On an example from lecture 2007-11-14

First a note on concave functions: of course I managed to give (graphically) the definition of convex functions in the lecture. A function is concave if for any two points a and b on the graph, the straight line-segment from a to b, is nowhere above the graph. So yes, linear functions are concave - they are the only functions that are both concave and convex.

To the problem: Consider the (linear programming) maximization

$$
\max -x-y \quad \text { subject to } \begin{cases}p_{2}-p_{1}-2 x-y \leq 0 \\ p_{3}-p_{1}-x-2 y \leq 0 \\ x \leq p_{2} & \text { (C1) } \\ y \leq p_{3} & \text { (C2) } \\ -x \leq 0 & \text { (C4) } \\ -y \leq 0 & \text { (C5) } \\ \text { (C6) }\end{cases}
$$

where

$$
\begin{equation*}
p_{3}>p_{2}>p_{1} \geq 0 \tag{*}
\end{equation*}
$$

The constraints define a set S in the (x, y) plane. You are given the following problem:
If conditions (C1) \& (C2) hold with equality for some point $\left(x_{0}, y_{0}\right) \in S$ with $x_{0}>0$, $y_{0}>0$, then show that $\left(x_{0}, y_{0}\right)$ satisfies the sufficient conditions (i.e. the necessary KuhnTucker conditions together with concavity of the Lagrangian).

The Lagrangian is then

$$
\begin{gathered}
L(x, y)=-x-y-\lambda_{1}\left(p_{2}-p_{1}-2 x-y\right)-\lambda_{2}\left(p_{3}-p_{1}-x-2 y\right) \\
\\
-\lambda_{3}\left(x-p_{2}\right)-\lambda_{4}\left(y-p_{3}\right)+\lambda_{5} x+\lambda_{6} y
\end{gathered}
$$

and the Kuhn-Tucker conditions are

$$
\begin{array}{rlrl}
0 & =L_{x}^{\prime} & & \\
0 & =L_{y}^{\prime} & & \\
\lambda_{1} & \geq 0 & & (=0 \text { if strict inequality in (C1)) } \\
\lambda_{2} & \geq 0 & & (=0 \text { if strict inequality in (C2)) } \\
\lambda_{3} & \geq 0 & & (=0 \text { if strict inequality in (C3)) } \\
\lambda_{4} \geq 0 & & (=0 \text { if strict inequality in (C4)) } \\
\lambda_{5} \geq 0 & & (=0 \text { if strict inequality in (C5)) } \\
\lambda_{6} \geq 0 & & (=0 \text { if strict inequality in (C6)) } \tag{KT8}
\end{array}
$$

Long, isn't it? Well, we can get rid of two already: we are told that constraints (C5) and (C6) are inactive, so $\lambda_{5}=\lambda_{6}=0$. Also we are told that (C1) and (C2) hold with equality, so $\left(x_{0}, y_{0}\right)$ solves

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{x_{0}}{y_{0}}=\binom{p_{2}-p_{1}}{p_{3}-p_{1}}
$$

which by Cramer's rule gives

$$
\begin{aligned}
x_{0} & \left.=\left(2 p_{2}-2 p_{1}\right)-\left(p_{3}-p_{1}\right)\right) / 3=\left(-p_{3}+2 p_{2}-p_{1}\right) / 3 \text { and } \\
y_{0} & =\left(2 p_{3}-2 p_{1}-\left(p_{2}-p_{1}\right)\right) / 3=\left(2 p_{3}-p_{2}-p_{1}\right) / 3
\end{aligned}
$$

We are given the information that $\left(x_{0}, y_{0}\right) \in S$, so that (C3) and (C4) hold. Now we can do one out of two:

- We can check whether conditions (C3) and (C4) are inactive.
- We can guess (from the sketch) that $\lambda_{3}=\lambda_{4}=0$ - it may be necessary if (C3) resp. (C4) hold with strict inequality - and then insert this into the Kuhn-Tucker conditions and hope that they hold. (That's the good thing about sufficient conditions: you can guess first and check afterwards.)

Let us check. Those who feel lucky, can skip this paragraph: To check (C3), we observe that if (C3) fails - i.e. that $x_{0}>p_{2}$ - then we must have $-p_{3}+2 p_{2}-p_{1}>3 p_{2}$ or $0>p_{1}+p_{2}+p_{3}$, which is impossible by $\left({ }^{*}\right)$. So (C3) holds. To check (C4), we observe that if (C4) fails - i.e. that $y_{0}>p_{3}$ - then we must have $2 p_{3}-p_{2}-p_{1}>3 p_{3}$, with the same conclusion.

OK, so both the checkers and the guessers among you would now want to put $\lambda_{3}=\lambda_{4}=0$. Since (C1) and (C2) both hold with equality, then what is left of the Kuhn-Tucker conditions is that there must exist nonnegative numbers λ_{1} and λ_{2} such that (x_{0}, y_{0}) is a stationary point of L.

To verify this, put $0=L_{x}^{\prime}=-1+2 \lambda_{1}+\lambda_{2}$ (since $\lambda_{3}=\cdots=\lambda_{6}=0$) and $0=L_{y}^{\prime}=$ $-1+\lambda_{1}+2 \lambda_{2}$. So

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}}=\binom{1}{1}
$$

and Cramer's rule gives $\lambda_{1}=(2-1) / 3 \geq 0$ and $\lambda_{2}=(2-1) / 3 \geq 0$. We see that the point $\left(x_{0}, y_{0}\right)$ satisfies the Kuhn-Tucker conditions with $\lambda_{1}=\lambda_{2}=1 / 3, \lambda_{3}=\cdots=\lambda_{6}=0$.

Since the criterion and the constraints are all linear functions - and hence concave - the sufficient conditions hold.

