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Problem 1

(a) f ′(x) = 2xe−bx + (x2 − a)(−be−bx) = (−bx2 + 2x + ab)e−bx,

f ′′(x) = (−2bx+2)e−bx +(−bx2 +2x+ab)e−bx = (b2x2− 4bx+2−ab2)e−bx.

(b) With a = 5 and b = 1/2, we get

f ′(x) = (− 1

2
x2 + 2x + 5

2
)e−x/2 = − 1

2
(x2 − 4x− 5)e−x/2,

f ′′(x) = ( 1

4
x2 − 2x + 2− 5

4
)e−x/2 = 1

4
(x2 − 8x + 3)e−x/2.

The stationary points of f are given by

f ′(x) = 0 ⇐⇒ x = −1 or x = 5.

Further,

f ′′(−1) = 3
√

e > 0, f ′′(5) = −3e−5/2 < 0.

Hence, x = −1 is a local minimum point for f and x = 5 is a local maximum

point.
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The graph of f(x) = (x2
− 5)e−x/2
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Note that f(x) ≤ 0 if x ∈ [−
√

5,
√

5 ] and f(x) > 0 if x is outside that interval.
(See the figure – in problems like this it is usually a good idea to try to sketch the
graph even if you are not asked to do so.) By the extreme value theorem, f has
a global minimum point over [−

√
5,
√

5], and it is clear that this point must be
x = −1. It follows that x = −1 is a global minimum point for f over the entire
real line, R = (−∞,∞). There is no global maximum point for f over R, since
limx→−∞ f(x) =∞.

(c) Integration by parts yields
∫

(x2 − 5)e−x/2 dx = (x2 − 5)(−2e−x/2) +

∫

4xe−x/2 dx

= −2(x2 − 5)e−x/2 − 8xe−x/2 + 8

∫

e−x/2 dx

= (−2x2 − 8x + 10)e−x/2 − 16e−x/2 + C

= (−2x2 − 8x− 6)e−x/2 + C.

It follows that
∫ b

0

(x2 − 5)e−x/2 dx = (−2b2 − 8b− 6)e−b/2 + 6e0 → 6 as b→∞

because

lim
b→∞

bpe−b/2 = lim
b→∞

b2

(
√

e )b
= 0

for every constant p. (Cf. equation (4) on page 264 in EMEA, page 224 in MA I.)
Alternatively, one can use l’Hôpital’s rule to determine

lim
b→∞

−2b2 − 8b− 6

eb/2
= −“∞

∞
”

= · · · .

Problem 2

(a) Using elementary operations, we get
∣

∣

∣

∣

∣

∣

1 1 1
1 2 a
1 2 b

∣

∣

∣

∣

∣

∣

−1
←
←

=

∣

∣

∣

∣

∣

∣

1 1 1
0 1 a− 1
0 1 b− 1

∣

∣

∣

∣

∣

∣

−1
←

=

∣

∣

∣

∣

∣

∣

1 1 1
0 1 a− 1
0 0 b− a

∣

∣

∣

∣

∣

∣

= b− a.

Of course, we could also have used cofactor expansion along a row or column.

(b) The determinant of the equation system is precisely the determinant from
part (a), so by Cramer’s rule, the system has a unique solution if a 6= b.

If a = b, then the system becomes

(∗)
x + y + z = c

x + 2y + az = 2c

x + 2y + az = 2
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If c 6= 1, then the last two equations in (∗) contradict each other, and the system
has no solutions. If c = 1, the (∗) reduces to

x + y + z = 1

x + 2y + az = 2
⇐⇒

x + y + z = 1

y + (a− 1)z = 1

which has infinitely many solutions (with one degree of freedom). This is obvious,
since for any value of z, the last equation will determine y, and then x is given by
the first equation.

Conclusion: The system has

(i) a unique solution if a 6= b,

(ii) several solutions if a = b and c = 1,

(iii) no solutions if a = b and c 6= 1.

Problem 3

(a) With the Lagrangian

L(x, y, z) = x + 2y + ln(1 + z)− λ(x2 + y2 − az),

the necessary Lagrange conditions for (x, y, z) to be a solution become

(1)

(2)

(3)

(L′

x =)

(L′

y =)

(L′

z =)

1− 2λx = 0

2− 2λy = 0

1

1 + z
+ λa = 0

together with the constraint equation

(4) x2 + y2 − az = 0

(b) From conditions (2) and (1) we get 2λy = 2 = 4λx. This shows that λ 6= 0,
and so we get y = 2x. The constraint x2 +y2 +3z = 0 then yields 3z = −x2−y2 =
−5x2, so z = − 5

3
x2.

Conditions (3) and (1) now yield

1

1 + z
= −λa = 3λ =

3

2x
,

so

2x = 3(1 + z) = 3− 5x2.

Hence, 5x2 + 2x − 3 = 0. This quadratic equation has the roots x1 = 3/5 and
x2 = −1. The equations y = 2x and z = 5x2/3 then give the points (x1, y1, z1) =
(3/5, 6/5,−3/5), (x2, y2, z2) = (−1,−2,−5/3) as the solutions of the first-order
conditions. However, we must have 1 + z > 0 for f(x, y, z) to be defined, so z2 is
unusable.
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Given that there is a solution of the maximization problem, the solution must
be

(x1, y1, z1) = (3/5, 6/5, −3/5), with λ = 1/(2x1) = 5/6.

The maximum value is fmax = x1 + 2y1 + ln(1 + z1) = 3 + ln(2/5).

(With λ = 5/6, the Lagrangian becomes L(x, y, z) = x + 2y + ln(1 + z)− 5

6
(x2 +

y2 + 3z), which is concave. Hence, (x1, y1, z1) certainly is a maximum point.)

(c) (i) If a = 0, the constraint becomes x2 + y2 = 0, which gives x = y = 0
without any restriction on z. We can then make f(x, y, z) = f(0, 0, z) = ln(1 + z)
as large as we like, so there is no maximum.

(ii) With a = 1, the constraint gives z = x2 + y2, and so f(x, y, z) = x+2y +
ln(1+x2 + y2), which can also be made arbitrarily large. So there is no maximum
in this case either.

Problem 4

(a) For every matrix C we have |C2| = |C|2 ≥ 0, whereas

|−αI3| =

∣

∣

∣

∣

∣

∣

−α 0 0
0 −α 0
0 0 −α

∣

∣

∣

∣

∣

∣

= −α3 < 0.

Hence, there is no matrix C such that C
2 = −αI3.

(b) (B + 1

2
I3)

2 = B
2 + B + 1

4
I3, so

B
2 + B + I3 = 0 ⇐⇒ (B + 1

2
I3)

2 = − 3

4
I3.

According to part (a), this equation has no solutions.
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