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Preface
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for excellent help with this booklet.
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Problem 1

Let f(x) = x(x − 1)(x − 2).

(a) Decide where f(x) > 0.

(b) Compute f ′(x). Decide where the function increases/decreases. Find possible local
extreme points and values. Where is f(x) strictly convex?

(c) Sketch the graph. Compute
∫ 1
0 f(x) dx.

Problem 2

(a) The function g is defined by g(x, y) = 3 + x3 − x2 − y2, and its domain, D, is given
by x2 + y2 ≤ 1 and x ≥ 0. Sketch the domain D in the xy-plane.

(b) Find the stationary points of the function g, and classify them.

(c) Find the (global) extreme points and extreme values of g in D.

Problem 3

Let D =

∣∣∣∣∣∣
0 x y
x 1 a
y b ab

∣∣∣∣∣∣, where a and b are positive constants, with a > b. Along what

straight lines in the xy-plane is D = 0? In what part(s) of the xy-plane is D > 0?

Problem 4

The daily production of a firm is given by F (L, K) = L1/2K1/2, where L is the number
of workers and K is invested capital.

(a) Show that F (tL, tK) = tF (L, K) for all t ≥ 0, and that

L
∂F

∂L
+ K

∂F

∂K
= F (L, K)

Each worker has a salary of 50 000 kr per year, and interest on capital investment is
paid at 8% p.a. The firm has 1 million kr to spend for salary expenses and interest
payment each year.

(b) Find the values of L and K that maximize production capacity subject to the budget
constraint.

Problem 5

(a) Let A =

⎛
⎝ a b 0

−b a b
0 −b a

⎞
⎠, where a and b are arbitrary constants. Find the deter-

minant of A, and compute A · A = A2.

(b) A square matrix B is called skew-symmetric if B = −B′, where B′ is the transpose
of B. Show that if C is an arbitrary matrix such that C′BC is defined, then C′BC
is skew-symmetric if B is.

(c) When is the matrix A defined in part (a) above skew-symmetric?
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Problem 6

A function f is given by the formula f(x) = (1 + 2/x)
√

x + 6 .
(a) Determine the domain of f .
(b) Determine the zeros of f , and the intervals where f(x) is positive.
(c) Find the local extreme points of the function, if any.
(d) Determine the limits of f(x) as x → 0−, x → 0+, and x → ∞. Determine the limit

of f ′(x) as x → ∞. Sketch the graph of f .

Problem 7

A firm produces x units of one commodity and y units of another. The selling prices
per unit are determined by the demand relations

p = a − 2x2, q = by−1/2

The cost function is π(x, y) = cx + dy + e. The constants a, b, c, d, e are positive, and
a > c.
(a) Determine the values of x and y that maximize the firm’s net profits, N .
(b) Find the elasticity of N w.r.t. y. What is this elasticity at the maximum net profit?

Problem 8

The function f is defined by

f(x, y) = 5xy − xaya − 4 for all x > 0, y > 0 (a > 1)

(a) Compute the partial derivatives of f of the first and second order.
(b) Find all stationary points of f and classify them, if possible.
(c) Show that the hyperbolas xy = k (k constant > 0) are level curves for f . f attains

its maximum on one of these level curves. Which one?
(d) Suppose c > 0. Find conditions on the constants a and c for h(z) = 5z − za − c = 0

to have no, one, or two solutions, respectively, in (0,∞).
(e) Let p and q be positive constants and solve the problem

minimize px + qy subject to 5xy − x2y2 = 4, x > 0, y > 0

(Take it for granted that the problem has a solution.)

Problem 9

Suppose that the equation

lnx + 2(lnx)2 =
1
2

lnK +
1
3

lnL

defines x as a differentiable function of K and L.

(a) Find expressions for
∂x

∂K
,

∂x

∂L
, and

∂2x

∂K∂L
.

(b) Show that ElKx + ElLx =
5
6

(
1

1 + 4 lnx

)
.
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Problem 10

Let the utility function U be defined by the formula

U(x, y) = A ln(x − a) + B ln(y − b)

where a, b, A and B are positive constants, A + B = 1.

(a) For what values of x and y is U defined?

(b) Let p, q and R be positive constants. Use Lagrange’s method to show that if x = x∗,
y = y∗ solve the problem

max
x, y

[
A ln(x − a) + B ln(y − b)

]
subject to px + qy = R (∗)

then

x∗ = a +
A
(
R − (pa + qb)

)
p

, y∗ = b +
B
(
R − (pa + qb)

)
q

(∗∗)

(c) What conditions must the constants satisfy for x∗ and y∗ given in (∗∗) really to
solve problem (∗)? Draw a diagram that shows the domain of U and the budget line
px + qy = R.

(d) Let U∗(p, q, R) = U(x∗, y∗) where x∗, y∗ are given in (∗∗). Show that ∂U∗/∂R > 0.

Problem 11

In a model from economic growth theory one encounters the function f defined by

f(x) =
1
x

− 1
ex − 1

for alle x > 0

(a) Compute lim
x→0

f(x) and lim
x→∞ f(x), and find f ′(x).

(b) Let g(x) = x2ex − (ex − 1)2. Show that g′(x) < 0 for all x > 0. (Taylor’s formula
for ex may be useful.) Prove that g(x) < 0 for all x > 0, and use this result to show
that f is strictly decreasing for x > 0.

(c) Sketch the graph of f .

Problem 12

Consider the matrices T =

⎛
⎜⎝

p q 0
1
2p 1

2
1
2q

0 p q

⎞
⎟⎠ and S =

⎛
⎝ p2 2pq q2

p2 2pq q2

p2 2pq q2

⎞
⎠.

(a) Compute |T|. Suppose that p · q �= 0. Find a necessary and sufficient condition for
T−1 to exist. Does S have an inverse?

Suppose from now on that p + q = 1.

(b) Let T and S be as given above. Show that T ·S = S. It is easy to show (but you are
not supposed to do it) that T2 = 1

2T+ 1
2S. Show that it follows that T3 = 1

4T+ 3
4S.

(c) Use the results in (b) to find a formula expressing Tn (n = 2, 3, . . . ) as a linear
function of T and S. Prove the formula by induction. Find the limit of Tn as
n → ∞.
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Problem 13

Let U(x, y) denote the utility of a person from x hours of leisure per day (24 hours) and
y units of other commodities. The person gets an hourly wage of w and pays an average
of p per unit for the other goods, so that

py = w(24 − x), (1)

where we assume that the person spends all he earns.
(a) Show that Lagrange’s method applied to the problem of maximizing U(x, y) subject

to the constraint (1), leads to the equation

pU ′
1(x, y) = wU ′

2(x, y). (2)

(b) Suppose that equations (1) and (2) define x and y as differentiable functions of p
and w. Show that with appropriate conditions on U(x, y), we have

∂x

∂w
=

(24 − x)(wU ′′
22 − pU ′′

12) + pU ′
2

p2U ′′
11 − 2pwU ′′

12 + w2U ′′
22

.

(c) Find
∂x

∂w
when U(x, y) = lnx · ln(8 + y), x = 16, y = 8, and p = w = 1.

Problem 14

Find the general solution of the differential equation

tẋ + (2 − t)x = e2t, t > 0

Determine the particular solution with x(1) = 0.

Problem 15

In a problem about optimal harvesting of a fish population one needs to study the function
f defined by

f(q) =
2qẑ

2q − (p − q)2

where p and ẑ are positive constants.
(a) For what values of q is f defined? Find lim

q→∞ f(q) and lim
q→−∞ f(q).

(b) Compute f ′(q) and show that f has two stationary points. Decide the character of
these stationary points by studying the expression for f ′(q).

(c) Sketch the graph of f .

Problem 16

Let f be defined by f(x, y) = (x + y − 2)2 + (x2 + y − 2)2 − 8 for all (x, y).
(a) Compute the first- and second-order partial derivatives of f .
(b) Find the three stationary points of f , and classify them. Prove that f has a global

minimum at two of the stationary points.
(c) Let p and q be given real numbers, not both equal to 0, and let g(t) = f(pt, qt).

Compute g′(t), and show that g′(t) → ∞ as t → ∞.
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Problem 17

Consider the matrices C =

⎛
⎝ 1 3 −7

2 5 1
1 2 7

⎞
⎠ and D =

⎛
⎝ a b c

−13 14 −15
−1 1 −1

⎞
⎠.

(a) Compute the determinant |D|. Compute the matrix product C · D, and show that
for appropriate choices of a, b, and c, one has D = C−1.

(b) Let A =

⎛
⎝ 1 0 2

0 2 −2
0 0 −1

⎞
⎠ and put B = C−1 ·A ·C. Let X =

⎛
⎝x1

x2
x3

⎞
⎠ and H =

⎛
⎝h1

h2
h3

⎞
⎠.

Show that there exists exactly one 3 × 1 matrix Y such that A · Y = C · H. (You
need not find Y.) Show next that X = C−1 · Y is the solution of the equation
B · X = H.

Problem 18

Find the limit lim
x→0

ex − 1 − x

x
√

1 + x − x
.

Problem 19

Let the function f be given by f(x, y) = ln(2x + y + 2) − 2x − y.
(a) Find the first- and second-order partial derivatives of f .
(b) Determine all the stationary points of f .
(c) Sketch the set S =

{
(x, y) : x2 + y2 ≤ 1, x + y ≥ 0

}
in the xy-plane and find the

maximum of the function f over this set.

Problem 20

Let f be defined by f(x, y) = 1
2e−x−y − e−x − e−y for all x > 0, y > 0. Compute the

Hessian matrix of f .

Problem 21

Evaluate the following integrals:

(a)
∫ (

(2x − 1)2 + e2x−2) dx (b)
∫

x2 − 2x

x − 1
dx (c)

∫ 1

0

(∫ 2

1

1
(x + y)2

dx

)
dy

Problem 22

In several economic models one studies the function U defined by

U(x) = −Ae−ax − Bebx

where A, B, a, and b are positive constants.

(a) Compute U ′(x) and show that U has a (global) maximum at x∗ =
1

a + b
ln
(

aA

bB

)
.

(b) Where is U convex/concave? Sketch the graph of U when aA > bB,
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(c) Show that

U(x) = −Ae−ax∗
e−a(x−x∗) − Bebx∗

eb(x−x∗) = −C

a
e−a(x−x∗) − C

b
eb(x−x∗)

for an appropriate choice of C (x∗ as given in (a)). Use this to show that the graph
of U is symmetric about the line x = x∗ if b = a.

(d) Show that the quadratic approximation to U(x) around x∗ is

U(x) ≈ −C
(1

a
+

1
b

)
− 1

2
C(a + b)(x − x∗)2.

Problem 23

Find the elasticity of y w.r.t. x when y is given as a function of x by

ln y − a lnx − b(lnx)2 − c ln(lnx) = 0

where a, b and c are constants. For what values of x is this function defined?

Problem 24

Consider the function f defined by f(x, y) = e−2x−x2−2y2
for all (x, y).

(a) Find any stationary points for f and classify them.

(b) Sketch the set S =
{

(x, y) : x ≥ 0, y ≥ 1
1 + x

}
in the xy-plane.

(c) Suppose that the problem

maximize f(x, y) subject to (x, y) ∈ S

has a solution. Find the solution.
(d) Try to prove that the problem in (c) has a solution. Does the problem of minimizing

f(x, y) subject to (x, y) ∈ S have a solution?

Problem 25

Let At =

⎛
⎝ 1 0 t

2 1 t
0 1 1

⎞
⎠ and B =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠.

(a) For what values of t does At have an inverse? Does I−BAt have an inverse for any
value of t? (I is the identity matrix of order 3.)

(b) Find a matrix X such that B+XA−1
1 = A−1

1 . (A1 is the matrix we obtain from At

when t = 1.)

Problem 26

Consider the function f defined by the formula f(x) =
1
3
x3
√

4 − x2.

(a) Determine the domain of f . Compute f(x) + f(−x) and give a geometric interpre-
tation of the result.

(b) Compute f ′(x) and determine where f is increasing and where it is decreasing.
(c) Sketch the graph of f .
(d) Explain why the function f restricted to [0,

√
3 ] has an inverse function g. Compute

g′( 1
3

√
3 ). (Hint: f(1) = 1

3

√
3.)

6
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Problem 27

Compute lim
x→7

3√x + 1 − √
x − 3

x − 7
.

Problem 28

The function g is given by g(x) = 2x − ae−x(1 + x2), where a is a positive constant.
(a) Determine where the function g is convex.
(b) Find limx→∞ g(x). Show that g(x) = 0 has exactly one solution, x0, and that x0 > 0.
(c) Show that x0 < a/2. (Hint: Show that g′(x) > 2 for x �= 1.)
(d) Define the function f by f(x) = ae−x + ln(1 + x2). Show that the point x0 that you

found in (b) is a global minimum point of f .
(e) The point x0 defined by the equation g(x0) = 0 depends on a. Find an expression

for dx0/da.

