Solutions to the cancelled seminar September 30

55
a)

$$
\mathbf{A B}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{s}{12} & \frac{t}{12} & \frac{1}{4} \\
\frac{7}{12} & -\frac{2}{3} & \frac{1}{4} \\
\frac{1}{12} & \frac{t}{12} & -\frac{1}{4}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{s}{12}+\frac{17}{12} & \frac{t}{3}-\frac{4}{3} & 0 \\
\frac{s}{6}+\frac{5}{6} & \frac{5 t}{12}-\frac{2}{3} & 0 \\
\frac{s}{4}+\frac{5}{4} & \frac{t}{3}-\frac{4}{3} & 1
\end{array}\right)=\left(\begin{array}{ccc}
\frac{s+17}{12} & \frac{t-4}{3} & 0 \\
\frac{s+5}{6} & \frac{1}{12}(5 t-8) & 0 \\
\frac{s+5}{4} & \frac{t-4}{3} & 1
\end{array}\right)
$$

Note that if \mathbf{A} and \mathbf{B} are inverse of each other then $\mathbf{A B}=\mathbf{I}_{n}$. That is:

$$
\left[\begin{array}{ccc}
\frac{s+17}{12} & \frac{t-4}{3} & 0 \\
\frac{s+5}{6} & \frac{1}{12}(5 t-8) & 0 \\
\frac{s+5}{4} & \frac{t-4}{3} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Using this we can calculate e.g. that $\frac{s+17}{12}=1 \Rightarrow s=-5$ and $\frac{t-4}{3}=0 \Rightarrow t=4$.
However, we need to check all the entries where s and t occur. They all give the same answer so we have solved the problem.
b) Remeber that matrices must be multiplied from the same side.

$$
\begin{aligned}
& \mathbf{B X}=2 \mathbf{X}+\mathbf{C} \\
& \mathbf{B X}-2 \mathbf{I}_{3} \mathbf{X}=\mathbf{C} \\
& \left(\mathbf{B}-2 \mathbf{I}_{3}\right) \mathbf{X}=\mathbf{C} \\
& \mathbf{X}=\left(\mathbf{B}-2 \mathbf{I}_{3}\right)^{-1} \mathbf{C}
\end{aligned}
$$

Calculating the inverse is tedious, but note that: $\left(\mathbf{B}-2 \mathbf{I}_{3}\right)=\mathbf{A}$. This implies that $\left(\mathbf{B}-2 \mathbf{I}_{3}\right)^{-1}=\mathbf{T}$ when $s=-5$ and $t=4$. \mathbf{T} then becomes

$$
\left(\begin{array}{rrr}
-\frac{5}{1} & 23 & \frac{1}{4} \\
\frac{7}{1} & -\frac{2}{3} & \frac{1}{4} \\
\frac{1}{1} & 23 & -\frac{1}{4}
\end{array}\right)
$$

Right-multiplying \mathbf{T} with \mathbf{C} gives

$$
\mathbf{X}=\mathbf{T C}=\left(\begin{array}{rrrr}
-\frac{1}{2} & 0 & 0 & \frac{1}{6} \\
\frac{1}{2} & 3 & -3 & \frac{1}{6} \\
\frac{1}{2} & -1 & 2 & \frac{1}{6}
\end{array}\right)
$$

c)

$$
\begin{aligned}
& \mathbf{D}^{2}=2 \mathbf{D}+3 \mathbf{I}_{n} \\
& \mathbf{D}^{3}=2 \mathbf{D}^{2}+3 \mathbf{D} \\
& \mathbf{D}^{3}=2\left(2 \mathbf{D}+3 \mathbf{I}_{n}\right)+3 \mathbf{D} \\
& \mathbf{D}^{3}=7 \mathbf{D}+6 \mathbf{I}_{n}
\end{aligned}
$$

To find \mathbf{D}^{6} try squaring \mathbf{D}^{3}.

$$
\begin{aligned}
& \mathbf{D}^{6}=\mathbf{D}^{3} \mathbf{D}^{3}=\left(7 \mathbf{D}+6 \mathbf{I}_{n}\right)\left(7 \mathbf{D}+6 \mathbf{I}_{n}\right) \\
& =49 \mathbf{D}^{2}+2 \times 42 \mathbf{D}+36 \mathbf{I}_{n} \\
& =49\left(2 \mathbf{D}+3 \mathbf{I}_{n}\right)+84 \mathbf{D}+36 \mathbf{I}_{n} \\
& =182 \mathbf{D}+183 \mathbf{I}_{n}
\end{aligned}
$$

