ECON3120/4120 - Mathematics 2, fall term 07: Problems for seminar 5, Oct. 15
(And this time I got the date right!)
1 Write the following systems of equations in matrix notation:
$x+y+z+t=a$
(a) $\begin{aligned} & 2 x_{1}-5 x_{2}=3 \\ & 5 x_{1}+8 x_{2}=5\end{aligned}$
(b)

$$
\begin{aligned}
x+3 y+2 z+4 t & =b \\
x+4 y+8 z & =c \\
2 x+z-t & =d
\end{aligned}
$$

$a x+y+(a+1) z=b_{1}$
(c) $x+2 y+\quad z=b_{2}$
$3 x+4 y+\quad 7 z=b_{3}$

2 Using the matrices
$\mathbf{A}=\left(\begin{array}{rr}2 & 0 \\ -1 & 1\end{array}\right)$,
$\mathbf{B}=\left(\begin{array}{rr}-1 & 2 \\ 1 & -1\end{array}\right)$,
$\mathbf{C}=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$,
$\mathbf{D}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 4\end{array}\right)$
calculate (where possible),
(a) $2 \mathbf{A}-3 \mathbf{B}$
(b) $(\mathbf{A}-\mathbf{B})^{\prime}$
(c) $\left(\mathbf{C}^{\prime} \mathbf{A}^{\prime}\right) \mathbf{B}^{\prime}$
(d) $\mathbf{C}^{\prime}\left(\mathbf{A}^{\prime} \mathbf{B}^{\prime}\right)$
(e) $\mathbf{D}^{\prime} \mathbf{D}^{\prime}$
(f) $\mathbf{D}^{\prime} \mathbf{D}$

3 The equation

$$
z e^{z}-x y=0
$$

defines z as a function of x and y in a neighbourhood of the point $(x, y, z)=(1, e, 1)$. Find $z_{1}^{\prime}(1, e), z_{2}^{\prime}(1, e)$, and $z_{12}^{\prime \prime}(1, e)$.

4 Exam problem 127.
5 Use Gauss-elimination to find all solutions to

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{4} & =2 \\
2 x_{2}-x_{3}-x_{4} & =3 \\
x_{1}+x_{2}+x_{4} & =2
\end{aligned}
$$