(f) Compute lim
a→0+

x0

a
.

Problem 29

Suppose that the demand for a certain commodity from a representative family depends
on the good’s price p and the family’s income r, according to the function

E(p, r) = Ap−arb (A, a and b are positive constants) (∗)

(a) Find a constant k such that p
∂E(p, r)

∂p
+ r

∂E(p, r)
∂r

= kE(p, r).

In a study on the demand for milk in Norway (1925–1935), Frisch and Haavelmo found
that demand could be represented by (∗) with a = 1.5 and b = 2.08. Verify that in this
case k = 0.58.
(b) Show that for the function E in (∗) one has

p2 ∂2E(p, r)
∂p2 + 2pr

∂2E(p, r)
∂p∂r

+ r2 ∂2E(p, r)
∂r2 = (a − b)(a − b + 1)E(p, r)

(c) Suppose that p and r are both differentiable functions of time t. Then E given in
(∗) is a function of t alone. Find an expression for dE/dt.

Put p(t) = p0(1.06)t and r(t) = r0(1.08)t, where p0 is the price and r0 is the
income at time t = 0. Show that in this case dE/dt = E(p0, r0) Qt lnQ, where
Q = (1.08)b/(1.06)a .

(d) Find a condition on a and b that ensures that E increases as t increases.

Problem 30

Consider the problem

maximize (minimize) x2 + y2 − 2x + 1 s.t 1
4x2 + y2 = b (∗)

where b is a constant > 4/9. (The constraint defines a closed and bounded set in the
xy-plane, an ellipse.)
(a) Solve the problem by using Lagrange’s method.
(b) The maximum value of x2 + y2 − 2x + 1 in problem (∗) will be a function f∗(b) of b.

Show that df∗(b)/db = λ, where λ is the Lagrange multiplier.

7
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Problem 31

(a) Find the degree of homogeneity (if the function is homogeneous) for
(i) f(x1, x2) = 5x4

1 + 6x1x
3
2

(ii) F (x1, x2, x3) = ex1+x2+x3

(iii) G(K, L, M, N) = Ka−b · Lb−c · M c−d · Nd−a

(b) Test Euler’s theorem on the function in (i).

Problem 32

Let f be defined by the formula f(x) =
xe2x

x + 1
, x �= −1.

(a) Compute f ′(x). Does f have any local extreme points?

(b) Examine f(x) as x → (−1)+, x → (−1)−, x → −∞ and x → ∞.

(c) Show that f has only one inflection point, x0, and that x0 lies in (−1/2, 0).

(d) Where is f concave? Sketch the graph of f .

Problem 33

Let the function f be defined by f(x, y) = − 1
3y3 + 4y2 − 15y + x2 − 8x.

(a) Sketch the set A in the xy-plane consisting of all (x, y) where x ≥ 0, 10 ≥ y ≥ 0,
x + y ≥ 8.

(b) Find the minimum value of f(x, y) in the set A, taking it for granted that there is
a minimum.

Problem 34

Suppose that A, B, C, D, and E are n×n matrices such that D and B−C have inverses.
Solve the matrix equation A + BXD − CXD = E for the n × n matrix X.

Problem 35

A standard macro model leads to the equation system

M = lPy + L(r)
S(y, r, g) = I(y, r)

(∗)

Here M , l and P are constants and L, S and I are differentiable functions.

(a) Explain why it is reasonable to assume that the system (∗) defines y and r as
differentiable functions of g.

(b) Differentiate the system (∗). Find expressions for dy/dg and dr/dg.
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Problem 36

In a study of a country’s population one studies the function f defined by

f(x) = x − (α + β)e−x + αe−2x + β for all x

where α and β are positive constants and α > β.

(a) Compute f ′(x) and f ′′(x).

(b) Show that f has exactly one inflection point, x̄, and that x̄ > 0.

(c) Show that the equation 2αz2 − (α + β)z − 1 = 0 has exactly one positive solution.
(Here z is the unknown.)

(d) Show that f has exactly one stationary point, x0. (Use z = e−x as a new variable.)
Show that x0 is a global minimum point of f .

(e) Find a necessary and sufficient condition on α and β for x0 to be positive.

Problem 37

Let A =

⎛
⎝ 0 1 0

0 1 1
1 0 1

⎞
⎠.

(a) Compute |A|, A2 and A3. Show that A3 − 2A2 +A− I = 0, where I is the identity
matrix of order 3.

(b) Show that A has an inverse A−1 = (A − I)2.

Problem 38

Consider the system
u2v − u = x3 + 2y3

eux = vy

(a) The system defines u and v as differentiable functions of x and y about the point
P : (x, y, u, v) = (0, 1, 2, 1). Find the differentials of u and v expressed in terms of
the differentials of x and y at that point. What are ∂u/∂y and ∂v/∂x at P?

(b) If x increases by 0.1 and y decreases by −0.2 from their values at P , what are the
approximate changes in u and v?

Problem 39

The function f is defined by f(x, y) = ln(x + y) − x2 − y2 + x for all x > 0, y > 0.

(a) Find the stationary points for f , if any.

(b) Find the (global) maximum and minimum points of f , if any.

Problem 40

Compute the following integrals:

(a)
∫

(1 − x2)2 dx (b)
∫ PL

PN

(
a − bP 1−α

)
dP (α �= 2)

9
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Problem 41

Define f(x, y) for all (x, y) by f(x, y) = ex+y + ex−y − 3
2x − 1

2y.

(a) Compute the partial derivatives of f of the first and second order.

(b) Show that f has a (global) minimum point.

Problem 42

Consider the matrix At =

⎛
⎝ t 1 1

t 2 1
4 t 2

⎞
⎠.

(a) Compute |At| and determine for what values of t the matrix At has an inverse.

(b) Show that for t = 1, the inverse of At is A−1
1 =

1
2

⎛
⎝−3 1 1

−2 2 0
7 −3 −1

⎞
⎠.

(c) Write the equation system
x + y + z = 2
x + 2y + z = 1

4x + y + 2z = 0

as a matrix equation. Use the result in (b) to solve the system.

Problem 43

Assume that production, X, depends on the number N of workers by X = Ng

(
ϕ(N)

N

)
,

where g and ϕ are given, differentiable functions. Find expressions for
dX

dN
and

d2X

dN2 .

Problem 44

Consider the function f defined by f(x, y) = xye−x/y for x > 0, y > 0.

(a) Compute the first-order partial derivatives of f .

(b) Compute Elxf(x, y) and Elyf(x, y) by using the rules for elasticities. (Check by
using the results in (a).)

(c) Argue why f does not attain a maximum value over its domain.

(d) Find the values of x and y that maximize f(x, y) subject to x + y = c, x > 0, y > 0,
where c is a positive constant. (You can assume that the maximum value exists.)

Problem 45

Determine the values of a and b such that A is the inverse of B when

A =

⎛
⎝ 2 −1 −1

a 1/4 b
1/8 1/8 −1/8

⎞
⎠ and B =

⎛
⎝ 1 2 4

0 1 6
1 3 2

⎞
⎠

10
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Problem 46

Let t be a real number and let A =

⎛
⎝ 1 1 1

−1 −1 −1
t t t

⎞
⎠

(a) Find |A − I|. (I is the identity matrix of order 3.)

(b) Put t = 1 and find a 3-vector x0 =

⎛
⎝x

y
z

⎞
⎠ such that Ax0 = x0 and x0 has length 1.

What is Anx0 for n = 1, 2, . . . ?

Problem 47

Let f(x) = −x2 + x + e−x, defined in [−3, 3].

(a) Compute f ′(x) and f ′′(x).

(b) Where is f ′ (not f) increasing?

(c) Does f ′(x) = 0 have solution(s) in [−3, 3]? How many?

(d) Find the maximum of f over [−3, 3].

Problem 48

(a) Let B be an n × n matrix such that (B − I)3 = 0, where I is the identity ma-
trix of order n. Show that the matrix 3I − 3B + B2 is the inverse matrix of B.
(Hint: First expand (B − I)3.)

(b) Find the inverse of the matrix A =

⎛
⎝ 1 0 0

3 1 0
4 0 1

⎞
⎠.

Problem 49

(a) Let a and b be positive constants. Show that∫
x(x2 + a2)b dx =

1
2(b + 1)

(x2 + a2)b+1 + C

(b) Compute the definite integral
∫ 4

0
7x
√

x2 + 9 dx.

Problem 50

Consider the following system of equations:

x + y − z = 2
kx + 3y − 2z = 1
6x + 2ky − 3kz = 0

(a) For what values of k does this system have a unique solution?

(b) Are there solutions for k = 3?
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Problem 51

Consider the problem

max f(x, y, z) = 4z − x2 − y2 − z2 s.t. g(x, y, z) = z − xy = 0 (∗)

(a) Use Lagrange’s method to find necessary conditions for the solution of the problem.

(b) Find all triples (x, y, z) that satisfy the conditions in (a).

(c) The point (1, 1, 1) is a maximum point in (∗). Find an approximate expression for
the change in the maximum value of f if the constraint z − xy = 0 is changed to
z − xy = 0.1.

Problem 52

(a) Let A =
(

2 1 4
0 −1 3

)
. Compute AA′, |AA′| and (AA′)−1.

(b) The matrix (AA′)−1 in (a) is symmetric. Is this a coincidence?

(c) Let (x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xm1, xm2, . . . , xmn) represent m
observations of n quantities, and define the matrix X by

X =

⎛
⎜⎜⎝

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

xm1 xm2 . . . xmn

⎞
⎟⎟⎠

Let 1 = (1, 1, . . . , 1) be the 1 × m matrix consisting of only ones. Compute the

product
1
m

1 · X, and give an interpretation of the result.

Problem 53

(a) Compute
2∫
0

2x2(2−x)2 dx. Give a rough check of the answer by sketching the graph

of f(x) = 2x2(2 − x)2 over [0, 2].

(b) The function x = x(t) is differentiable, with x(0) = 0 and ẋ = (1 + x2)t for all t.
Prove that t = 0 is a (global) minimum point for x(t), and show that the function
x(t) is convex.

(c) Find the elasticity of y w.r.t. x when xayb = Aex/y2
, where a, b and A are constants.

Problem 54

Let f be a function of two variables, given by

f(x, y) = x2 − y2 − xy − x3 for all x and y

Find the stationary points of f and classify them.
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Problem 55

Let A =

⎛
⎝ 1 2 3

2 1 3
3 2 1

⎞
⎠ and T =

1
12

⎛
⎝ s t 3

7 −8 3
1 t −3

⎞
⎠, where s and t are real numbers.

(a) Show that for suitable values of s and t, T = A−1.

(b) The matrix X satisfies the equation BX = 2X + C, where

B =

⎛
⎝ 3 2 3

2 3 3
3 2 3

⎞
⎠ and C =

⎛
⎝ 2 3 0 1

1 0 3 1
0 5 −4 1

⎞
⎠

Use the result from (a) to find X.

(c) D is an n × n matrix such that D2 = 2D + 3In. Show that D3 = aD + bIn for
suitable values of a and b. Find corresponding expressions for D6 and D−1 (that is,
expressions of the form αD + βIn).

Problem 56

The equation

y2 + x2eay = A (a and A are positive constants) (∗)

represents a curve in the xy-plane.

(a) Find the curve’s points of intersection with the coordinate axes.

(b) Find the slope of the tangent to the curve at an arbitrary point (x, y) on the curve.

(c) Let p and q be constants not both 0, and consider the problem

maximize px + qy subject to y2 + x2eay = A (∗∗)

Write down the necessary conditions for the solution of (∗∗), and show that if (x, y)
solves the problem, then 2qxeay = 2py + pa(A − y2).

(d) At what point (x, y) on the curve given by (∗) does x attain its largest value?

Problem 57

Consider the function f(x, y) = y3 + 3x2y.

(a) Determine the degree of homogeneity of f and determine a constant k such that

xf ′
1(x, y) + yf ′

2(x, y) = kf(x, y) for all (x, y)

(b) Find the slope of the tangent line to the level curve y3 +3x2y = −13 at an arbitrary
point on the curve, and find in particular the equation of the tangent at the point
(2,−1).

(c) Examine whether the level curve in (b) is convex or concave around the point (2,−1)
by computing y′′ at this point.

(d) Show that no point on the level curve in (b) lies above the x-axis. Find the smallest
y-coordinate of a point on the curve.
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Problem 58

(a) Compute the determinant

∣∣∣∣∣∣
−2 4 −t
−3 1 t

t − 2 −7 4

∣∣∣∣∣∣ .
(b) For what values of t will the equation system

−2x + 4y − tz = t − 4
−3x + y + tz = 3 − 4t

(t − 2)x − 7y + 4z = 23

have a unique solution?

(c) Show that for t = 8 the system of equations in (b) will have a solution with y = 3.

(d) Let B be an n × n matrix such that B2 = 3B. Show that there exists a number s
such that the matrix In + sB is the inverse of the matrix In +B. (In is the identity
matrix of order n.)