To find \mathbf{D}^{-1}, do as follows:

$$
\begin{array}{ll}
\mathbf{D}^{2}=2 \mathbf{D}+3 \mathbf{I}_{n} & \mid \times \mathbf{D}^{-1} \\
\mathbf{D}=2 \mathbf{I}_{n}+3 \mathbf{D}^{-1} & \\
\mathbf{D}^{-1}=\frac{1}{3} \mathbf{D}-\frac{2}{3} \mathbf{I}_{n} &
\end{array}
$$

65
a) Often when integrating an expression containing a square root it pays to use a substitution of the form $u=\sqrt{t}$. Then $d u=(2 \sqrt{t})^{-1} d t$. We have that:

$$
\int_{1}^{4} e^{-\sqrt{t}} d t=\int_{1}^{4} e^{-\sqrt{t}} \frac{2 \sqrt{t}}{2 \sqrt{t}} d t=\int_{1}^{4} 2 e^{-u} u d t
$$

The last integral may be solved by integration by parts

$$
\begin{aligned}
& g^{\prime}=2 e^{-u} \rightarrow g=-2 e^{-u} \\
& f=u \rightarrow f^{\prime}=1
\end{aligned}
$$

We may then write:

$$
\begin{aligned}
F(t) & =\int 2 e^{-u} u=-2 e^{-u} u-\int-2 e^{-u} d u \\
& =-2 e^{-u} u-2 e^{-u}+C \\
& =-2 e^{-u}(u+1)+C \\
& =-2 e^{-\sqrt{t}}\binom{\sqrt{t}+1}{\sqrt{ } \sqrt{ }}+C
\end{aligned}
$$

Computing the definite integral gives

$$
\begin{aligned}
F(4)-F(1) & =-2 e^{-2}(2+1)-\left(-2 e^{-1}(1+1)\right) \\
& =-6 e^{-2}+4 e^{-1}
\end{aligned}
$$

b)

Several ways of doing this. Here is one. Start with the first equation.

$$
\begin{aligned}
& \mathbf{A X}+\mathbf{Y}=\mathbf{C} \\
& \mathbf{X}+\mathbf{A}^{-1} \mathbf{Y}=\mathbf{A}^{-1} \mathbf{C} \\
& \mathbf{A}^{-1} \mathbf{Y}=\mathbf{A}^{-1} \mathbf{C}-\mathbf{X}
\end{aligned}
$$

Insert for $\mathbf{A}^{-1} \mathbf{Y}$ into the second equation and get:

$$
\begin{aligned}
& \mathbf{X}+2 \mathbf{A}^{-1} \mathbf{Y}=\mathbf{D} \\
& \mathbf{X}+2\left(\mathbf{A}^{-1} \mathbf{C}-\mathbf{X}\right)=\mathbf{D} \\
& \mathbf{X}-2 \mathbf{X}\left(\mathbf{A}^{-1} \mathbf{C}-\mathbf{X}\right)=\mathbf{D} \\
& \mathbf{X}=\mathbf{2} \mathbf{A}^{-1} \mathbf{C}-\mathbf{D}
\end{aligned}
$$

Return to the first equation.

$$
\begin{aligned}
& \mathbf{A X}+\mathbf{Y}=\mathbf{C} \\
& \mathbf{Y}=\mathbf{C}-\mathbf{A X} \\
& \mathbf{Y}=\mathbf{C}-\mathbf{A}\left(2 \mathbf{A}^{-1} \mathbf{C}-\mathbf{D}\right) \\
& \mathbf{Y}=\mathbf{C}-2 \mathbf{C}+\mathbf{A D} \\
& \mathbf{Y}=\mathbf{A D}-\mathbf{C}
\end{aligned}
$$

a)

$$
\begin{aligned}
\operatorname{det} \mathbf{A}_{t} & =\left|\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & -1 \\
3 & 1 & t
\end{array}\right| \\
& =1 \times 1 \times t+1 \times 1 \times 1+3 \times(-1) \times(-1)-1 \times 1 \times 3-(-1) \times 1 \times t-1 \times(-1) \times 1 \\
& =t+1+3-3+t+1=2 t+2
\end{aligned}
$$

b)

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
1 & -1 & 1 & 2 \\
1 & 1 & -1 & 1 \\
3 & 1 & -1 & 4
\end{array}\right]-1 } & -3 \\
\downarrow & \sim\left[\begin{array}{rrrr}
1 & -1 & 1 & 2 \\
0 & 2 & -2 & -1 \\
0 & 4 & -4 & -2
\end{array}\right] \times \frac{1}{2} \\
\sim\left[\begin{array}{rrrr}
1 & -1 & 1 & 2 \\
0 & 1 & -1 & -\frac{1}{2} \\
0 & 1 & -1 & -\frac{1}{2}
\end{array}\right]-1 & \sim\left[\begin{array}{rrrr}
1 & -1 & 1 & 2 \\
0 & 1 & -1 & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We can here choose x_{3} freely. Let $x_{3}=s$. Then we have that $x_{2}=x_{3}-1 / 2=s-1 / 2$ and $x_{1}=x_{2}-$ $x_{3}+2=s-1 / 2-s+2=3 / 2$.

