
if (C3) fails – i.e. that x0 > p2 – then we must have −p3 + 2p2 − p1 > 3p2 or 0 > p1 + p2 + p3,
which is impossible by (*). So (C3) holds. To check (C4), we observe that if (C4) fails – i.e.
that y0 > p3 – then we must have 2p3 − p2 − p1 > 3p3, with the same conclusion.

OK, so both the checkers and the guessers among you would now want to put λ3 = λ4 = 0.
Since (C1) and (C2) both hold with equality, then what is left of the Kuhn-Tucker conditions
is that there must exist nonnegative numbers λ1 and λ2 such that (x0, y0) is a stationary point
of L.

To verify this, put 0 = L′
x = −1 + 2λ1 + λ2 (since λ3 = · · · = λ6 = 0) and 0 = L′

y =
−1 + λ1 + 2λ2. So (

2 1
1 2

) (
λ1

λ2

)
=

(
1
1

)
and Cramer’s rule gives λ1 = (2 − 1)/3 ≥ 0 and λ2 = (2 − 1)/3 ≥ 0. We see that the point
(x0, y0) satisfies the Kuhn-Tucker conditions with λ1 = λ2 = 1/3, λ3 = · · · = λ6 = 0.

Since the criterion and the constraints are all linear functions – and hence concave – the
sufficient conditions hold.


