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Problem 1 Consider the function f(x) = 2x2 − lnx− 2, x > 0.

(a) We see that f(1) = 0. Show that f(x) has exactly one other zero, and that this point is in
the interval (0, 1).

(b) Show that f defined on [1,∞) has an inverse function g, and find g′(0).

Problem 2 The equation system

x · y · z · ue−u · vev = 0
1x + 2y + 3z + 4u + 5v = 6

defines u and v implicitely as continuously differentiable functions of (x, y, z) around some
suitable point P .

(a) Differentiate the system (i.e. find the differentials).

(b) Find a general expression for v′x.

(c) If P has (x, y, z)-coordinates equal to (1, 1, 1), show that u(1, 1, 1) = v(1, 1, 1) = 0.

(d) Find an approximation for u in the point where x = y = 1 and z = 1.1.

Problem 3

(a) Calculate lim
x→0
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√
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√
2

(b) Calculate lim
x→0+

x1/1000(lnx)9999.

(b) Calculate
∫

xe
√

x dx

(c) Let f(x) =
∫ ∞

0
txe−t dt for x ≥ 0.

Calculate f(0). Then use integration by parts to show that f(x + 1) = (x + 1)f(x).
(This will prove that f(n) = n! when n is a natural number.)

Problem 4 Find the general solution to the differential equation

tẋ = x3 ln t

Problem 5 For points (b) and (c): You can use that d
dxx2/3 = 2

3x−1/3 even for x < 0 (that is:
the left and right hand sides are both well-defined, and they represent the same value).

(a) Show that
∫ 12

−12
x2007ex1234567890

dx = 0.



(b) Find the error in the following two calculations∫ 1
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and ∫ 2

−2
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x
(ii)

=
[
ln |x|

]2

−2
= ln 2− ln 2 = 0

(c) Find the integrals (i) and (ii), if possible.

(d) What can the method used in point (a) tell you about the values of the integrals (i) and
(ii)? (Answer cautiously!)


