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a) 
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Note that if A and B are inverse of each other then AB = In. That is: 
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Using this we can calculate e.g. that 17 4
1 5 and 0 4

12 3
s t

s t
 
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However, we need to check all the entries where s and t occur. They all give the same answer 

so we have solved the problem. 

 

b) Remeber that matrices must be multiplied from the same side. 
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Calculating the inverse is tedious, but note that: 3
2 B I A . This implies that 

  1

3
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
 B I T  when s = –5 and t = 4. T then becomes 
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Right-multiplying T with C gives 
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c)  
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To find D6 try squaring D3. 
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 To find D-1 , do as follows: 

 

2 1

1

1

2 3                     |

2 3

1 2
3 3

n

n

n







  

 

 

D D I D

D I D

D D I

 

 

65 

a) Often when integrating an expression containing a square root it pays to use a substitution 

of the form u = t . Then du =  
1

2 t dt


. We have that: 
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The last integral may be solved by integration by parts 
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We may then write: 
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Computing the definite integral gives 
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b) 

Several ways of doing this. Here is one. Start with the first equation. 
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Insert for A–1Y into the second equation and get: 
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Return to the first equation. 
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a)
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b) 
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We can here choose x3 freely. Let x3 = s. Then we have that x2 = x3  – ½ = s – ½ and x1 = x2 – 

x3 +2 = s – ½ – s +2 = 3/2. 
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a) The answer is 3 + 4a2. (Do cofactor expansion.) 

 



b)
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Now examine the case where a = 0. Then the last matrix becomes: 

 
1 1 0 0 0

0 1 0 0 1

0 0 0 0 0

 
 
 
 
 
  

 

We only get to determine x and x. z and u can be chosen freely. And we have two degrees of 

freedom.  If a = 1, we get: 

 
1 1 1 1 1

0 1 3 0 1

0 0 0 0 2

 
 
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The last line in this matrix implies a contradiction. 0x + 0y + 0z + 0u cannot be –2, so for a = 

1 there is no solution. Finally, if a ≠ 0 and a ≠ 1, then the last line becomes an equation on the 

form:    2 1 2 1 2a a z a a u a     . If we fix a value of u, then we determine z. Going 

backwards we can then determine x and y. In this case the system has one degree of freedom. 

c) 

See the answers section. Note that you cannot solve this exercise by assuming that A has an 

inverse. You get the “right” answer, but the exercise does not state that the inverse exists. 

(Example: the formula works also if A = 0.) 
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a) We get that: 

 
   

2

1 1
4 , 0

2
1 1

4 0 implies that  is a global min point.
2

f x x f x x
x

f x
x

     

    
 

b)  

Again, many ways to solve this. I start by noting that   1
1 4 0

4
f     . Thus there are 

values of x < 1 where f(x) < 0. Further,  
0

lim
x

f x
  . So clearly there are values of x > 

0 such that f(x) > 0. It follows from the continuity of f(x) that there is at least one solution for 

the equation f(x1) = 0 that lies in (0, 1).  

c)  

Note that g(x) = 1/f(x). We then have that: 

    
  

2

f x
g x

f x


    

Clearly     1
2

0 0g x f x x       by a) (here we have used that  1
2

0f  ) so x = ½ 

is a stationary point. Computing the second derivative  g x  is messy (but possible), and the 

following is simpler: x = ½ is a (strict) minimum point for f, and since 1/f is locally strictly 

decreasing with respect to f, a strict local minimum for f  is a strict local maximum for g. 

(Why? Because any nearby x-value yields slightly higher f-value, meaning we divide by 

slightly more.)  

(Why does this argument not imply strict global max? Because 1/f is not decreasing around 

f=0. Indeed, we know from a) that f “crosses through” zero (twice, actually) and nearby these 

x-values, we will have g arbitrary large positive, and arbitrary large negative. Hence no global 

extrema. 

 

d) 

See answers section 


