Universitetet i Oslo / Økonomisk institutt / NCF

ECON3120/4120 - Mathematics 2, fall term 07: Problems for seminar 1, Sep. 3

1 Consider the function *f* defined by

$$f(x) = \frac{3-x}{3x-3}$$

- (a) Where is f(x) defined? Compute f(x) when x = -3, x = -1/2, x = 1/4, x = 3/2, x = 3 and x = 9.
- (b) Where is $f(x) \le 0$? Where is $f(x) \le 1$?
- (c) Draw the graph of f and see if your answers to (b) are confirmed.
- (d) Define $g(x) = \ln[f(x)]$. Where is g(x) defined? Where is g(x) > 0?
- 2 Use l'Hôpital's rule (or other methods) to find: (a) $\lim_{x \to 0} \frac{3x^2 - 27}{2}$ (b) $\lim_{x \to 0} \frac{e^{-3x} - e^{-2x} + x}{2}$ (c) $\lim_{x \to 0} \frac{1}{2}$

(a)
$$\lim_{x \to 3} \frac{3x^2 - 27}{x - 3}$$
 (b) $\lim_{x \to 0} \frac{e^2 - e^2 + x}{x^2}$ (c) $\lim_{x \to \infty} (\sqrt{x^2 + \frac{1}{2}x - x})$

- 3
- (a) The equation $e^L + KL = Ke^K$ defines *L* as a differentiable function of *K*. Find an expression for dL/dK.
- (b) If z = F(u, v, w) and u = f(x, y), $v = e^{-x}$, and $w = \ln y$, find an expression for $\partial z / \partial x$ and $\partial z / \partial y$.
- **4** Find the differential of *z* expressed in terms of the differentials of *u* and *v*:

$$z = uv^2$$
 $z = u^2/v^3$ $z = F(u^2, v^3)$ $z = u^2 - f(u+v)$

5 The following system defines u and v as C^1 functions of x and y around the point P = (x, y, u, v) = (1, 2, 1, 1):

$$u^{2} + v^{2} = xy$$
$$xu^{2} + yv^{2} = x + y$$

Differentiate the system. Then find the values of $\partial u/\partial x$, $\partial u/\partial y$, $\partial v/\partial x$ and $\partial v/\partial y$ at the point *P*.