Problem 59

(a) Let A =

⎛
⎝ 0 0 0

4 0 0
10 5 0

⎞
⎠. Compute A2, I3 + A + A2 and (I3 − A)(I3 + A + A2),

where I3 is the identity matrix of order 3.

(b) Compute (I3 − A)−1 by using the results in (a).

(c) Let U be the n × n matrix all of whose elements are 1. Show that

(In + aU)(In + bU) = In + (a + b + nab)U

for all real numbers a and b, where In is the identity matrix of order n.

(d) Use the result in (c) to find the inverse of

⎛
⎝ 4 3 3

3 4 3
3 3 4

⎞
⎠.

Problem 60

Let U(x, y) be defined for all x > 0, y > 0 by

U(x, y) = A
[
ln(xα + yα) − ln yα

]
(A and α are positive constants)

(a) Compute U ′
1(x, y), U ′

2(x, y) and U ′′
12(x, y).

(b) Is U(x, y) a homogeneous function?

(c) We assume that U(x, y) is a utility function for a society, with x denoting the
economic activity level and y the level of pollution. We also assume that the level
of pollution y depends on the activity level by the equation

y3 − ax4 − b = 0 (a and b positive constants) (∗)

Use Lagrange’s method to find the activity level that maximizes the utility function
U(x, y) subject to the constraint (∗). (You can take it for granted that the maximum
exists.)
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Problem 61

The equation system
ln(x + u) + uv − y2ev + y = 0

u2 − xv = v

defines u and v as C1 functions of x and y around the point P : (x, y, u, v) = (2, 1,−1, 0).
(a) Differentiate the system.
(b) Find the values of the partial derivatives u′

x, u′
y, v′

x and v′
y at P .

(c) Find an approximate value of u(1.99, 1.02).

Problem 62

Let Aa =

⎛
⎝ 1 −a −a

−a 1 −a
−a −a 1

⎞
⎠ for all real numbers a.

(a) Compute the determinant |Aa|, and show that Aa has an inverse if a �= −1 and
a �= 1/2.

(b) Show that the inverse of Aa (when it exists) is

A−1
a = k

⎛
⎝ 1 − a a a

a 1 − a a
a a 1 − a

⎞
⎠

where k is a number that depends on a.
(c) Show that if 0 < a < 1/2 and x is a 3-vector with only positive components, then

A−1
a x will also be a vector with only positive components.

Problem 63

(a) The equation
3xexy2 − 2y = 3x2 + y2

defines y as a differentiable function of x around the point (x∗, y∗) = (1, 0). Find
the slope of the graph at this point by implicit differentiation. What is the linear
approximation to y around x∗ = 1?

(b) In an equilibrium model the following system of equations is studied:

pF ′(L) − r = 0
pF (L) − rL − B = 0

(∗)

where F is a twice differentiable function with F ′(L) > 0 and F ′′(L) < 0. All the
variables are positive. Consider r and B as exogenous and p and L as endogenous
variables, so that p and L are functions of r and B. Find expressions for ∂p/∂r,
∂p/∂B, ∂L/∂r, and ∂L/∂B by implicit differentiation.

(c) Determine, if possible, the signs of these partial derivatives. Show, in particular,
that ∂L/∂r < 0.

Problem 64

Let f(x, y) be defined by f(x, y) = ln(x + y) + y for all (x, y) with x + y > 0. Find the
maximum of f(x, y) subject to the constraint x2 + 2xy + 2y2 = 2. (You can take it for
granted that the maximum exists.)
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Problem 65

(a) Compute the integral
∫ 4

1
e−√

t dt.

(b) Let A, C, D, X, and Y be n × n matrices that satisfy the equations

AX + Y = C

X + 2A−1Y = D

(We assume that A has an inverse.) Find X and Y expressed in terms of A, C,
and D.

Problem 66

For what values of a will the equation system

x + y − 2z = 7 + a

3x − y + az = −3
−x + ay − 4z = 8

have (i) exactly one solution, (ii) more than one solution, (iii) no solution?

Problem 67

(a) Find the elasticity of y w.r.t. x when y2ex+1/y = 3.

(b) The following system of equations defines u = u(x, y) and v = v(x, y) as C1 functions
of x and y around the point P = (x, y, u, v) = (1, 1, 1, 2):

uα + vβ = 2βx + y3

uαvβ − vβ = x − y

Here α and β are positive constants. Differentiate the system. Then find the values
of ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y at the point P .

(c) Show that for the function u(x, y) in (b) we have u(0.99, 1.01) ≈ 1 − 21−β

100α
.

Problem 68

Consider the function h given by h(x) =
ex

2 + e2x
for all x.

(a) Determine where h is increasing and where it is decreasing. Find the maximum and
minimum points for h, if any.

(b) Why must h restricted to (−∞, 0) have an inverse function? Find a formula for the
inverse.

(c) Let f(x) =
g(x)

2 + (g(x))2
, where g is a differentiable function with g′(x) > 0 for all x.

Does f always have a maximum point?
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Problem 69

(a) Compute the determinant of At =

⎛
⎝ 1 −1 1

1 1 −1
3 1 t

⎞
⎠.

(b) Solve the following equation system by Gaussian elimination

x − y + z = 2
x + y − z = 1

3x + y − z = 4

Problem 70

Let the function f be given by f(x, y) = (x2 + y2)(xy + 1) for all x and y.
(a) Compute the partial derivatives of f of the first and the second order.
(b) Show that (0, 0), ( 1

2

√
2,− 1

2

√
2 ), and (− 1

2

√
2, 1

2

√
2 ) are stationary points of f and

classify them. Prove that f has no other stationary points.
(c) Find the maximum of f(x, y) over the set S = {(x, y) : x2 + y2 ≤ a2}, where a is a

positive constant.

Problem 71

(a) Sketch the curve y =
4
√

x

2 +
√

x
, and find the area of the domain bounded by this

curve, the x-axis, and the line x = 4.

(b) Let a be a positive constant. Find lim
x→a

ax − xa

x − a
.

Problem 72

(a) Let A =

⎛
⎝ a 1 4

2 1 a2

1 0 −3

⎞
⎠. Compute |A|.

(b) For what values of a does the equation system

ax + y + 4z = 2
2x + y + a2z = 2
x − 3z = a

(∗)

have one, none, or infinitely many solutions, respectively? (You are not required to
find the solutions.)

(c) Replace the right-hand sides 2, 2, and a in (∗) by b1, b2, and b3. Find a necessary
and sufficient condition for the new system of equations to have infinitely many
solutions.

(d) A 3 × 3 matrix B satisfies the equation B3 = −B. Show that B cannot have an
inverse.

Problem 73

Find the maximum of x2 + y2 + z2 subject to

{
x2 + y2 + 4z2 = 1

x + 3y + 2z = 0
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Problem 74

A firm produces and sells a good. The cost of producing and selling x units and using y
dollars on advertising is C = cx + y + d. The demand is given by

x = −ap + b + R(y)

where p is the price obtained per unit. We assume that R(0) = 0, R′(y) > 0 and
R′′(y) < 0. The constants a, b, c, and d are all positive.
(a) Show that the profit π(x, y) from selling x units and using y dollars on advertisement,

is given by

π(x, y) = −1
a
x2 +

b

a
x +

1
a
R(y)x − cx − y − d

(b) Show that if x∗ > 0 and y∗ > 0 maximize profits, then y∗ satisfies the equation

(b − ac)R′(y∗) + R(y∗)R′(y∗) = 2a (∗)

(c) Equation (∗) defines y∗ implicitly as function of a, b, and c. Compute ∂y∗/∂b by
implicit differentiation.

(d) Put R(y) = αy1/2, where α > 0. Find explicit expressions for y∗ and x∗ in this case.

Problem 75

A firm has a monopoly on the sale of a certain type of vacuum cleaners and has the
demand function p = a − bx, where p is the price per unit and x is the number of items
sold per year. The firm has fixed expenses of r per unit to cover raw material costs, and
annual running expenses d for administration, maintenance of buildings, and necessary
mechanical equipment.

The firm wishes to automate the production to the extent that it is profitable. The
investment in special machines for this purpose is y. Assume that ky is the annual
running expenses of depreciation and maintenance of the special machines, and f(y) is
the workers’ salary per produced vacuum cleaner. Here f is a given C2 function with
f ′(y) < 0 and f ′′(y) > 0. The constants a, b, r, d, and k are all positive.
(a) Comment on the signs of f ′(y) and f ′′(y). Find the firm’s annual net profit π(x, y)

and compute the partial derivatives of π(x, y) of the first and second order.
(b) Show that if x > 0, y > 0 maximize net profits, then y satisfies the equation

2bk + f ′(y)(a − r) = f(y)f ′(y) (∗)

(c) Suppose that f(y) = α/(y + β), with α > 0 and β > 0. Show that (∗) reduces to a
cubic equation in y + β.

(d) Equation (∗) in part (b) defines y implicitly as a function of k. Find an expression
for dy/dk.

(e) Suppose that the sufficient second-order conditions for a local maximum of π(x, y)
are satisfied. Show that then dy/dk < 0.

Problem 76

Let At =

⎛
⎝ 1 t 0

−2 −2 −1
0 1 t

⎞
⎠.

(a) Compute |At| and show that A−1
t exists for every t.

18
4120e010 22.6.2007 948



(b) Show that for a certain value of t, A3
t = I3, where I3 is identity matrix of order 3,

and then find the inverse of A1.

(c) Suppose that A and B are invertible n × n matrices. Show that if A′A = In, then
(A′BA)−1 = A′B−1A.

Problem 77

Compute the integrals: (i)
∫ 6

−1
x(2 + x)1/3 dx (ii)

∫
e

3√x dx

Problem 78

Solve the problem

minimize Ax + eax + eby subject to eax + eax+by = c

where A, a, b, and c are positive constants.

Problem 79

The equation system
ex−y ln(x + z − 1) =

√
xy

x2y3z = e

defines y and z as differentiable functions of x in a neighborhood of the point (x, y, z) =
(1, 1, e).

(a) Find the elasticities of y and z w.r.t. x at the given point.

(b) What are the approximate percentage changes of y and z if x increases from 1 to 1.1?

Problem 80

Let the function g be defined by

g(x) = (a − 1)x + cax1−a − a for x > 0

Here a and c are constants with a > 1 and 0 < c < 1.

(a) Compute g′(x) and g′′(x), and examine g(x) as x → 0+ and as x → ∞.

(b) Show that g has a (global) minimum point, and find the minimum value.

(c) Show that the function g has exactly 2 zeros, and that one of them lies in the interval

(0, c) and the other in the interval (1,
a

a − 1
).

Problem 81

Compute the integrals
∫

dv

1 − v2 and
∫

dx√
1 − e−x

.

(Hint:
2

1 − v2 =
1

1 + v
+

1
1 − v

.)
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Problem 82

Let Aa =

⎛
⎝ 1 a a

a 2 a
a a 3

⎞
⎠, where a is a constant.

(a) Compute the determinant |Aa| and the matrix A2
a.

(b) Find a necessary and sufficient condition for the equation system

x1 + ax2 + ax3 = 1
ax1 + 2x2 + ax3 = 2
ax1 + ax2 + 3x3 = 3

to have a unique solution. Find the solution when a = 3.
(c) Solve the equation system

x1 + nx2 + · · · + nxn−1 + nxn = 1
nx1 + 2x2 + · · · + nxn−1 + nxn = 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nx1 + nx2 + · · · + (n − 1)xn−1 + nxn = n − 1
nx1 + nx2 + · · · + nxn−1 + nxn = n

where n is an integer > 1.
(d) Show that if A, B, and C are n × n matrices such that BAC = In, then A has an

inverse. Find an expression for A−1.

Problem 83

Consider the problem

maximize U(x1, x2, x3) subject to p1x1 + p2x2 + p3x3 = m

where U(x1, x2, x3) = ln(x1 − 6) + 2 ln(x2 − 5) + ln(x3 − 4), and p1, p2, p3 and m are
positive constants.
(a) Solve the problem by using Lagrange’s method. (You may assume that the problem

has a solution.)
(b) Let U∗ be the optimal value function for the problem, which means that U∗ =

U∗(p1, p2, p3, m) is the maximum value of U(x1, x2, x3) as a function of p1, p2, p3,
and m. Show by direct computation that ∂U∗/∂m = λ, where λ is the Lagrange
multiplier from (a).

(c) Put p1 = 5, p2 = 2, p3 = 5 and m = 100. Estimate the change in the value of U∗ if
m = 100 is changed to m = 101.

Problem 84

In a growth model production Q is a function of capital K and labour L. Suppose that

(i) K̇ = γQ (investment is proportional to production)
(ii) Q = KαL

(iii) L̇ = β (the rate of change of L with respect to t is constant)
Here γ, α, and β are positive constants, α < 1.
(a) Derive a differential equation to determine K.
(b) Solve this equation when K(0) = K0 and L(0) = L0.
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Problem 85

Find the local and (global) extreme points of f(x) = ex2
+ e2−x2

, if any.

