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ECON3120/4120 – Mathematics 2, fall term 09: Solutions for seminar 9, Nov. 4

This note contains solutions for problems 59 and 73 which were incompletely covered at the
seminar. The following solutions are kindly provided by Arne Strøm:

Exam problem 59

(a) Direct calculation yields

A2 = AA =

 0 0 0
4 0 0

10 5 0

  0 0 0
4 0 0

10 5 0

 =

 0 0 0
0 0 0

20 0 0


I3 + A + A2 =

1 0 0
0 1 0
0 0 1

 +

 0 0 0
4 0 0

10 5 0

 +

 0 0 0
0 0 0

20 0 0

 =

 1 0 0
4 1 0

30 5 1



I3 −A =

1 0 0
0 1 0
0 0 1

−

 0 0 0
4 0 0

10 5 0

 =

 1 0 0
−4 1 0
−10 −5 1


and, finally,

(I3 −A)(I3 + A + A2) =

 1 0 0
−4 1 0
−10 −5 1

  1 0 0
4 1 0

30 5 1

 =

1 0 0
0 1 0
0 0 1

 = I3.

(b) By the last result in (a),

(I3 −A)−1 = I3 + A + A2 =

 1 0 0
4 1 0

30 5 1

 .

(c) (In + aU)(In + bU) = In + aU + bU + abU2. But

U2 =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1




1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 =


n n . . . n
n n . . . n
...

...
. . .

...
n n . . . n

 = nU,

and consequently,

In + aU + bU + abU2 = In + aU + bU + nabU = In + (a + b + nab)U.

(d) Let us call the given matrix D. It is easy to see that

D =

4 3 3
3 4 3
3 3 4

 =

1 0 0
0 1 0
0 0 1

 +

3 3 3
3 3 3
3 3 3

 = I3 + 3U.



Let b be an arbitrary number. From the result in (c), we get

(I3 + 3U)(I3 + bU) = I3 + (3 + b + 3 · 3bU) = I3 + (3 + 10b)U.

If we choose b = −3/10, then the last matrix expression above equals I3, and it follows
that

D−1 = (I3 + 3U)−1 = I3 − (3/10)U

=

1 0 0
0 1 0
0 0 1

−

3/10 3/10 3/10
3/10 3/10 3/10
3/10 3/10 3/10

 =
1
10

 7 −3 −3
−3 7 −3
−3 −3 7

 .

Exam problem 73 With the Lagrangian

L(x, y, z) = x2 + y2 + z2 − λ(x2 + y2 + 4z2 − 1)− µ(x + 3y + 2z)

the necessary first-order conditions for maximum are

(L′1(x, y, z) =) 2x− 2λx− µ = 0 (1)
(L′2(x, y, z) =) 2y − 2λy − 3µ = 0 (2)
(L′3(x, y, z) =) 2z − 8λz − 2µ = 0 (3)

together with the constraints

x2 + y2 + 4z2 = 1 (4)
x + 3y + 2z = 0 (5)

Equation (1) gives

µ = 2x− 2λx = 2(1− λ)x (6)

We substitute this expression for µ in (2), and get

2(1− λ)y − 6(1− λ)x = 0 ⇐⇒ 2(1− λ)(y − 3x) = 0.

Hence, λ = 1 or y = 3x (or both).

A. Suppose λ = 1. Then (6) gives µ = 0, and (3) gives 2z − 8z = 0, that is, z = 0. It then
follows from (5) that x = −3y, and equation (4) gives 9y2 + y2 = 1, so y = ±

√
1/10 =

±1/
√

10.
This leads to two solutions of the first-order equations:

(x1, y1, z1) =
(
− 3√

10
,

1√
10

, 0
)
, (x2, y2, z2) =

( 3√
10

, − 1√
10

, 0
)
.

B. Now assume that λ 6= 1. Then y = 3x. Equation (5) gives 2z = −x − 3y = −10x, so
z = −5x. If we use this in (4), we get

x2 + (3x)2 + 4(−5x)2 = 1 ⇐⇒ x2 + 9x2 + 100x2 = 1 ⇐⇒ x = ± 1√
110

.



This gives us the two points

(x3, y3, z3) =
( 1√

110
,

3√
110

, − 5√
110

)
,

(x4, y4, z4) =
(
− 1√

110
,
−3√
110

,
5√
110

)
.

The corresponding values of λ and µ can be found as follows: With z = −5x, equations (1)
and (3) above become

2x− 2λx− µ = 0
−10x + 40λx− 2µ = 0

⇐⇒ 2xλ + µ = 2x
20xλ− µ = 5x

If we consider the last system as a linear equation system with λ and µ as the unknowns, it
is easy to show that

λ =
7
22

and µ =
15
11

x = ± 15
11
√

110
.

Calculating the value of f(x, y, z) = x2 + y2 + x2 at each of the four points that we have
found, we get

f(x1, y1, z1) = f(x2, y2, z2) =
9
10

+
1
10

+ 0 = 1,

f(x3, y3, z3) = f(x4, y4, z4) =
1

110
+

9
110

+
25
110

=
35
110

=
7
22

.

This shows that (x1, y1, z1) and (x2, y2, z2) are global maximum points for f under the given
constraints, provided there is a maximum.
How can we be sure that there is a maximum? The constraints determine a close and
bounded set, and f is continuous, so the extreme value theorem ensures that f does at-
tain both a maximum and a minimum under these constraints. It then also follows that the
points (x3, y3, z3) and (x4, y4, z4) are minimum points.

Comment 1: Since we know that f really attains both a maximum and a minimum, it is not
strictly necessary to determine the Lagrange multipliers when we look for global extreme
points. All we need is to be sure that we have found all points that satisfy the Lagrange
conditions. If we happen to include a few extra points, it does no harm, as these points will
be exposed when we calculate the function values at all the candidate points. Think about
it!

Comment 2: After all this it is almost embarrassing to point out that the whole thing would
have been much easier if we had taken another look at the functions in the problem. It
follows from constraint (4) that x2 + y2 = 1− 4z2, so the maximand, f(x, y, z), equals

x2 + y2 + z2 = (1− 4z2) + z2 = 1− 3z2

throughout the admissible set. Hence, f certainly attains its maximum value at a point where
z = 0. If we insert this value of z into (4) and (5), we find precisely the points (x1, y1, z1) and
(x2, y2, z2) that we found above, and we know that these points must be maximum points,
without having to worry about either the extreme value theorem or Lagrange’s method. Oh
well, that’s life!


