ECON3120/4120 Mathematics 2, autumn 2008

Problems for Seminar 6, 13-17 October

1 LA: 2.3.3 (= EMEA: 15.8.4)
2 LA: 2.6.2 (= EMEA: 15.9.2)
3 Write the following systems of equations in matrix notation:
(a) $\begin{aligned} & 2 x_{1}-5 x_{2}=3 \\ & 5 x_{1}+8 x_{2}=5\end{aligned}$
(b) $x+2 y+\quad z=b_{2}$
$3 x+4 y+\quad 7 z=b_{3}$

$$
\begin{aligned}
x+y+z+t & =a \\
x+3 y+2 z+4 t & =b \\
x+4 y+8 z & =c \\
2 x+z-t & =d
\end{aligned}
$$

(c)

4 Using the matrices

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{rr}
-1 & 2 \\
1 & -1
\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{rr}
2 & 0 \\
-1 & 1
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 4
\end{array}\right)
$$

calculate (where possible)
(a) $2 \mathbf{A}-3 \mathbf{B}$
(b) $(\mathbf{A}-\mathbf{B})^{\prime}$
(c) $\left(\mathbf{C}^{\prime} \mathbf{A}^{\prime}\right) \mathbf{B}^{\prime}$
(d) $\mathbf{C}^{\prime}\left(\mathbf{A}^{\prime} \mathbf{B}^{\prime}\right)$
(e) $\mathbf{D}^{\prime} \mathbf{D}^{\prime}$
(f) $\mathbf{D}^{\prime} \mathbf{D}$

5 The equation

$$
z e^{z}-x y=0
$$

defines z as a function of x and y in a neighbourhood of the point $(x, y, z)=$ $(1, e, 1)$. Find $z_{1}^{\prime}(1, e), z_{2}^{\prime}(1, e)$, and $z_{12}^{\prime \prime}(1, e)$.

6 Exam problem 120.
7 Exam problem 80.