Problem 86

Let f(x, y, z) = x2 + x + y2 + z2.
(a) Find the maximum and minimum of f(x, y, z) subject to x2 + 2y2 + 2z2 = 16.
(b) Find the maximum and minimum of f(x, y, z) over the set

S =
{

(x, y, z) : x2 + 2y2 + 2z2 ≤ 16
}
.

Problem 87

Let Aa =

⎛
⎝ a + 1 a + 1 0

4 a + 4 a − 1
3 5 a − 1

⎞
⎠ for all real numbers a.

(a) Compute |Aa|.
(b) When does the equation system

(a + 1)x + (a + 1)y = b

4x + (a + 4)y + (a − 1)z = 1
3x + 5y + (a − 1)z = −3

have a unique solution? (You need not find the solution.) Examine what conditions
b must satisfy for the system not to have any solution when a = 1 and when a = 2.

(c) Compute |3A3| and |A5A
−1
4 A2

3|.

Problem 88

(a) Find the integrals: (i)
∫

3xe−x/2 dx (ii)
∫ 25

0

1
9 +

√
x

dx (iii)
∫ 7

2
t
√

t + 2 dt

(b) In auction theory one encounters the differential equation

ẋ =
4(a − t)
(2t − a)2

x, t > a/2

where a is a constant. Find the general solution of this equation.

Problem 89

(a) The equation
x3 lnx + y3 ln y = 2z3 ln z

defines z as a differentiable function of x and y in a neighborhood of the point
(x, y, z) = (e, e, e). Compute z′

1(e, e) and z′′
11(e, e).

(b) If F is a differentiable function of one variable with F (0) = 0 and F ′(0) �= −1, find
an expression for y′ at the point (x, y) = (1, 0), when y is defined implicitly as a
differentiable function of x by the equation

x3F (xy) + exy = x.
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Problem 90

Let a ≥ 0 be a constant and let f(x) = (2x2 + a)e−x2−a.
(a) Compute f ′(x) and find all stationary points of f . (You must distinguish between

the cases 0 ≤ a < 2 and a ≥ 2.)
(b) Show that the graph of f is symmetric about the y-axis. Determine the limits

lim
x→∞ f(x) and lim

x→−∞ f(x).

(c) For each a ≥ 0, f(x) has a maximum value, M(a). Show that

M(a) =
{

2e−1− 1
2 a if 0 ≤ a ≤ 2

ae−a if a > 2

For what value of a does M(a) have its largest value?

(d) Consider the function g defined by g(x, y) = (2x2 + y)e−x2−y for all (x, y). Find the
stationary points of g, if any. Find the largest value attained by the function over
the set {(x, y) : y ≥ 0}. (You may assume that there is a maximum value.)

Problem 91

(a) Find the integral
∫ ∞

2

12x + 6
(x2 + x + 2)4/3 dx.

(b) In auction theory one encounters the differential equation

(r2 − r1)ẋ =
(

r1

t − r2
− r2

t − r1

)
x, t > r2

where r1 and r2 are constants with r2 > r1. Find the general solution of this
equation. Show that it can be written in the form

x = C(t − r2)r1/(r2−r1)(t − r1)−r2/(r2−r1) (C is a constant)

Problem 92

(a) Find the slope of the curve xex2y + 3x2 = 2y + 4 at the point (x, y) = (1, 0).
(b) Consider the equation system

xey + yf(z) = a

xg(x, y) + z2 = b

where f(z) and g(x, y) are differentiable functions and a and b are constants. Sup-
pose that the system defines x and y as differentiable functions of z. Find expression
for dx/dz and dy/dz.

Problem 93

(a) Consider the equation system

x1 + x2 + x3 = b

ax1 + x2 − x3 = 5
x1 − x3 = a

where a and b are given constants. For what values of a is there a unique solution?
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(b) Suppose that A is an n × n matrix, B an m × m matrix, and C an n × m matrix.
Suppose that A − I and B have inverses. Find a formula for the matrix X that
satisfies the matrix equation AXB = XB + C. In particular, let

A =
(

2 1
1 0

)
, B =

⎛
⎝ 1 0 0

0 1/2 0
0 0 1/4

⎞
⎠ , C =

(
1 1 2

−1 3 1

)

and find the matrices (A − I)−1, B−1, and X in this case.

Problem 94

Find the following integrals: (a)
∫

1
(u − 1)

√
u

du (b)
∫

1√
ey + 1

dy

(Hint: You may need the formula
1

z2 − 1
=

1
2

[
1

z − 1
− 1

z + 1

]
.)

Problem 95

Consider the matrices

A3(t) =

⎛
⎝ 3 − t −4 2

1 −t 0
0 1 −t

⎞
⎠ and A4(t, a) =

⎛
⎜⎝

3 − t −4 2 a
1 −t 0 0
0 1 −t 0
0 0 1 −t

⎞
⎟⎠

(a) Compute the determinants |A3(t)| and |A4(t, a)|.
(b) Find a necessary and sufficient condition on b1, b2, and b3 for the equation system

2x1 − 4x2 + 2x3 = b1

x1 − x2 = b2

x2 − x3 = b3

to have solutions, and determine the number of degrees of freedom in that case.
(c) Suppose that the matrix P has an inverse. Which of the following matrices will then

also have inverses? (Give the argument.)

(i) P2 (ii) P + P (iii) P′ (iv) P + P′

Problem 96

(a) For x ≥ 0, y ≥ 0, the equation

xy + y2 + 2x + 2y = C (C is a constant)

defines y as a C2 function of x. Compute y′ and y′′.
(b) A consumer uses an amount m to buy x units of one good at the price 6 kr. per unit

and y units of a different good at the price 10 kr. per unit. Here m is positive. The
consumer’s utility function is U(x, y) = xy + y2 + 2x + 2y, so that her problem is:

maximize (xy + y2 + 2x + 2y) subject to 6x + 10y = m

Suppose that 8 < m < 40. Find the optimal quantities x∗ and y∗ and the Lagrange
multiplier as functions of m.
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(c) The maximum value of the utility function is a function of m. Find its derivative
for m = 20.

(d) What are the solutions for x∗ and y∗ if m ≤ 8? What are the solutions if m ≥ 40?

Problem 97

Let the function ϕ be defined by ϕ(x) = ln(x + 1) − ln(x + 2) = ln
[
x + 1
x + 2

]
for all x ≥ 0.

(a) Find the range of ϕ.
(b) Find the inverse of ϕ. Where is it defined?
(c) Find the inverse of ϕ′. Where is it defined?

Problem 98

Consider the matrices At =

⎛
⎝ 1 0 t

2 1 t
0 1 1

⎞
⎠ and B =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠.

(a) For what values of t does At have an inverse?
(b) Compute I3 − BAt. For which values of t does this matrix have an inverse? Find a

matrix X such that B + XA−1
t = A−1

t for t = 1.
(c) Find the matrix Y that satisfies

Y

⎛
⎝ 1 2 −3

0 1 0
0 0 1

⎞
⎠−

(
1 2 −1

−1 0 4

)
=
(

0 0 0
0 0 0

)

Problem 99

Suppose that c is a constant and that the equation

1 + xy − ln(exy + e−xy) = c

defines y as a differentiable function of x. Compute dy/dx and d2y/dx2.

Problem 100

(a) Find the integral
∫

(xn − xm)2√
x

dx, where m and n are natural numbers.

(b) Compute
∫ 1/3

0

dx

ex + 1
.

(c) Solve the differential equation ẋ =
3
√

ax + b

x
t2, where the constant a is �= 0.

Problem 101

A statistical problem involves the function f defined for all x and y by

f(x, y) = 2(1 − ρ2)x2y2 − 3x2 − 3y2 + 2ρxy + 4

where ρ is a constant in [−1, 1].
(a) Compute the Hessian of f . Show that for ρ = ±1, f has only one stationary point.

Is this point a global or local extreme point or a saddle point for f?
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(b) Show that for all ρ in [−1, 1], if (x0, y0) is a stationary point, then x2
0 = y2

0 .
(Hint: Consider xf ′

1(x, y) − yf ′
2(x, y).)

(c) Find all stationary points of f when ρ ∈ (−1, 1).

Problem 102

(a) Compute the determinant of A =

⎛
⎝ a a − 1 a

a − 1 1 0
a 0 a

⎞
⎠.

(b) For what values of a and b will the equation system A

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝ b

0
1

⎞
⎠ have infinitely

many solutions?

(c) For what values of a does there exist a matrix B such that AB = A + B?

Problem 103

The number of liters of petrol in the tank of a car after it has driven x miles is V (x).
Suppose that V (x) satisfies the differential equation V ′(x) = −aV (x) − b, where a and b
are positive constants.

(a) Find the general solution of the equation.

(b) Assume that a = 0.1 and b = 0.7. How many miles can the car travel if it sets out
with 20 litres in the tank? What is the minimum number of litres needed at the
outset if the car is to run for 15 miles?

Problem 104

Calculate (i) lim
x→3

(
1

x − 3
− 5

x2 − x − 6

)
(ii)

∫ 41

8.5

dx√
2x − 1 − 4

√
2x − 1

.

(Hint: substitute z4 = 2x − 1 in (ii).)

Problem 105

The equation
x2y3 + (y + 1)e−x = x + 2 (∗)

defines y as a differentiable function of x around (x, y) = (0, 1).

(a) Compute y′ at this point.

(b) Show that the curve given by (∗) intersects the x-axis in exactly one place.

Problem 106

Consider the Lagrange problem

maximize xyz subject to

{
x + y + z = 5

xy + xz + yz = 8

(a) Write down the necessary first-order conditions for a solution of the problem.
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(b) Show that if the point (x, y, z) satisfies the first-order conditions, then

z(y − x) = μ(y − x)
y(x − z) = μ(x − z)
x(z − y) = μ(z − y)

where μ is the Lagrange multiplier associated with the constraint xy + xz + yz = 8.
(c) Solve the problem. You may assume that the problem has a solution.
(d) What will be the approximate change in the maximum value of xyz if 5 is changed

to 5.01 and 8 is changed to 7.99?

Problem 107

Let f be defined by f(x) = ln(2 + ex−3) for all x.
(a) Show that f is strictly increasing and find the range of f .
(b) Find an expression for the inverse function g of f . Where is g defined?
(c) Verify that f ′(3) = 1/g′(f(3)).

Problem 108

Consider the 3 × 3 matrices A =

⎛
⎝ q −1 q − 2

1 −p 2 − p
2 −1 0

⎞
⎠ and E =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠.

(a) Compute |A|, AE and |A + E|.
(b) For what values of p and q does A + E have an inverse? Explain why BE does not

have an inverse for any 3 × 3 matrix B.
(c) Consider the equation system

qx − y = q − 2
x − py = 2 − p

2x − y = 0

where x and y are the unknowns and p and q are parameters. For what values of p
and q does the system have a unique solution, no solutions, or an infinite number of
solutions?

Problem 109

(a) Find the integral
∫ 1

0
57x2 3

√
19x3 + 8 dx.

(b) Solve the differential equation e3tẋ =
x3 + 1

x2 (x > 0), with x(0) = 1.

Problem 110

(a) Find the maximum and the minimum of x2 + y2 + z subject to x2 + 2y2 + 4z2 = 1.
(b) Suppose that the constraint is changed to x2 + 2y2 + 4z2 = 1.02. What is approxi-

mately the change in the maximum value of f(x, y, z)?

26
4120e010 22.6.2007 948



Problem 111

Find the solution of the differential equation 3x2ẋ = (x3+9)3/2 ln t whose solution curve
passes through the point (t, x) = (1, 3).

Problem 112

The revenue from an oil field today (t = 0) is 1 billion per year and is expected to increase
linearly to 5 billion per year in 10 years. If we measure time in years and let f(t) denote
the revenue (measured in billions) per unit time at time t, then f(t) = 1 + 0.4t. If F (t)
denotes total revenue accumulated during the time interval [0, t], then F ′(t) = f(t).
(a) Find the total revenue over the 10 year period (i.e. F (10)).
(b) Find the present value of the revenue over the time interval [0, 10] with continuously

compounded interest at interest rate r = 0.05 per year. (The present value is∫ T

0 f(t)e−rt dt, where T denotes the terminal time.)

Problem 113

For x > 0 and y > 0, the equation
y3

x3 = (x + a)p(y + b)q defines y as a differentiable
function of x. Find the elasticity of y w.r.t. x. Here a > 0, b > 0, p, and q are constants.

Problem 114

(a) Let A =

⎛
⎝ 4 3 −2

13 7 −3
1 −2 3

⎞
⎠ and b =

⎛
⎝ b1

b2
b3

⎞
⎠. What conditions must b1, b2, and b3

satisfy for the equation system Ax = b to have solutions? How many degrees of
freedom are there if the system has solutions?

