ECON3120/4120: note on differentials and equation systems

This note considers the problem of finding partial derivatives from functions given implicitly by equation systems. At the end, there is a specific equation set which will be treated in the lecture next Monday (2007-09-03).

Suppose we are given an equation system

$$
\begin{align*}
f(x, y, z, u, v) & =0 \\
g(x, y, z, u, v) & =0 \tag{1}
\end{align*}
$$

where f and g are continuously differentiable functions ${ }^{1}$. Assume that we know that the equation system defines u and v as differentiable functions $u(x, y, z)$ and $v(x, y, z)$ in a suitable domain (phrased e.g. as near a given point). This note gives a guide to finding the partial derivatives of u and v.

To differentiate the system (find the differential): use the definition (safe) or find the differentials term by term using the similar rules as for derivatives (e.g. $d e^{v-u}=e^{v-u} d(v-u)$ etc. - possibly more efficient).

To find the partial derivatives $u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}, v_{x}^{\prime}, v_{y}^{\prime}, v_{z}^{\prime}$, solve for $d u$ and $d v$ and pick the $d x$ term, $d y$ term or $d z$ term as appropriate. Proceed as follows (simplifications might be possible, depending on the problem):

- The differentials define two equations. Consider them an equation system to be solved for du and dv , where everything else $(x, y, u, v, d x, d y$ and $d z$) is treated as constants. It might be helpful to re-write the differentiated system by gathering the du and dv terms on the left hand sides and everything else on the right hand sides:

$$
\begin{align*}
& A d u+B d v=C \\
& D d u+E d v=F \tag{2}
\end{align*}
$$

- Now solve this for $(d u, d v)$ as usual (e.g. eliminate $d u$ from one equation). ${ }^{2}$
- Write out the right hand sides by gathering $d x$ terms and $d y$ terms separately:

$$
\begin{align*}
d u & =G d x+H d y+K d z \\
d v & =I d x+J d y+L d z, \tag{3}
\end{align*}
$$

[^0]where the coefficients ${ }^{3} G, \ldots, L$ may depend on both x, y, z, u and v. These coefficients are the partial derivatives. For example, $u_{y}^{\prime}=H$.

If you are asked to find the approximate change in u and v from given increments in (x, y, z) from a point P satisfying the original equation system(4), then you proceed as follows:

- Consider (3). Insert in G, \ldots, L the coordinates of P for (x, y, z, u, v).
- Insert the increments in x, y and z for $d x, d y$ and $d z$ - and remember the signs!
- Calculate $d u$ and $d v$.

On Monday's lecture, we will consider the following example, slightly modified from Example 2 p. 455 in EMEA:

$$
\begin{align*}
u^{2}+v & =x y+z \\
u v & =-x^{2}+y^{2} \tag{4}
\end{align*}
$$

[^1]
[^0]: ${ }^{1}$ We have this far not considered z-dependence, but you should be able to verify from this note that the approach is the same.
 ${ }^{2}$ Unless $A E=B D$ - which is the case where the conditions granting u, v as functions do fail - then $d u, d v$ will be given as $d u=(E C-B F) /(A E-B D)$ and $d v=(A F-C D) /(A E-B D)$. Later in this course you will learn that this solution is the inverse of the matrix $\left[\begin{array}{cc}A & B \\ D & E\end{array}\right]$, matrix-multiplied with the vector $\left[\begin{array}{l}C \\ F\end{array}\right]$.

[^1]: ${ }^{3}$ I chose to keep the same name of the terms as in the lecture, hence not alphabetical order for $d z$

