## ECON3120/4120 - Mathematics 2, fall term 09: Solutions for seminar 8, Oct. 28

You requested solutions for exam problem 92.

## Problem 92

(a) Put $F(x, y)=x e^{x^{2} y}+3 x^{2}-2 y-4$. We have

$$
\frac{d y}{d x}=-\frac{F_{1}^{\prime}(x, y)}{F_{2}^{\prime}(x, y)}=-\frac{e^{x^{2} y}+2 x^{2} y e^{x^{2} y}+6 x}{x^{3} e^{x^{2} y}-2} .
$$

At $(x, y)=(1,0)$ we have $\frac{d y}{d x}=-\frac{e^{0}+0+6}{e^{0}-2}=7$.
(b) Taking $z$-derivatives gives

$$
\begin{array}{r}
\frac{d x}{d z} e^{y}+x e^{y} \frac{d y}{d z}+\frac{d y}{d z} f(z)+y f^{\prime}(z)=0 \\
\frac{d x}{d z} g(x, y)+x\left(g_{1}^{\prime}(x, y) \frac{d x}{d z}+g_{2}^{\prime}(x, y) \frac{d y}{d z}\right)+2 z=0
\end{array}
$$

(Note: We could have calculated differentials, but since there is only one free variable $z$, we can then just «divide by $d z »$.) Rearranging,

$$
\begin{aligned}
e^{y} \frac{d x}{d z}+\left(x e^{y}+f(z)\right) \frac{d y}{d z} & =-y f^{\prime}(z) \\
\left(g(x, y)+x g_{1}^{\prime}(x, y)\right) \frac{d x}{d z}+\quad x g_{2}^{\prime}(x, y) \frac{d y}{d z} & =-2 z
\end{aligned}
$$

This is a linear system with $d x / d z$ and $d y / d z$ as the unknowns. The determinant of the system is

$$
\begin{aligned}
D & =\left|\begin{array}{cc}
e^{y} & x e^{y}+f(z) \\
g(x, y)+x g_{1}^{\prime}(x, y) & x g_{2}^{\prime}(x, y)
\end{array}\right| \\
& =x e^{y}\left(g_{2}^{\prime}(x, y)-g(x, y)-x g_{1}^{\prime}(x, y)\right)-f(z)\left(g(x, y)-x g_{1}^{\prime}(x, y)\right),
\end{aligned}
$$

and by Cramér's rule,

$$
\frac{d x}{d z}=\frac{1}{D}\left|\begin{array}{cc}
-y f^{\prime}(z) & x e^{y}+f(z) \\
-2 z & x g_{2}^{\prime}(x, y)
\end{array}\right|=\frac{1}{D}\left[-x y f^{\prime}(z) g_{2}^{\prime}(x, y)+2 z\left(x e^{y}+f(z)\right)\right]
$$

and

$$
\frac{d y}{d z}=\frac{1}{D}\left|\begin{array}{cc}
e^{y} & -y f^{\prime}(z) \\
g(x, y)+x g_{1}^{\prime}(x, y) & -2 z
\end{array}\right|=\frac{1}{D}\left[-2 e^{y} z+y\left(g(x, y)+x g_{1}^{\prime}(x, y)\right) f^{\prime}(z)\right] .
$$