(b) Is there an invertible matrix B such that BA = 0?
(c) Find a 3 × 3 matrix C such that C �= 0 and AC = 0.

Problem 115

Consider the problem

maximize f(x, y, z) = xy + ez s.t. g(x, y, z) = e2z + x2 + 4y2 = 6 (∗)

(a) Find all solutions of the first-order conditions, and determine the maximum point
in problem (∗). You may assume that a maximum point exists.

(b) Estimate the change in the optimal value of f if we change the constraint to e2z +
x2 + 4y2 = 6.1.

(c) If we change the constraint in problem (∗) to e2z +x2+4y2 ≤ 6, will the new problem
have a solution different from the one you found in (a)?

Problem 116

Define f(x) =
(
e2x + ae−x

)2, where a is a constant, a �= 0.
(a) Find f ′(x) and f ′′(x).
(b) Determine where f is increasing, and show that f is convex everywhere.
(c) Find the extreme points for f , if any.
(d) Let a = 4, and find a minimum point for f over the interval [1,∞), if there is one.
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Problem 117

Find the limit lim
x→1

lnx − x + 1
(x − 1)2

.

Problem 118

Find the integrals: (a)
∫

e
√

x

√
x (1 + e

√
x)

dx (b)
∫ e2

1

√
x lnx dx

Problem 119

Find F ′(x) when F (x) =
∫ x

4

(√
u +

x√
u

)
du.

Problem 120

(a) Find the general solution of the differential equation ẋ + 2x = 2.

(b) Find a function w = w(t) such that

ẅ + 2ẇ = 2, w(0) = 0 and w
(−1

2
)

=
1
2

− e.

Problem 121

(a) Find the maximum of exy subject to (x − 1)2 + y2 = 12.

(b) Suppose that we change the constraint in (a) to (x − 1)2 + y2 = 12.03. What is the
approximate corresponding percentage change in the maximum value of exy?

Problem 122

The function f is defined by f(x) = x3e−x2
for all x.

(a) Compute f ′(x) and f ′′(x).

(b) Show that the graph of f is symmetric about the origin. Find limx→∞ f(x).

(c) Find any maximum and minimum points, and sketch the graph.

(d) Compute
∫

f(x) dx and
∫∞
0 f(x) dx.

(e) Let 0 < a < b. Explain geometrically or otherwise why the following equality holds:∫ −a

−b

f(x) dx = −
∫ b

a

f(x) dx.

Problem 123

(a) Calculate the integral
∫ 1

0

4x3
√

4 − x2
dx.

(b) Determine the limit lim
x→1

a2x − a2

2x − 2
.
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Problem 124

(a) For what values of p and q does the following equation system

x1 + x2 + x3 = q

px1 + x2 − x3 = 5
x1 − x3 = p

have one solution, several solutions, or no solutions?

(b) Find all solutions of the system in the case where the system has several solutions.

(c) Compute the determinant

∣∣∣∣∣∣
31 32 33
32 33 35
33 34 36

∣∣∣∣∣∣. (Hint: Use elementary operations on the

rows and/or the columns.)

(d) Show that if A is an n×n matrix such that A4 = 0, then (I−A)−1 = I+A+A2+A3.

Problem 125

Let the function f be defined by f(x, y) = xye4x2−5xy+y2
for all (x, y).

(a) Compute the first-order partial derivatives of f .

(b) Find the three stationary points of f , and show that f has no (global) extreme
points.

(c) The level curve f(x, y) = 1 passes through the point (x, y) = (1, 1). Find the slope
of the tangent line to the level curve at this point.

Problem 126

Let the function f be defined by f(x) =
2√

x + 1
+

1
2
√

x for all x ≥ 0.

(a) Find the maximum and minimum points of f , if any, and sketch the graph of f .

(b) Calculate
∫ 4

0
f(x) dx.

Problem 127

(a) Calculate the integral
∫ e

1

lnx3

x2 dx

(b) Determine the solution of the differential equation

x
dx

dt
= −1

2
(x2 − 25), x > 5 (∗)

that passes through the point P = (0, 10). What is the slope of the solution curve
at P? Show that every solution of (∗) is decreasing.
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Problem 128

(a) Compute the determinant

∣∣∣∣∣∣
1 1 a2

2 3 −1
0 2 1

∣∣∣∣∣∣.
(b) Consider the equation system

x + y + az + au = a

2x + y − a2z + 2au = 1

4x + 3y + a2z + 4a2u = 1

where x, y, z, and u are unknowns and a is a constant. Find the number of degrees
of freedom for all values of a. (Use Gaussian elimination.)

(c) Suppose that A and B are n × n matrices and that A2B = AB. Prove that
A4B = AB.

Problem 129

Consider the problem of maximizing x + 2z subject to

{
x + y + z = 1

x2 + y2 + z = 7/4
(a) Show that by eliminating the Lagrange multipliers from the first-order conditions,

one can derive the equation 4x− 2y = 1. Then find the only possible solution of the
problem.

(b) Can you prove that you have found the solution in (a)?

Problem 130

The equation system
ln(ex2y + z) = 1

eln(x2+z)−2z + 2y = 3

defines y and z as differentiable functions of x around the point P = (x, y, z) = (1, 1, 0).
Find dy/dx and dz/dx at the point P . Also find Elx y at P .

Problem 131

(a) Let A =

⎛
⎝ 1 a a

a a a
a a 1

⎞
⎠. Compute |A| and A2.

(b) Determine the number degrees of freedom for the equation system

x + ay + az = 0
ax + ay + az = 0
ax + ay + z = 0

for all values of a.
(c) Solve the following equation system for all values of a:

x + ay + az = 1

ax + ay + az = a2

ax + ay + z = 1
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Problem 132

Consider the function f defined by

f(x, y) = 1
2x2 − x + ay(x − 1) − 1

3y3 + a2y2 for all (x, y)

where a is a constant. Find all the stationary points of f and classify them.

Problem 133

A country wants to empty an oil field. It will start the production today at t = 0, and
has a choice between two extraction profiles f and g giving the production of oil per unit
of time. For both extraction profiles the time span is 10 years, and f(t) = 10t2 − t3,
t ∈ [0, 10], while g(t) = t3 − 20t2 + 100t, t ∈ [0, 10].

(a) Sketch the two profiles in the same coordinate system.

(b) Show that
∫ t

0 g(τ) dτ ≥ ∫ t

0 f(τ) dτ for all t ∈ [0, 10].

(c) The country obtains a price per unit of oil given by p(t) = 1+1/(t+1), where t is the
number of years. Total revenue is then given by

∫ 10
0 p(t)f(t) dt and

∫ 10
0 p(t)g(t) dt

respectively. Compute these integrals. Which of the two extraction profiles should
be chosen?

Problem 134

Solve the differential equations

(a) ẋ + 4x = 3et, x(0) = 1 (b) ẋ =
e−3x

3 +
√

t + 8
, x(1) = 0

Problem 135

Let f be defined by f(x) =
x2 + 4x − 2

x2 + 1
for all x.

(a) Find f ′(x) and determine the local extreme points of f .

(b) Determine lim
x→±∞ f(x) and sketch the graph of f .

(c) Define the function F by the formula F (x) = ln f(x). Where is F defined? What is
the range of F? Sketch the graph of F .

Problem 136

(a) For a ball with radius r, the formulas V = 4
3πr3 and O = 4πr2 give the volume and

the surface area respectively. Show that O = kV 2/3 for a constant k.

(b) A spherical mothball evaporates at a rate proportional to the surface area. If M(t)
is the mass at time t, then dM(t)/dt = −s(M(t))2/3, where s is a positive constant.
Find the solution of this differential equation with M(0) = 1.

(c) M(t) is measured in grams and t is measured in days. At t = 0 the weight of the
mothball is 1 gram, and 75 days later it is 0.5 grams. Determine the value of s. How
long does it take for the whole mothball to evaporate?
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Problem 137

Calculate the integrals (a)
∫ 9

4

(
√

x − 1)2

x
dx (b)

∫ 1

0
ln(1 +

√
x ) dx

Problem 138

Consider the problem of maximizing ex + y + z subject to

{
x + y + z = 1

x2 + y2 + z2 = 1

(a) Find the solution of the problem by using Lagrange’s method.

(b) Replace the constraints by x + y + z = 1.02 and x2 + y2 + z2 = 0.98. What is the
approximate change in the maximum value of the objective function?

Problem 139

(a) For what values of a does Aa =

⎛
⎝ 1 2 3

0 a − 1 1
1 2 a + 1

⎞
⎠ have an inverse?

(b) Find the inverse when a = 0.

(c) Let A, B, C, and D be n × n matrices where |A| �= 0 and |B| �= 0. Show that there
exist matrices X and Y such that

AX + 2AY = C

A2XB + A2YB = D

Problem 140

Let f be the function given by f(x) = 2x2 − lnx − 2, x > 0.

(a) Find the extreme points and extreme values for f , if any.

(b) Clearly x = 1 is a solution of the equation f(x) = 0. Show that this equation has
exactly one additional solution x = x1, where x1 is a number in the interval (0, 1).
(You are not supposed to find x1.) Sketch the graph of f .

(c) Find the local and (global) extreme points for g(x) =
1

2x2 − lnx − 2
.

(d) Sketch the graph of g.

Problem 141

Let the function f be defined by f(x, y) = 1
2x2ey − 1

3x3 − ye3y for all (x, y).

(a) Compute the partial derivatives of f of the first and second order.

(b) Find the stationary points of f , if any, and classify them. Does f have (global)
extreme points?

(c) The level curve f(x, y) = − 2
3 passes through the point (x, y) = (2, 0). Find the slope

of the tangent line to the level curve at this point.

32
4120e010 22.6.2007 948



Problem 142

(a) Let A =

⎛
⎝ 1 3 4

2 2 1
3 −3 −9

⎞
⎠. Compute |A|.

(b) What conditions must b1, b2, and b3 satisfy for the equation system

x + 3y + 4z = b1

2x + 2y + z = b2

3x − 3y − 9z = b3

to have solutions?

Problem 143

(a) Solve the differential equation ẋ + 4x = 4e−2t, x(0) = 1.
(b) Suppose that y = (a+αk)

√
t + 1 denotes production as a function of capital k, where

the factor
√

t + 1 is due to technical progress. Suppose that a constant fraction
s ∈ (0, 1) is saved, and that capital accumulation is equal to savings, so that we
have the separable differential equation

k̇ = s(a + αk)
√

t + 1, k(0) = k0

The constants a, α and k0 are positive. Find the solution.
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Answers

1. (a) f(x) > 0 when 0 < x < 1 and when x > 2.
(b) f ′(x) = 3x2 − 6x+2. Let x0 = 1− 1

3

√
3 and x1 = 1+ 1

3

√
3. Then f increases in

(−∞, x0] and in [x1,∞), and f decreases in [x0, x1]. x0 is a local maximum point
with f(x0) = 2

9

√
3, while x1 is a local minimum point with f(x1) = − 2

9

√
3. f(x) is

strictly convex in [1,∞). (c) See Fig. A.1.
∫ 1
0 f(x) dx = 1/4.

y

−1

1

2

x−1 1 2

y

x

1

1

D

y

x

y = bx

y = ax

Figure A.1 Figure A.2 Figure A.3

2. (a) See Fig. A.2. (b) Local maximum at (0, 0), saddle point at (2/3, 0).
(c) Maximum at (0, 0) and at (1, 0). Maximum value 3. Minimum at (0,−1) and
at (0, 1). Minimum value 2.

3. D = −y2 +(a+ b)xy −abx2 = −(y −ax)(y − bx) is equal to 0 along the lines y = ax
and y = bx. D > 0 when (i) x > 0 and bx < y < ax or (ii) x < 0 and ax < y < bx.
See Fig. A.3.

4. (a) Direct verification. (b) L = 10, K = 6.25 million.

5. (a) |A| = a(a2 + 2b2), A2 =

⎛
⎝ a2 − b2 2ab b2

−2ab a2 − 2b2 2ab
b2 −2ab a2 − b2

⎞
⎠ (c) a = 0

6. (a) f is defined in [−6, 0) ∪ (0,∞). (b) f(x) = 0 if and only if x = −2 or x = −6,
f(x) > 0 in (−6,−2) and in (0,∞). (c) Local maximum at (−4, 1

2

√
2 ), local

minimum at (6, 8
3

√
3 ) and at (−6, 0). (d) The limits are −∞, ∞, ∞, and 0,

respectively. See Fig. A.6

7. (a) Maximum net profits at x =
√

(a − c)/6, y = b2/4d2.

(b) ElyN =
1
N

(1
2
b
√

y − dy
)
, ElyN = 0 when y = b2/4d2.

8. (a) f ′
1 = 5y − axa−1ya, f ′

2 = 5x − axaya−1,
f ′′
11 = −a(a − 1)xa−2ya, f ′′

12 = 5 − a2xa−1ya−1, f ′′
22 = −a(a − 1)xaya−2.

