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Note: Solution to compulsory term paper no. 2 in
ECON3120/4120 Mathematics 2

The problem set was to a large extent taken from last spring’s exam problem set, which is
considered to be a bit too easy. And besides, I had done problem 3 in a lecture (thanks to the
student who reminded me). So your grades may have come out a bit optimistic, as – just like
last time, but with opposite sign this time – I have not done anything to compensate for the
problem set being slightly off the average difficulty. The grade distribution here was 13 A’s,
12 B’s, 5 C’s and no DEF.

Upon grading your papers, I weighted the problems as that exam, with the modifications
that 4c was weighted down to half its original score (since you weren’t asked to do the
latter part of it) and the weight of problem 5 is the sum of 4d (which was deleted for this
term paper) and half 4c. This gives the problems the following weights in percent points: 1:
10+12, 2: 18, 3: 8+12, 4: 10+6+8, 5: 16.

The solution that was made for last spring’s exam problem set is attached. From your
papers I have made a few additional comments:

Problem 1

(a) Most of you understand cofactor expansion, though I am obviously not the only one
who gets signs wrong sometimes.

(b) For the case a = 2, the two last equations say the same. That is however not sufficient to
conclude that there are many solutions; you must also show that the first equation does
not contradict the two others. Consider the following counterexample:

3x + 3y + 3z = 2
x + y + z = 1 (eq. 1b)
x + y + z = 1

Evidently the last two equations say the same. But the first says something different.
There is a way to check this: deleting the third line from the equation set (the one in
problem 1 (b)) and the third line from A2, we are left with the coefficient matrix B =(

3 2 −4
1 1 1

)
. This one has three 2 × 2 submatrices, and if at least one of these has nonzero

determinant, then there exists a solution, where the corresponding two variables are
uniquely determined by the third one. For example, consider the matrix C1 obtained
by deleting the first column;

∣∣ 2 −4
1 1

∣∣ 6= 0 so we can choose x = s freely and – given s –
there will be one and only one solution for (y, z). Hence there is one degree of freedom.
Similarly we could have considered C2 obtained by deleting the second column (would
give y = t free and (x, z) uniquely in terms of t) and C3 obtained by deleting the third
column. If at least one of |C1|, |C2|, |C3| is nonzero, then we have one degree of freedom.
If all three are zero, then we either have more than one degree of freedom or no solution
– consider the example (eq. 1b) above where all 2 × 2 subdeterminants are zero, and the
right hand side determines existence.
But bottom line: you cannot, logically, find one superfluous line and conclude «many solutions»,
you must check that there aren’t other inconsistencies.



I have only reduced your score by one point for this error; this based on 12 points for 1b
from 4 points for each of (i), (ii) and (iii), and this way you got to the right answer on (ii)
by an insufficient argument ( 3/4 score). In retrospect, I should maybe have been a bit
stricter.

(b cont’d) Also, you cannot use Cramer’s rule and then simplify off (a − 2) from all determinants;
that is like inferring x = b from 0x = 0b.

Problem 2 Quite a few of used wrong sign in the integrating factor  2 points reduc-
tion, based on weights of 12 points for the general solution and 6 points for deducing the
particular from that one.

Problem 3 A bit too late I was reminded that I had given precisely this problem in a lecture.
Oh well. That won’t repeat itself for the exam, I promise.

(b) You were asked for a general expression – so don’t insert the point.

Problem 4

(a) Most did well on this.

(b) • Please insert for u′x and u′y – one point (of six) reduced for not doing this.

• Remember the u = K condition! Well: For those of you who rather than using
u = K directly as a constraint, used Ax + 1

2y2 − K − lnK, I have accepted it –
although I think that u = K is definitely closer to what was asked for.

Problem 5 A few general comments here: in some of the problems ((a), (g), (h)), you might
need to establish the order of the matrix. You might want to know that if Ak is defined for
k > 1, then A is necessarily square.

(a) If AB has an inverse, then A has an inverse. (Hint: When is AB defined?)
False. A need not be square. (However, if we knew that it is, then the assertion would
have been true.)

