ECON3120/4120 Mathematics 2, autumn 2008

Problems for Seminar 9, 3-7 November

1 Given the matrix

$$
\mathbf{A}_{t}=\left(\begin{array}{rrr}
1 & t & 0 \\
-2 & -2 & -1 \\
0 & 1 & t
\end{array}\right)
$$

(a) Calculate $\left|\mathbf{A}_{t}\right|$ and show that $\left(\mathbf{A}_{t}\right)^{-1}$ exists for all t.
(b) Show that for a certain value of t we have $\left(\mathbf{A}_{t}\right)^{3}=\mathbf{I}_{3}$, where \mathbf{I}_{3} is the identity matrix of order 3.
(c) Find the inverse of \mathbf{A}_{1}.
(d) Suppose that \mathbf{A} and \mathbf{B} are invertible $n \times n$ matrices. Show that if $\mathbf{A}^{\prime} \mathbf{A}=$ \mathbf{I}_{n}, then $\left(\mathbf{A}^{\prime} \mathbf{B A}\right)^{-1}=\mathbf{A}^{\prime} \mathbf{B}^{-1} \mathbf{A}$.

Exam problems: 95, 31, 41, 141.

A few extra exam problems: $\mathbf{5 7}, \mathbf{6 6}, \mathbf{1 0 4}$. These problems will not be discussed in the seminar, but you will get solutions of them together with the solutions of the other problems.