(b) All (x, y) for which xy = (5/a)1/(a−1) are stationary points. The second-
derivative test does not apply. (c) f attains its maximum value along xy =
(5/a)1/(a−1).

(d) h(z) = 0 has no, one, or two roots according as 5(5/a)1/(a−1)
(
1 − 1

a

)
< c, = c,

or > c. (e) x =
√

q/p , y =
√

p/q solve the minimization problem.
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y

−4

−2

2

4

6

8

x−6 −4 −2 2 4 6 8 10

y

x

px + qy = R

a

b

Figure A.6 Figure A.10

9. (a)
∂x

∂K
=

x

2K(1 + 4 lnx)
,

∂x

∂L
=

x

3L(1 + 4 lnx)
,

∂2x

∂K∂L
=

x(4 lnx − 3)
6KL(1 + 4 lnx)3

10. (a) U is defined for x > a and y > b. (c) The condition is pa + qb < R. See
Fig. A.10.

11. (a) lim
x→0

f(x) = 1
2 , lim

x→∞ f(x) = 0, f ′(x) =
x2ex − (ex − 1)2

x2(ex − 1)2

12. (a) |T| = 1
2pq(1 − p − q). T−1 exists ⇐⇒ p + q �= 1. |S| = 0, so S has no inverse.

(c) Tn =
1

2n−1 T +
2n−1 − 1

2n−1 S → S as n → ∞.

13. (a) With L(x, y) = U(x, y)−λ(py−w(24−x)), the first-order conditions L′
1 = L′

2 = 0
yield (2) (b) Differentiate (1) and (2) w.r.t. w keeping p constant.
(c) ∂x/∂w = 4(1 − ln 16)/(1 + ln 16).

14. x = A
et

t2
+

e2t

t
− e2t

t2
; A = 0

y

x

y

−4

−2

2

4

6

x−6 −4 −2 2 4 6 8

Figure A.15

15. (a) f(q) is defined ⇐⇒ 2q − (p − q)2 �= 0 ⇐⇒ q �= p + 1 ±√2p + 1

f(q) → 0 as q → ∞ and as q → −∞. (b) f ′(q) =
2ẑ(q + p)(q − p)
(2q − (p − q)2)2

. q = −p is

a stationary point and a local maximum point. q = p is a stationary point and a
local minimum point. (c) Figure A.15 shows the graph when p = 1 and ẑ = 1.5.

16. (a) f ′
1 = 2(x + y − 2) + 2(x2 + y − 2)2x, f ′

2 = 2(x + y − 2) + 2(x2 + y − 2),
f ′′
11 = 12x2 + 4y − 6, f ′′

12 = f ′′
21 = 4x + 2, f ′′

22 = 4. (b) (0, 2) and (1, 1) are local
(and actually global) minimum points, and (1/2, 13/8) is a saddle point.
(c) g′(t) = 4p4t3 + 6p2qt2 + (−6p2 + 4q2 + 4pq)t − 4p − 8q

35
4120e010 22.6.2007 948



17. (a) |D| = a + 2b + c, C · D =

⎛
⎝ a − 32 b + 35 c − 38

2a − 66 2b + 71 2c − 76
a − 33 b + 35 c − 37

⎞
⎠.

We see that D = C−1 if a = 33, b = −35 and c = 38.
(b) Y = A−1 · C · H. (A has an inverse since |A| = −2 �= 0.)

18. 1. (Use l’Hôpital’s rule.)

19. (a) f ′
1 =

2
2x + y + 2

− 2, f ′
2 =

1
2x + y + 2

− 1,

f ′′
11 =

−4
(2x + y + 2)2

, f ′′
12 = f ′′

21 =
−2

(2x + y + 2)2
, f ′′

22 =
−1

(2x + y + 2)2
.

(b) The stationary points are all the points on the line 2x + y = −1.
(c) See Fig. A.19. The function has the maximum value ln

(
2 − 1

2

√
2
)

+ 1
2

√
2,

attained at (− 1
2

√
2, 1

2

√
2 ).

y

x

S
1

1

y

−2

−1

1

2

x−2 −1 1 2

Figure A.19 Figure A.26

20.
(

f ′′
11 f ′′

12

f ′′
21 f ′′

22

)
=
( 1

2e−x−y − e−x 1
2e−x−y

1
2e−x−y 1

2e−x−y − e−y

)
21. (a) 1

6 (2x − 1)3 + 1
2e2x−2 + C (b) 1

2x2 − x − ln |x − 1| + C (c) ln 4/3 ≈ 0.29

22. (a) U ′(x) = aAe−ax − bBebx (b) Concave for all x. (c) C = aAe−ax∗
= bBebx∗

(d) Hint: U(x) ≈ U(x∗) + U ′(x∗)(x − x∗) + 1
2U ′′(x∗)(x − x∗)2

23. Elx y = a + 2b lnx + c/ lnx. y is defined as a function of x for x > 1.
24. (a) (−1, 0) is local maximum point. (c) Maximum at x = 4

√
2 − 1, y = 1/ 4

√
2.

(d) The minimization problem has no solution.
25. (a) At has an inverse ⇐⇒ t �= −1. I − BAt has no inverse for any t.

(b) X = I − BA1 =

⎛
⎝ 0 0 −1

0 0 −1
−2 −1 0

⎞
⎠

26. (a) f is defined in [−2, 2]. f(x) + f(−x) = 0, so the graph of f is symmetric about

the origin. (b) f ′(x) =
4x2(3 − x2)
3
√

4 − x2
. f increases in [−√

3,
√

3 ] and decreases in

[−2,−√
3 ] and in [

√
3, 2]. (c) See Fig. A.26. (d) g′( 1

3

√
3 ) = 3

√
3/8

27. −1/6
28. (a) g′′(x) = −ae−x(x − 1)(x − 3). g is convex in [1, 3]. (b) g(x) → ∞ as x → ∞.

(e)
dx0

da
=

1 + x2
0

2ex0 + a(x0 − 1)2
(f) 1/2

29. (a) k = b − a (c)
dE

dt
=
(−a

p

dp

dt
+

b

r

dr

dt

)
E (d) b ≥ a

ln 1.06
ln 1.08

30. (a) (x, y) = (−2
√

b, 0) and (x, y) = (4/3,±√b − 4/9 ) solve the maximization and
the minimization problem, respectively.
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31. (a) (i) Homogeneous of degree 4. (ii) Not homogeneous. (iii) Homogeneous of
degree 0.

32. (a) f ′(x) =
e2x(2x2 + 2x + 1)

(x + 1)2
. No local extreme points.

(b) f(x) tends to −∞, ∞, 0, and ∞, respectively. (d) f is concave in (−1, x0).

33. (b) Minimum = −298/3 at (4, 10).

34. X = (B − C)−1(E − A)D−1

35. (a) The system has one degree of freedom.

(b)
dy

dg
=

L′(r)S′
g

D
,

dr

dg
=

−lPS′
g

D
, where D = lP (S′

r − I ′
r) − L′(r)(S′

y − I ′
y).

36. (a) f ′(x) = 1 + (α + β)e−x − 2αe−2x, f ′′(x) = −(α + β)e−x + 4αe−2x.

(b) x̄ = ln
4α

α + β
> 0 because 4α > α + β when α > β. (e) α > β + 1

37. (a) |A| = 1, A2 =

⎛
⎝ 0 1 1

1 1 2
1 1 1

⎞
⎠, A3 =

⎛
⎝ 1 1 2

2 2 3
1 2 2

⎞
⎠.

38. (a) du = −(8/3) dx + (10/3) dy, dv = 2 dx − dy. ∂u/∂y = 10/3, ∂v/∂x = 2.
(b) Δu ≈ du = −2.8/3 ≈ −0.93, Δv ≈ dv = 0.4.

39. (b) (x0, y0) =
( 1

8 (3 +
√

17) , 1
8 (−1 +

√
17)
)

(c) (x0, y0) is a maximum point. Minimum does not exist.

40. (a) x − 2
3

x3 +
1
5

x5 + C (b) a(PL − PN ) − b

2 − α

(
P 2−α

L − P 2−α
N

)
41. (a) f ′

1 = ex+y + ex−y − 3/2, f ′
2 = ex+y − ex−y − 1/2,

f ′′
11 = ex+y + ex−y, f ′′

12 = ex+y − ex−y, f ′′
22 = ex+y + ex−y.

(b) (− 1
2 ln 2, 1

2 ln 2) is the minimum point.

42. (a) |At| = 2t − 4. At has an inverse ⇐⇒ t �= 2. (b) Show that A1 · A−1
1 = I3.

(c)

⎛
⎝ 1 1 1

1 2 1
4 1 2

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝ 2

1
0

⎞
⎠. Solution: x = −5/2, y = −1, z = 11/2.

43.
dX

dN
= g(u) + g′(u)

(
ϕ′(N) − u

)
,

d2X

dN2 =
g′′(u)

N

(
ϕ′(N) − u

)2 + g′(u)ϕ′′(N),

where u =
ϕ(N)

N
.

44. (a) f ′
1(x, y) = e−x/y(y − x), f ′

2(x, y) = e−x/yx(1 + x/y)
(b) Elx f(x, y) = 1 − x/y, Ely f(x, y) = 1 + x/y.
(c) f(x, x) = x2e−1 → ∞ as x → ∞. (d) x = c(1 − 1

2

√
2 ), y = 1

2c
√

2

45. a = −3/4 and b = 3/4. (Then AB = I3.)

46. (a) |A − I| = t − 1. (b) x0 = ± 1√
3

⎛
⎝ 1

−1
1

⎞
⎠ (c) Anx0 = x0 for all n.

47. (a) f ′(x) = −2x + 1 − e−x, f ′′(x) = −2 + e−x. (b) f ′ is strictly increasing
in [−3,− ln 2]. (c) f ′(x) = 0 has exactly two solutions in [−3, 3]. One lies in
(−3,− ln 2) and the other in (− ln 2, 3). (d) The maximum point for f(x) over
[−3, 3] is x = −3, and the maximum value is f(−3) = e3 − 12.

48. (a) (B − I)3 = B3 − 3B2 + 3B − I, etc. (b) A−1 =

⎛
⎝ 1 0 0

−3 1 0
−4 0 1

⎞
⎠
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49. (a) Differentiate the right-hand side. (b) 686/3. (Hint: Substitute u = x2 + 9.)
50. (a) Unique solution when k �= 2 and k �= 3. (b) No solution when k = 3.
51. (a) The necessary conditions are −2x + λy = 0, −2y + λx = 0, 4 − 2z − λ = 0 and

z = xy. (b) (0, 0, 0), (1, 1, 1) and (−1,−1, 1). (c) Δf∗ ≈ λ · 0.1 = 0.2.

52. AA′ =
(

21 11
11 10

)
, |AA′| = 89, (AA′)−1 =

1
89

(
10 −11

−11 21

)
(b) No, AA′ is symmetric for every matrix A, and the inverse of a symmetric matrix
is again symmetric.
(c) The matrix (1/m)1 · X is the 1 × n matrix

( 1
m (x11 + x21 + · · · + xm1), . . . ,

1
m (x1n + x2n + · · · + xmn)

)
, whose ith component, 1

m (x1i + x2i + · · · + xmi), is the
arithmetical mean of the m observations of quantity i.

53. (a) 32/15 ≈ 2.133. See Fig. A.53. The area of the triangle OAB is 2.
(b) Look at the sign of ẋ. ẍ = (1 + x2)(2xt2 + 1) > 0 for all x.

(c) Elx y =
x − ay2

2x + by2

y

1

2

x
1 2

A

B

O

Figure A.53

54. (0, 0) is a saddle point. (5/6,−5/12) is a local maximum point.

55. (a) t = 4, s = −5 (b) X =

⎛
⎝−1/2 0 0 1/6

1/2 3 −3 1/6
1/2 −1 2 1/6

⎞
⎠

(c) D6 = 182D + 183In, D−1 = 1
3D − 2

3In

56. (a) (
√

A, 0), (−√
A, 0), (0,

√
A ) and (0,−√

A ) (b) y′ =
−2xeay

2y + ax2eay

(d) x =
√

2
a

e− 1
2 (1−√

1+a2A )
√√

1 + a2A − 1, y =
(
1 − √

1 + a2A
)
/a

57. (a) f is homogeneous of degree 3. k = 3. (b) y′ = − 2xy

x2 + y2 . The tangent line is

given by y =
4
5

x − 13
5

(c) y′′ = − 78
125

(d) ymin = − 3√13

58. (a) 5t2 −45t+40 (b) Unique solution if t �= 1 and t �= 8. (c) x = 8, y = 3, z = −1
(d) s = −1/4

59. (a) A2 =

⎛
⎝ 0 0 0

0 0 0
20 0 0

⎞
⎠, I3 + A + A2 =

⎛
⎝ 1 0 0

4 1 0
30 5 1

⎞
⎠,

(I3 − A)(I3 + A + A2) = I3. (b) (I3 − A)−1 = I3 + A + A2.

