ECON3120/4120 - Mathematics 2, fall term 09: Solutions for seminar 4, Sep. 23

You requested solutions for exam problems 43 and 97.

Problem 43

$$
\begin{aligned}
\frac{d}{d N}\left(N g\left(\frac{\phi(N)}{N}\right)\right) & =g\left(\frac{\phi(N)}{N}\right)+N \frac{d}{d N} g\left(\frac{\phi(N)}{N}\right) \\
& =g\left(\frac{\phi(N)}{N}\right)+N\left(g^{\prime}\left(\frac{\phi(N)}{N}\right) \frac{\phi^{\prime}(N) N-\phi(N)}{N^{2}}\right) \\
& =g\left(\frac{\phi(N)}{N}\right)+g^{\prime}\left(\frac{\phi(N)}{N}\right) \phi^{\prime}(N)-g^{\prime}\left(\frac{\phi(N)}{N}\right) \frac{\phi(N)}{N}
\end{aligned}
$$

The next one is a bugger. To simplify use the notation:

$$
u=\frac{\phi(N)}{N} \quad \text { and } \quad h(N)=\frac{\phi^{\prime}(N) N-\phi(N)}{N^{2}}
$$

to obtain

$$
\begin{aligned}
& \frac{d^{2}}{d N^{2}}\left(N g\left(\frac{\phi(N)}{N}\right)\right) \\
= & \frac{d}{d N}\left(g\left(\frac{\phi(N)}{N}\right)+g^{\prime}\left(\frac{\phi(N)}{N}\right) \phi^{\prime}(N)-g^{\prime}\left(\frac{\phi(N)}{N}\right) \frac{\phi(N)}{N}\right) \\
= & g^{\prime}(u) h(N)+g^{\prime \prime}(u) h(N) \phi^{\prime}(N)+g^{\prime}(u) \phi^{\prime \prime}(N)-\left(g^{\prime \prime}(u) h(N) u+g^{\prime}(u) h(N)\right) \\
= & g^{\prime \prime}(u) h(N)\left(\phi^{\prime}(N)-u\right)+g^{\prime}(u) \phi^{\prime \prime}(N) \\
= & g^{\prime \prime}(u) \frac{\phi^{\prime}(N) N-\phi(N)}{N^{2}}\left(\phi^{\prime}(N)-\frac{\phi(N)}{N}\right)+g^{\prime}(u) \phi^{\prime \prime}(N) \\
= & \frac{g^{\prime \prime}(u)}{N}\left(\phi^{\prime}(N)-\frac{\phi(N)}{N}\right)\left(\phi^{\prime}(N)-\frac{\phi(N)}{N}\right)+g^{\prime}\left(\frac{\phi(N)}{N}\right) \phi^{\prime \prime}(N) \\
= & \frac{g^{\prime \prime}(u)}{N}\left(\phi^{\prime}(N)-u\right)^{2}+g^{\prime}(u) \phi^{\prime \prime}(N)
\end{aligned}
$$

Problem 97 We have $\varphi(x)=\ln \frac{x+1}{x+2}$, defined for $x \geq 0$.
We can re-write into $\varphi(x)=\ln \left(1-\frac{1}{x+2}\right)$. Now $1 /(x+2)$ is strictly decreasing, so $1-\frac{1}{x+2}$ is strictly increasing, and since \ln is strictly increasing, then so is φ.
(a) We have $\varphi(0)=\ln \frac{1}{2}=-\ln 2$, while $\varphi(x) \nearrow \ln 1$ as $x \rightarrow \infty$ (in a strictly increasing manner). So the range of φ is the interval $\underline{\underline{[-\ln 2,0)}}$.

$x=\varphi(y)$ for $y:$

$$
\begin{aligned}
x & =\ln \left(1-\frac{1}{y+2}\right) \quad \Longleftrightarrow \\
e^{x} & =1-\frac{1}{y+2} \quad \Longleftrightarrow \\
\frac{1}{y+2} & =1-e^{x} \quad \Longleftrightarrow \\
y & =\underline{\underline{\left(1-e^{x}\right)^{-1}-2} .}
\end{aligned}
$$

(note that the given solution can be obtained by rewriting into a common fraction.)
(c) Denote $\psi=\varphi^{\prime}$ and and approach as above. First, $\psi(x)=\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{(x+1)(x+2)}$. (This is clearly strictly decreasing for $x \geq 0$, so an inverse exists, but we can take the latter for granted from the problem.)
ψ^{-1} is defined on the range of ψ. Now ψ ranges between $\psi(0)=\frac{1}{2}$ (and $\frac{1}{2}$ is in the range!) and the limit as $x \rightarrow \infty$, which is zero (but zero is not attained by ψ). So the domain of ψ^{-1} equals ($\left.0, \frac{1}{2}\right]$ (note the half-openness).
To find ψ^{-1}, we have

$$
x=\frac{1}{(y+1)(y+2)} .
$$

Solving for y, we get

$$
y^{2}+3 y+2-\frac{1}{x}=0
$$

which has solutions

$$
y=\frac{1}{2}\left[-3 \pm \sqrt{9-8+\frac{4}{x}}\right]
$$

Since the domain of ψ contains only nonnegatives, we must have $y \geq 0$ too (as x ranges $\left.\left(0, \frac{1}{2}\right]\right)$, and for this to be possible, then «士» must be «+». We get

$$
\left(\varphi^{\prime}\right)^{-1}(x)=\underline{\underline{\frac{1}{2}\left[-3+\sqrt{1+\frac{4}{x}}\right]}}
$$