(b) If A and B are both n × n, then (A + B)′ = A′ + B′.
True. See box EMEA p. 568 (LA p. 59). (Holds if A and B are of same order, not neces-
sarily square!)
Comment: You cannot make proofs by example! That is logically flawed. (However, you
can do counterproofs by counterexamples, like in point (c).)

(c) If A and B are both n × n, then |(A + B)′| = |A′| + |B′|. (Hint: Try A = B.)
False. The hint A = B gives a counterexample: we get |2A| which (see box EMEA p.
602 (LA p. 98)) is equal to 2n|A|, violating the assertion for any n = 2, 3, . . . .

(d) If A and B are both n×n, then (A+B)2 = A2 +2AB+B2. (Hint: For (d), (e) and (f), calculate
the difference between the LHS and the RHS. Is it always zero?)
False. (A+B)2 is equal to (A+B)(A+B) = A(A+B)+B(A+B) = A2+AB+BA+B2,
and if we subtract A2 + 2AB + B2 we get BA − AB which is not zero except in special
cases.



(e) If A and B are both n×n and both symmetric, then (A + B)′(A + B) = A2 +2AB+B2.
False. The same reason as in (d).
Comment: I am not sure that I have mentioned in the lectures, but a product of sym-
metric matrices is not symmetric except in special cases. At least, now you know.

(f) If A and B are both n×n and both symmetric, then (A+B)′(A+B) = (A+B)2 – even
when (A + B) is singular.
True. You may calculate as the hint, or you may use (b) for a direct argument; by sym-
metry, the prime may be removed.

(g) If Ak = In (for some k), then |A| = 1 or −1, and only 1 is possible if k is an odd number.
True. We are told that Ak exists, so A has to be square, and the determinant is defined –
and it solves the equation dk = 1 (see box EMEA p. 602 (LA p. 98)).
Comment: Surprisingly many wrong answers on this one. Many of you seem to think
that if Ak = I, then A has to be diagonal – or even equal to I or maybe −I. That is
incorrect: it is easy to show (by induction) that(

1 r
0 a

)k

=
(

1 rs(a)
0 ak

)
, where s(a) = 1 + a + a2 + · · · + ak−1.

So for a = −1 and k even, the matrix power is equal to the identity.

(h) If AB = In and SAAB = In, then we can conclude that S = B without making the ad-
ditional assumption that A is square. (Hint: Maybe A will be square automatically?)
Comment: A lot of you went straight from AB = In to claiming that B = A−1. That
is true only when A is square: consider the counterexample A = ( 1 0 0

0 1 0 ) = B′; then
AB = I2 but BA is not defined. The definition of an inverse requires it to be both a
«left-inverse» and a «right-inverse» (EMEA p. 610, LA p. 109); however, if A is square it
suffices to check that B is either a left inverse or a right inverse. This is why it is crucial
to check that A is square – which in this case holds because there is an AA term defined.
True. I’ll give two different arguments. The first one is a bit stepwise: Yes A is square – it
has to be for AA to be defined. The number of rows – and hence the number of columns
– is n since AB has n rows. Arguing this way, we see that all matrices are n× n. Since B
is the right-inverse of A and SA = SAAB = In, then S the left-inverse of A. But there
is only one inverse, and S = B.
A more elegant argument is: We have AB = In, so In = SAAB = SAIn = SA. Now we
are allowed to post-multiply both sides of the equation In = SA by B to get SAB = B,
where the left hand side simplifies to S.

(i) If the price vector p, the initial endowment a, and the post-trade endowment x are all
n-vectors, with all prices pi > 0 and a 6= 0, then the equation p · (x− a) = 0 in the
unknown x, has n − 1 degrees of freedom.
True. Choose all components of x except one – say, number i; since pi 6= 0, you can then
solve for that one uniquely: xi = ai −

∑
j 6=i(xj − aj)pj/pi.

Comment: After all this theory on the solutions of linear equations, some of you still
seem to think that the counting rule is logically valid (*sigh*). Of course it isn’t. If all pi

were zero, we would have 0 = 0 regardless of x, that is, n degrees of freedom.
Comment: A few of you appealed to Walras’ law here. Walras’ law says that the sum
of excess demand vanishes. However, this is logically flawed – it refers to something



somewhat different, namely aggregates over agents, and is deduced by assuming that
everyone obeys their budget constraints. But like the way of thinking a bit, so you have
received a slight score.