(c) Hint: Show that U2 = nU. (d)
1
10

⎛
⎝ 7 −3 −3

−3 7 −3
−3 −3 7

⎞
⎠
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60. (a) U ′
1(x, y) = A

αxα−1

xα + yα
, U ′

2(x, y) = −A
αxα

y(xα + yα)
,

U ′′
12(x, y) = −A

α2xα−1yα−1

(xα + yα)2
.

(b) U is homogeneous of degree 0. (c) x = 4
√

3b/a (with y = 3√4b ).

61. (a) Differentiation gives the equations

1
x + u

(dx + du) + u dv + v du − 2yev dy − y2ev dv + dy = 0

2u du − xvv

x
dx − xv lnx dv = dv

(b) u′
x = −1 + ln 2

5 + ln 2
, u′

y =
1 + ln 2
5 + ln 2

, v′
x =

2
5 + ln 2

, v′
y = − 2

5 + ln 2
.

(c) u(1.99, 1.02) ≈ u(2, 1) + u′
x(2, 1) · (−0.01) + u′

y(2, 1) · 0.02) ≈ −0.9911.

62. (a) |Aa| = −2a3 − 3a2 + 1 = (a + 1)2(1 − 2a) (b) k = 1/(1 − a − 2a2)

63. (a) Slope: −3/2. Linear approximation: y(x) ≈ −3
2x + 3

2 .

(b)
∂p

∂r
=

L

F (L)
,

∂p

∂B
=

1
F (L)

,
∂L

∂r
=

F (L) − LF ′′(L)
pF (L)F ′′(L)

,
∂L

∂B
= − F ′(L)

pF (L)F ′′(L)
.

(c) Since F (L) = (rL + B)/p > 0, F ′(L) > 0, and F ′′(L) < 0, it follows that
∂p/∂r > 0, ∂p/∂B > 0, ∂L/∂r < 0 and ∂L/∂B > 0.

64. fmax = f(0, 1) = 1.

65. (a) 4e−1 −6e−2. (Hint: Substitute u =
√

t.) (b) X = 2A−1C−D, Y = AD−C.

66. Unique solution when a �= −9 and a �= 2. Solutions with 1 degree of freedom when
a = −9. No solutions when a = 2.

67. (a) Elx y = xy/(1 − 2y). (b) Differentiation yields the equations

αuα−1 du + βvβ−1 dv = 2β dx + 3y2 dy

αuα−1vβ du + uαβvβ−1 dv − βvβ−1 dv = dx − dy

At P ,
∂u

∂x
=

2−β

α
,

∂u

∂y
= −2−β

α
,

∂v

∂x
=

2β − 2−β

β2β−1 ,
∂v

∂y
=

2−β + 3
β2β−1 .

(c) u(0.99, 1.01) ≈ u(1, 1) + u′
x(1, 1) · (−0.01) + u′

y(1, 1) · 0.01, and so on.

68. (a) h is strictly increasing in (−∞, 1
2 ln 2 ] and strictly decreasing in [12 ln 2,∞).

x = 1
2 ln 2 is a maximum point.

(b) The inverse function is h−1(x) = ln(1 − √
1 − 8x2 ) − ln(2x), x ∈ (0, 1

3 ).
(c) No. If, for example, g(x) = ex/(1 + ex), then f ′(x) > 0 for all x.

69. (a) |At| = 2(t + 1) (b) x = 3/2, y = s − 1/2, z = s, s ∈ R

70. (a) f ′
1 = 2x(xy + 1) + (x2 + y2)y, f ′

2 = 2y(xy + 1) + (x2 + y2)x,
f ′′
11 = 6xy + 2, f ′′

12 = f ′′
21 = 3x2 + 3y2, f ′′

22 = 6xy + 2
(b) (0, 0) is a local minimum point and the others are saddle points.
(c) Maximum a2(1 + 1

2a2) at ( 1
2a

√
2, 1

2a
√

a ) and at (− 1
2a

√
2,− 1

2a
√

a ).

71. (a) Area = 16(2 ln 2 − 1) ≈ 6.18 (b) aa(ln a − 1)

72. (a) |A| = (a − 1)(a − 2) (b) Unique solution if and only if a �= 1 and a �= 2. For
a = 1 there is no solution, for a = 2 there are infinitely many solutions. (c) a = 2
and b1 = b2, or a = 1 and b1 − b2 + b3 = 0 (d) Take the determinant of each side.

73. Maximum = 1 at (3/
√

10,−1/
√

10, 0) and at (−3/
√

10, 1/
√

10, 0).
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74. (a) π(x, y) = px − (cx + y + d). Then use p = −x/a + b/a + R(y)/a.

(c)
∂y∗

∂b
=

−R′(y∗)
(b − ac)R′′(y∗) + (R′(y∗))2 + R(y∗)R′′(y∗)

(d) x∗ =
2a(b − ac)
4a − α2 , y∗ =

α2(b − ac)2

(4a − α2)2

75. (a) One would expect f ′(y) to be negative, for if investment in special machines
is increased, workers’ salary per unit produced should decrease. One would also
expect f ′′(y) > 0, because the decrease in workers’ salary per unit will become
gradually less as investment in special equipment is increased. Annual net profits:
π(x, y) = −bx2 + (a − r)x − d − ky − xf(y). π′

1 = −2bx + (a − r) − f(y), π′
2 =

−k − xf ′(y), with π′
11 = −2b, π′

12 = π′
21 = −f ′(y), π′

22 = −xf ′′(y).
(b) Use the first-order conditions. (c) 2bk(y + β)3 − α(a − r)(y + β) + α2 = 0

(d)
dy

dk
=

2b

(f ′(y))2 + f ′′(y)(f(y) − (a − r))
76. (a) |At| = 2t2 − 2t + 1 �= 0 for all t, so A−1

t exists for every t.

(b) For t = 1, A−1
1 = A2

1 =

⎛
⎝−1 −1 −1

2 1 1
−2 −1 0

⎞
⎠

77. (i) 447/14. (Hint: Substitute u = (2 + x)1/3.)
(ii) 3x2/3ex1/3 − 6x1/3ex1/3

+ 6ex1/3
+ C. (Hint: Substitute u = 3

√
x.)

78. x =
1
a

ln
(√

A2 + 4a2c − A

2a

)
, y =

1
b

ln
( 2ac√

A2 + 4a2c − A
− 1
)

79. (a) Elx y = 2/(9e) − 1/3 ≈ −0.25, Elx z = −1 − 2/(3e) ≈ −1.25.
(b) If x increases from 1 to 1.1, i.e. with 10 %, then y decreases by about 2.5 % and
z decreases by about 12.5 %.

80. (a) g′(x) = (a − 1)(1 − cax−a), g′′(x) = a(a − 1)cax−a−1.
limx→0+ g(x) = ∞, limx→∞ g(x) = ∞.

(b) gmin = g(c) = a(c − 1).
(c) Use the intermediate value theorem.

81.
∫

dv

1 − v2 =
1
2

ln
∣∣∣∣1 + v

1 − v

∣∣∣∣+ C∫
dx√

1 − e−x
= ln

(
1 +

√
1 − e−x

1 − √
1 − e−x

)
+ C1. (Hint: Substitute u =

√
1 − e−x.)

82. (a) |Aa| = 2a3 − 6a2 + 6 and A2
a =

⎛
⎝ 2a2 + 1 a2 + 3a a2 + 4a

a2 + 3a 2a2 + 4 a2 + 5a
a2 + 4a a2 + 5a 2a2 + 9

⎞
⎠

(b) The system has a unique solution if and only if |Aa| �= 0, i.e. if and only if
2a3 − 6a2 + 6 �= 0. For a = 3 the solution is x1 = 1, x2 = 1, x3 = −1.
(c) x1 = x2 = · · · = xn−1 = 1, xn = 2 − n. (d) A−1 = CB.

83. (a) x1 = (m + 18p1 − 5p2 − 4p3)/4p1, x2 = (m − 6p1 + 5p2 − 4p3)/2p2,
x3 = (−6p1 − 5p2 + 12p3)/4p3.

(b) U∗ = −3 ln 4 − ln p1 − 2 ln p2 − ln p3 + 4 ln(m − 6p1 − 5p2 − 4p3),
∂U∗/∂m = 4(m − 6p1 − 5p2 − 4p3)−1 = λ. (c) ΔU∗ ≈ λΔm = 0.1 · 1 = 0.1.

84. (a) K̇ = γKα(βt + L0) (b) K =
(
(1 − α)γ

(
β
2 t2 + L0t

)
+ K1−α

0

)1/(1−α)

85. x = ±1 are (global) minimum points, x = 0 is a local maximum point.
86. (a) (x, y, z) = (4, 0, 0) gives the maximum, while all points (x, y, z) = (−1, y, z) with

y2 + z2 = 15/2 give the minimum. (b) The maximum point is the same as in (a).
Minimum at (x, y, z) = (−1/2, 0, 0).
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87. (a) |Aa| = (a + 1)(a − 1)(a − 2). (b) The system has a unique solution if and only
if |Aa| �= 0, i.e. if and only if a �= ±1 and a �= 2. If a = 1 and b �= 2, the system
has no solution. If a = 2 and b �= 12, the system has no solution. (c) |3A3| = 216,
|A5A

−1
4 A2

3| = 768/5.

88. (a) (i) −6e−x/2(x + 2) + C. (Hint: Integration by parts.) (ii) 10 − 18 ln(14/9).
(Hint: Substitute u = 9 +

√
x.) (iii) 886/15. (Hint: Substitute u =

√
t + 2.)

(b) x(t) =
B

2t − a
e−a/(2t−a), where B is a constant.

89. (a) z′
1(e, e) = 1/2, z′′

11(e, e) = 11/(16e) (b) y′ = 1/(F ′(0) + 1)

90. (a) f ′(x) = 4x(1 − 1
2a − x2)e−x2−a. For a < 2, f has three stationary points: x = 0

and x = ±√1 − a/2. For a ≥ 2, x = 0 is the only stationary point.
(b) The graph is symmetric about y-axis, since f(−x) = f(x) for all x. f(x) tends
to 0 as x → ±∞. (c) M(a) is largest for a = 0.
(d) Only stationary point: (0, 1). The maximum value is 2e−1, attained at (±1, 0).

91. (a) 9. (Hint: Substitute u = x2 + x + 2.) (b) Hint: The equation is separable.

92. (a) y′ = 7.

(b)
dx

dz
=

1
D

[
2z
(
xey + f(z)

)− xyf ′(z)
∂g

∂y

]
,

dy

dz
=

1
D

[
yf ′(z)

(
g + x

∂g

∂x

)
− 2zey

]
,

where D =

∣∣∣∣∣∣
ey xey + f(z)

g + x
∂g

∂x
x

∂g

∂y

∣∣∣∣∣∣ = xey ∂g

∂y
− (xey + f(z)

)(
g + x

∂g

∂x

)
.

93. (a) Unique solution for a �= 3.
(b) X = (A − I)−1CB−1. With the given values for A, B and C we get

(A − I)−1 =
(

1/2 1/2
1/2 −1/2

)
, B−1 =

⎛
⎝ 1 0 0

0 2 0
0 0 4

⎞
⎠, X =

(
0 4 6
1 −2 2

)
.

94. (a) ln
∣∣∣∣
√

u − 1√
u + 1

∣∣∣∣+ C. (b) ln
∣∣∣∣
√

ey + 1 − 1√
ey + 1 + 1

∣∣∣∣+ C.

95. (a) |A3(t)| = −t3 + 3t2 − 4t + 2, |A4(t, a)| = t4 − 3t3 + 4t2 − 2t − a.
(b) Solution if and only if b1 − 2b2 + 2b3 = 0. One degree of freedom.
(c) P2, P + P and P′ are all invertible. P + P′ is not necessarily invertible.

96. (a) y′ = − y + 2
x + 2y + 2

, y′′ =
2(y + 2)(x + y)
(x + 2y + 2)2

.

(b) x∗ = 5/3 − m/24, y∗ = m/8 − 1, λ = m/48 + 1/6. (c) dU∗(20)/dm = 7/12.
(d) For m ≤ 8, x∗ = m/6 and y∗ = 0. For m ≥ 40, x∗ = 0 and y∗ = m/10.

97. (a) Vϕ = [− ln 2, 0) (b) ϕ−1(x) =
2ex − 1
1 − ex

for x in [− ln 2, 0).

(c) (ϕ′)−1(x) = −3
2

+

√
1
4

+
1
x

.

98. (a) t �= −1 (b) I3 − BAt =

⎛
⎝ 0 0 −t

0 0 −1
−2 −1 1 − t

⎞
⎠ has no inverse for any value of t.