128
a) The answer is $3+4 a^{2}$. (Do cofactor expansion.)
b)

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 1 & a & a & a \\
2 & 1 & -a^{2} & 2 a & 1 \\
4 & 3 & a^{2} & 4 a^{2} & 1
\end{array}\right]-2 \begin{array}{r}
-4 \\
\downarrow \\
\downarrow
\end{array} \quad \sim\left[\begin{array}{rrrrr}
1 & 1 & a & a & a \\
0 & -1 & -2 a-a^{2} & 0 & -2 a+1 \\
0 & -1 & -4 a+a^{2} & -4 a+4 a^{2} & -4 a+1
\end{array}\right] \times(-1)} \\
& \sim\left[\begin{array}{rrrrr}
1 & 1 & a & a & a \\
0 & 1 & 2 a+a^{2} & 0 & 2 a-1 \\
0 & -1 & -4 a+a^{2} & -4 a+4 a^{2} & -4 a+1
\end{array}\right] \downarrow
\end{aligned}
$$

Now examine the case where $a=0$. Then the last matrix becomes:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We only get to determine x and $x . z$ and u can be chosen freely. And we have two degrees of freedom. If $a=1$, we get:

$$
\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & -2
\end{array}\right]
$$

The last line in this matrix implies a contradiction. $0 x+0 y+0 z+0 u$ cannot be -2 , so for $a=$ 1 there is no solution. Finally, if $a \neq 0$ and $a \neq 1$, then the last line becomes an equation on the form: $2 a(a-1) z+2 a(a-1) u=-2 a$. If we fix a value of u, then we determine z. Going backwards we can then determine x and y. In this case the system has one degree of freedom.
c)

See the answers section. Note that you cannot solve this exercise by assuming that \mathbf{A} has an inverse. You get the "right" answer, but the exercise does not state that the inverse exists. (Example: the formula works also if $\mathbf{A}=\mathbf{0}$.)
a) We get that:

$$
\begin{aligned}
& f^{\prime}(x)=4 x-\frac{1}{x}, f^{\prime}(x)=0 \Rightarrow x=\frac{1}{2} \\
& f^{\prime \prime}=4+\frac{1}{x^{2}}>0 \text { implies that } x=\frac{1}{2} \text { is a global min point. }
\end{aligned}
$$

b)

Again, many ways to solve this. I start by noting that $f^{\prime}(1)=4-\frac{1}{4}>0$. Thus there are values of $x<1$ where $f(x)<0$. Further, $\lim _{x \rightarrow 0^{+}} f(x)=\infty$. So clearly there are values of $x>$ 0 such that $f(x)>0$. It follows from the continuity of $f(x)$ that there is at least one solution for the equation $f\left(x_{1}\right)=0$ that lies in $(0,1)$.
c)

Note that $g(x)=1 / f(x)$. We then have that:

$$
g^{\prime}(x)=-\frac{f^{\prime}(x)}{(f(x))^{2}}
$$

Clearly $g^{\prime}(x)=0 \Leftrightarrow f^{\prime}(x)=0 \Leftrightarrow x=\frac{1}{2}$ by a) (here we have used that $f\left(\frac{1}{2}\right) \neq 0$) so $x=1 / 2$ is a stationary point. Computing the second derivative $g^{\prime \prime}(x)$ is messy (but possible), and the following is simpler: $x=1 / 2$ is a (strict) minimum point for f, and since $1 / f$ is locally strictly decreasing with respect to f, a strict local minimum for f is a strict local maximum for g. (Why? Because any nearby x-value yields slightly higher f-value, meaning we divide by slightly more.)
(Why does this argument not imply strict global max? Because $1 / f$ is not decreasing around $f=0$. Indeed, we know from a) that f "crosses through" zero (twice, actually) and nearby these x-values, we will have g arbitrary large positive, and arbitrary large negative. Hence no global extrema.
d)