(j) If B = (bij)n×n, where all bij = 1, then the equation (B − nIn)x = 0 has precisely two
solutions, namely the null vector and the vector of only ones.
False. A linear equation system never has precisely two solutions.
Comment: Yes both of the given vectors solve the equation, but then there’s the p-word:
«precisely».

(k) If A = (aij) is a diagonal matrix, and the equation Ax = b has a solution, then the
number of degrees of freedom is equal to the number of zeroes on the main diagonal.
(Hint: If there is a zero on the main diagonal, what can you do about that line/column?)
True. Since the matrix is diagonal, all non-zero entries on the diagonal determine the
respective variables uniquely: b = Ax = (a11x1, . . . , annxn)′ so xi = bn/aii if aii 6= 0. If
however (aii) = 0 for some i, the corresponding ith says 0xi = bi. (Since we are given
that the problem has a solution, then necessarily bi = 0.) This means that precisely these
xi – all of them, and none more – can be chosen freely.
Comment: A few of you seem to think that the other variables must be influenced by
these free variables in some way in order to say they contribute to the number of degrees
of freedom. That is not correct; the equation system x = 1, 0y = 0, 0z = 0 has two
degrees of freedom.
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Answers to the examination problems in
ECON3120/4120 Mathematics 2, 4 June 2007


Problem 1


(a) Cofactor expansion along the first row gives


|Aa| = 3


∣


∣


∣


∣


1 2a− 3
a 2


∣


∣


∣


∣


− 2


∣


∣


∣


∣


1 2a− 3
2 2


∣


∣


∣


∣


+ (−4)


∣


∣


∣


∣


1 1
2 a


∣


∣


∣


∣


= 3(2− 2a2 + 3a)− 2(8− 4a)− 4(a− 2) = −6a2 + 13a− 2


(b) The coefficient matrix of the system is precisely the matrix Aa from part (a).
Cramer’s rule tells us that the system has a unique solution if and only if |Aa| 6= 0.
Now, by the usual formula for solving quadratic equations,


|Aa| = 0 ⇐⇒ 6a2 − 13a + 2 = 0 ⇐⇒ a =
13±


√
132 − 4 · 6 · 12


12
=


13± 11


12
⇐⇒ a = 2 or a = 1/6.


Thus, for all values of a except 2 and 1/6, the system has a unique solution.


If a = 2, the system becomes


3x + 2y − 4z = 2


x + y + z = 3


2x + 2y + 2z = 6


⇐⇒ 3x + 2y − 4z = 2


x + y + z = 3
⇐⇒ 3x + 2y = 2 + 4z


x + y = 3− z


The second and third equations on the left are obviously equivalent, so we can
drop one of them. In the final system, we can choose any value we like for z, and
then x and y are uniquely determined (by Cramer’s rule, if you like).


Finally, for a = 1/6, the system becomes


3x + 2y − 4z = 2


x + y − 8


3
z = 3


2x + 1


6
y + 2z = 6


←
−3 −2


←


The elementary operations indicated lead to


−y + 4z = −7


x + y − 8


3
z = 3


− 11


6
y + 22


3
z = 0 × 6


11


∼
−y + 4z = −7


x + y − 8


3
z = 3


−y + 4z = 0


The final system is obviously inconsistent, since the first and last equations con-
tradict each other. Hence, the original system has no solutions for a = 1/6.
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Problem 2


The given equation is a linear differential equation of the form ẋ+ ax = b(t), with
a = −1 and b(t) = et/t. It can be solved by formula (5.4.4) on page 199 in FMEA
(formula (1.4.5) on page 13 in MA II). The formula gives


x = Ce−at + e−at


∫


eatb(t) dt = Cet + et


∫


1


t
dt = Cet + et ln t = et(C + ln t).


Of course, we could also have used the general formula (5.4.6) on page 200 ((1.4.6)
on page 15 in MA II) with a(t) = −1 and A(t) = −t.