X = I3 − BA1 =

⎛
⎝ 0 0 −1

0 0 −1
−2 −1 0

⎞
⎠ (c) Y =

(
1 0 2

−1 2 1

)

99. y′ = −y/x, y′′ = 2y/x2
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100. (a)
2x2n+1/2

4n + 1
− 4xn+m+1/2

2n + 2m + 1
+

2x2m+1/2

4m + 1
+ C (b) 1

3 − ln(e1/3 + 1) + ln 2.

(c) The solution is given implicitly by
3

5a2 (ax+ b)5/3 − 3b

2a2 (ax+ b)2/3 =
1
3
t3 +C,

where C is a constant. The left-hand side of this equation can also be written as
3x

2a
(ax + b)2/3 − 9

10a2 (ax + b)5/3 or
3

10a2 (ax + b)2/3(2ax − 3b). The differential

equation also has the constant solution x ≡ −b/a (provided b �= 0).

101. (a) The Hessian is H =
(

4(1 − ρ2)y2 − 6 8(1 − ρ2)xy + 2ρ

8(1 − ρ2)xy + 2ρ 4(1 − ρ2)x2 − 6

)
.

If ρ = ±1, f has only (0, 0) as a stationary point, and it is a maximum point.

(b) x0f
′
1(x0, y0) − y0f

′
2(x0, y0) = −6x2

0 + 6y2
0 .

(c) (0, 0), (p, p), (−p, −p), (q, −q), (−q, q), with p =

√
3 − ρ

2(1 − ρ2)
, q =

√
3 + ρ

2(1 − ρ2)
.

102. (a) |A| = −a(a − 1)2 (b) a = b = 1 (c) B exists if and only if a �= 1.

103. (a) V (x) = Ae−ax − b/a. (b) With 20 liters, the car can drive 10 ln(27/7) ≈ 13.5
miles. In order to drive 15 miles, the car must start with at least 7e1.5 − 7 ≈ 24.37
liters.

104. (i) 1/5. (ii) 7 + 2 ln 2.

105. (a) y′ = 3. (b) Hint: The curve cuts the x-axis at points where y = 0, and there
we must have e−x = x + 2.

106. (a) With the Lagrangian L(x, y, z) = xyz −λ(x+ y + z − 5)−μ(xy +xz + yz − 8),
the necessary first-order conditions are

L′
1(x, y, z) = yz − λ − μ(y + z) = 0(1)

L2(x, y, z) = xz − λ − μ(x + z) = 0(2)
L3(x, y, z) = xy − λ − μ(x + y) = 0(3)

(c) The maximum value of f(x, y, z) is 112/27, which is attained at the three points
(7/3, 4/3, 4/3), (4/3, 7/3, 4/3), (4/3, 4/3, 7/3), all with λ = −16/9 and μ = 4/3.
(d) Δf∗ ≈ λ · 0.01 + μ(−0.01) = − 28

9 · 0.01 ≈ −0.031.

107. (a) f ′(x) = ex−3/(2 + ex−3) > 0. Vf = (ln 2,∞). (b) g(x) = 3 + ln(ex − 2) for all
x > ln 2. (Dg = Vf .) (c) f ′(3) = 1/3, g′(ln 3) = 3.

108. (a) |A| = (q − 2)(p + 1), |A + E| = 2(1 − p)(2 − q).

AE =

⎛
⎝ 2q − 3 2q − 3 2q − 3

3 − 2p 3 − 2p 3 − 2p
1 1 1

⎞
⎠

(b) A + E has an inverse if and only if p �= 1 and q �= 2. |BE| = 0, so BE has no
inverse.

(c)

⎧⎪⎨
⎪⎩

p �= −1 and q �= 2 : No solution.
p = −1 : Unique solution.
p = 1/2 : No solution.
p �= 1/2 and q = 2 : Unique solution.

109. (a) 195/4. (Hint: Substitute u = 3
√

19x3 + 8.) (b) x = (2e1−e−3t − 1)1/3

110. (a) f attains its maximum value fmax = 17/16 at (±√
15/4, 0, 1/8) (with λ = 1)

and its minimum value fmin = −1/2 at (0, 0,−1/2) (with λ = −1/4).

(b) Δfmax ≈ λ · 0.02 = 0.02.
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111. x =
( 4

ϕ(t)2
− 9
)1/3

, where ϕ(t) = t ln t − t + 2/3.

112. (a) 30. (b)
∫ 10
0 (1 + 0.4t)e−0.05t dt = 180 − 260e−0.5 ≈ 22.302.

113. Elx y =
3 + px

x + a

3 − qy
y + b

.

114. (a) Solution(s) if and only if −3b1 + b2 − b3 = 0. 1 degree of freedom.
(b) No, then A would have to be the zero matrix.

(c) C =

⎛
⎝−5s −5t −5u

14s 14t 14u
11s 11t 11u

⎞
⎠, where s, t and u are not all 0.

115. There are three solutions of the first-order conditions: (x1, y1, z1) = (0, 0, ln
√

6),
(x2, y2, z2) = (1, 1

2 , ln 2), (x3, y3, z3) = (−1,− 1
2 , ln 2), with λ1 =

√
6/12 and λ2 =

λ3 = 1/4, respectively. fmax = 5/2 attained at (x2, y2, z2) and at (x3, y3, z3).
(b) Δf∗ ≈ 1

4 · 0.1 = 0.025. (c) No.

116. (a) f ′(x) = 2(e2x + ae−x)(2e2x − ae−x), f ′′(x) = 16e4x + 2aex + 4a2e−2x

(b) If a > 0, then f is increasing in [13 ln(1
2a),∞); if a < 0, then f is increasing in

[ 13 ln(−a),∞). (c) If a > 0, then x = 1
2 ln(1

2 )a is a minimum point, and if a < 0,
x = 1

3 ln(−a) is a minimum point. (d) Minimum at x = 1.

117. −1/2.

118. (a) 2 ln(1 + e
√

x ) + C. (Hint: Substitute u = 1 + e
√

x.)
(b) (8e3 + 4)/9. (Hint: Integration by parts.)

119. 4
√

x − 4.

120. (a) x = Ce−2t + 1. (b) w(t) = −e−2t + t + 1.

121. (a) fmax = f(4,
√

3 ) = e4
√

3. (b) 0.5 %.
y
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Figure A.122

122. (a) f ′(x) = 2x2e−x2
( 3
2 − x2), f ′′(x) = 2xe−x2

(3 − 7x2 + 2x4)
(b) f(−x) = −f(x). limx→∞ f(x) = 0. (c) (Global) minimum point at x =
−√

6/2, (global) maximum point at x =
√

6/2. (x = 0 is an inflection point, not
an extreme point.) See Fig. A.122. (d)

∫
f(x) dx = 1

2

(−x2e−x2 − e−x2)
+ C,∫∞

0 f(x) dx = 1
2 . (e) The two areas are shown in Fig. A.122. Since the graph

is symmetric about the origin, these two areas must be equal. Alternatively, we
can use the identity f(−x) = −f(x) and the substitution t = −x to show that∫ −a

−b
f(x) dx = − ∫ b

a
f(t) dt.

123. (a) 12
√

3 − 44/3. (b) a2 ln a.
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124. (a) Unique solution for p �= 3. For p = 3 and q �= −1 there is no solution.
For p = 3 and q = −1 there are solutions with 1 degree of freedom.
(b) x1 = t + 3, x2 = −2t − 4, x3 = t, where t is arbitrary.
(c) 1. (d) Hint: (I − A)(I + A + A2 + A3) = I − A4.

125. (a) f ′
1(x, y) = ye4x2−5xy+y2

(8x2−5xy+1), f ′
2(x, y) = xe4x2−5xy+y2

(2y2−5xy+1).
(b) Stationary points: (0, 0), ( 1

2

√
2,

√
2), (− 1

2

√
2,−√

2). f(x, 1) → ∞ as x → ∞,
f(x, 1) → −∞ as x → −∞. (c) y′ = 2.

126. (a) x = 1 is a minimum point. No maximum exists.
(b) 32/3 − 4 ln 3. (Hint: Substitute u =

√
x + 1.)

127. (a) 3 − 6/e. (Hint: Integration by parts.) (b) x = 5
√

3e−t + 1, ẋ(0) = −15/4

128. (a) 4a2 + 3 (b) If a �= 0 and a �= 1, one degree of freedom. If a = 0, two degrees
of freedom. If a = 1, no solutions. (c) A4B = A2(A2B) = A2(AB), etc.

129. (a) Only possible solution: (x, y, z) = (0,−1/2, 3/2). (b) Eliminate z from the
constraints and show that x and y must be bounded. Then show that z must also
be bounded. Moreover, the set of admissible points is closed. (It is a curve in R

3.)

130.
dy

dx
=

−2(e + 1)
e + 2

,
dz

dx
=

−2e

e + 2
, Elx y =

−2(e + 1)
e + 2

131. (a) |A| = a3 − 2a2 + a = a(a − 1)2, A2 =

⎛
⎝ 2a2 + 1 2a2 + a a2 + 2a

2a2 + a 3a2 2a2 + a
a2 + 2a 2a2 + a 2a2 + 1

⎞
⎠

(b) If a �= 0 and a �= 1, then |A| �= 0, and the unique solution is x = y = z = 0,
with 0 degrees of freedom. For a = 0, there is one degree of freedom. For a = 1,
there are two degrees of freedom. (c) For a = 1, the solution is x = 1 − t − s,
y = t, z = s, where s and t are arbitrary. For a = 0, we have x = 1 and z = 1,
with y arbitrary. For a �= 0 and a �= 1, the solution is x = 1 + a, y = −a − 2 and
z = 1 + a.

132. For a �= 0, (1, 0) is a local minimum point and (1 − a3, a2) is a saddle point. For
a = 0, (1, 0) is a saddle point. (The second-derivative test does not apply when
a = 0.)

50

100

150

t
2 4 6 8 10

fg

Figure A.133

133. (a) See Fig. A.133. (f has maximum 4000/27 ≈ 148 at t = 20/3. g has maximum
4000/27 at t = 10/3.) (b)

∫ t

0

(
g(τ) − f(τ)

)
dτ = 1

2 t2(t − 10)2 ≥ 0 for all t.
(c)
∫ 10
0 p(t)f(t) dt = 940 + 11 ln 11 ≈ 966.38,

∫ 10
0 p(t)g(t) dt = 3980/3 − 121 ln 11 ≈

1036.52. Profile g should be chosen.

134. (a) x = 1
5 (2e−4t + 3et)

(b) x = 1
3 ln
(
6
√

t + 8 − 18 ln(3 +
√

t + 8 ) + C
)
, C = 18 ln 6 − 17.
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135. (a) f ′(x) =
−4(x − 2)(x + 1

2 )
(x2 + 1)2

. ( 1
2 ,−3) is a local minimum point, and (2, 2) is a

local maximum point. (b) f(x) → 1 as x → ±∞. See Fig. A.135a.
(c) F (x) is defined when f(x) > 0, i.e. when x >

√
6 − 2 and when x < −√

6 − 2.
The range of F is (−∞, ln 2]. See Fig. A.135b.

136. (a) k = 3
√

36π ≈ 4.84 (b) M(t) = (1 − 1
3st)3. (c) s = 1

25 (1 − 2−1/3). It takes
75/(1 − 2−1/3) ≈ 364 days before the mothball is fully evaporated.

137. (a) 1 + ln 9
4 (b) 1

2 . (Hint: Substitute u = 1 +
√

x.)
138. (a) (x, y, z) = (1, 0, 0) (b) Δf∗ ≈ λ1 ·(0.02)+λ2 ·(−0.02) = 0.01(3−e) ≈ 0.0028.
139. (a) |Aa| = (a − 1)(a − 2), so A has an inverse if and only if a �= 1 and a �= 2.

(b) A−1
0 = 1

2

⎛
⎝−3 4 5

1 −2 −1
1 0 −1

⎞
⎠

(c) X = 2A−2DB−1 − A−1C and Y = A−1C − A−2DB−1.
140. (a) (1

2 , ln 2 − 3
2 ) is a (global) minimum. (b) Use the intermediate value theorem.

See Fig. A.140a. (c) x = 1/2 is a local (but not global) maximum point for g.
(d) See Fig. A.140b.
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141. (a) f ′
1(x, y) = xey − x2, f ′

2(x, y) = 1
2x2ey − e3y − 3ye3y,

f ′′
11(x, y) = ey − 2x, f ′′

12(x, y) = xey, f ′′
22(x, y) = 1

2x2ey − 6e3y − 9ye3y

(b) (0,− 1
3 ) is a saddle point, (e−1/6,− 1

6 ) is a local maximum point. There are no
(global) extreme points. (Consider f(x, 0) as x → ±∞.)
(c) y′ = −f ′

1(2, 0)/f ′
2(2, 0) = 2

142. (a) |A| = 0 (b) The system has solutions if and only if 3b1 − 3b2 + b3 = 0. (Use
Gaussian elimination.)

143. (a) x(t) = 2e−2t − e−4t (b) k(t) =
(
k0 +

a

α

)
e(2αs/3)[(t+1)3/2−1] − a

α
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