The solution passes through (t, x) = (1, e−1) if C is such that


e1(C + ln 1) = e−1 ⇐⇒ eC = e−1 ⇐⇒ C = e−2.


Problem 3


(a) We get
dx + ev−u(dv − du)− 1


y
dy = 0


y dx + x dy − du + 4v dv = 0


(b) Write the equations from part (a) as a linear equation system with du and dv
as the unknowns:


−ev−u du + ev−u dv = −dx + 1


y
dy


−du + 4v dv = −y dx− x dy
⇐⇒


−du + dv = −eu−v dx + e
u−v


y
dy


−du + 4v dv = −y dx− x dy


Subtracting the second equation from the first gives


(1− 4v) dv = (y − eu−v) dx +
eu−v + xy


y
dy ,


so


dv =
y − eu−v


1− 4v
dx +


eu−v + xy


y(1− 4v)
dy .


It follows that


v′


y =
∂v


∂y
=


eu−v + xy


y(1− 4v)
.


Problem 4


(a) Let F (x, y, u) = u + lnu−Ax− 1


2
y2. Then


u′


x = −F ′


1
(x, y, u)


F ′


3
(x, y, u)


=
A


1 + 1/u
=


Au


u + 1
,


and


u′


y = −F ′


2
(x, y, u)


F ′


3
(x, y, u)


= − −y


1 + 1/u
=


yu


u + 1
.
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(b) The Lagrangian for problem (P) is


L(x, y) = ax + by − λ(u(x, y)−K) ,


and the first-order conditions become


L′


x(x, y) = a− λu′


x = 0 ⇐⇒ a− λAu


u + 1
= 0(1)


L′


y(x, y) = b− λu′


y = 0 ⇐⇒ b− λyu


u + 1
= 0(2)


together with the constraint


u(x, y) = K ⇐⇒ Ax + 1


2
y2 = K + lnK .(3)


Equation (1) yields


λ =
a


u′


x


=
a(u + 1)


Au
,


and then (2) gives


y =
b(u + 1)


λu
=


bA


a
.


The value of x is then determined from (3), and we have found that the first-order
conditions have the unique solution


(x∗, y∗) =
(K + lnK


A
− b2A


2a2
,


bA


a


)


(c) We have


u(x, y) = K ⇐⇒ u(x, y) + lnu(x, y) = K + lnK


⇐⇒ Ax +
1


2
y2 = K + lnK


⇐⇒ y2 = Q− 2Ax ⇐⇒ y = ±
√


Q− 2Ax ,


where Q = 2(K + lnK).


(d) The result in part (c) shows that the level curve u(x, y) = K is a parabola
with a horizontal axis and opening towards the left. The figure shows this parabola
for one value of K together with a couple of level curves of f(x, y) = ax + by for
an arbitrary choice of values for a and b. For a given choice of a and b, all level
curves of f are straight lines and they are all parallell. It is clear that the point
(x∗, y∗) lies on the rightmost of all those level curves that have at least one point
in common with the parabola.


To decide whether (x∗, y∗) is a maximum or a minimum point of f(x, y) =
ax+by we compare the value at this point with the value at the other points on the
parabola, like (x1, y1) in the figure. The level curve through this point intersects
the horizontal line y = y∗ at a point (x0, y


∗), and we get


f(x∗, y∗)− f(x1, y1) = f(x∗, y∗)− f(x0, y
∗) = a(x∗ − x0).
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y


x


(x∗
, y


∗)


(x1, y1)


(x0, y
∗)


(x2, y2)


For problem 4(d)


It is clear that x∗ > x0, and it follows that (x∗, y∗) is a maximum point in problem
(P) if a > 0 (and a minimum point if a < 0). The same argument works equally
well for points lying below the line y = y∗, like (x2, y2) in the figure.


Note that the sign of b does not matter. If b = 0, then f(x, y) = ax and
the level curves of f are vertical straight lines. If b 6= 0, then the level curves of
f have a negative slope if b has the same sign as a, and a positive slope if b has
the opposite sign. Also note that (−a)x + (−b)y = −(ax + by) has the same level
curves as ax + by (but corresponding to different function values).
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