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Problem 1

(a) Cofactor expansion gives
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(We expand the original matrix along the first row, and the two determinants of
order 3 are expanded along the second and third rows, respectively.)
The matrix A; has an inverse if and only if |A| # 0, i.e. if and only if ¢ # 2.

(b) Direct calculation yields

001 1 001 1
110 —1 110 -1

ActAs=11 04 o]Tl10s o
010 1 010 1
00 2 2 0 0 1 1
2 2 0 -2 11 ~1
=12 0 t4s 02 1 0 (t+s)/2 0 = 2A(19)/2
02 0 2 0 1 0 1

Since this is a 4 x 4 matrix, the result in part (a) implies that
|As+ Ayl =24 Ap1)2] = 16((t+5)/2 —2) =8t +8s — 32.

(c) Since |A¢| # 0 for all ¢ # 2, Cramer’s rule tells us that the equation system
has a (unique) solution for such ¢. With ¢t = 2, Gaussian elimination yields

0 0 1 1 1 10 2 0 1
I 1.0 -1 1]+« 101 -2 -1 0} -1
102 0 1] -1 00 1 11 J
0 1 0 1 1 0 1 0 1 1
10 2 0 1 10 2 0 1
01 -2 -1 0 0o 1 -2 -1 0
“"loo 1 11) 2100 1 1 1
00 2 2 1/ «! 00 0 0 -1
The last row in the final matrix corresponds to the impossible equation 0 = —1,

so in this case the equation system has no solution.
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Of course, we could start solving the system in a more or less systematic way
without using formal Gaussian elimination, but the result would be the same: we
would get an impossible equation, and so the given system has no solution if t = 2.

Problem 2
Taking differentials, we get the equations
eydr+e*dy+du—dv=0
dx — e“2+”(2 du+dv)+dy =0
Inserting the values of the variables at the point Py, we get

dy+du—dv=0 du — dv = —dy
— 1
dr —e(2du+dv) +dy =0 2du +dv = < (dv + dy)

Solving these equations for du and dv yields

1 1—e 1 2e+1
du=—d d dv=—d dy .
Y= 3 T 30 W T30 T 3¢ WY
Hence,
u'—l u,_l—e U,_l U,_2€—|—1
T3’ Y 3¢ 7 T 37 Y 3¢

(Instead of taking differentials we could have used implicit differentiation with
respect to each of x and y in the “usual” way, but that would lead to a little more
work.)

(The problem only asks for the values of the partial derivatives of u and v at
the particular point Py, but it is likely that some students look for the values at
a general point that solves the given equation system. The values of the partial
derivatives at such a point are

, U Y _ e:c,y ) e~ U —v e~
u,. = =, u. = _—
v 3 Y 3
2 2
) e U —v4_2€my , e U —U4_26x
UZE - 3 y /Uy = —3

But there is hardly any reason to give extra credit for calculating these expres-
sions.)
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Problem 3
The stationary points are where

10
T+ 2y

fi(z,y) = +1—-3x+6y=0 (1)

and

f5(x,y) —2246x=0. (2)

:a;—l—Qy

Equation (1) implies 10/(z + 2y) = 3z — 6y — 1, and if we insert this in equation
(2) we get

23— 6y —1) — 22462 =0 <= 120 — 12y =24 = z=y+2.
Hence (equation (1) again),

10
3y + 2

+3y—5=0 < 10+ By+2)By—5)=0 < 9> -9y =0,

which has the solutions y; = 0 and y» = 1. Thus, the stationary points are
(z1,91) = (2,0) and (22,y2) = (3,1).

To determine the nature of the stationary points we shall use the second-
derivative test. The various second derivatives of f are

10 20

3, {é(xvy)::'_(
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:15'—}—23;)2+ ’
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X, = = —
11( y) (113'-}—23/)2

40
12 -
22(xay) - (:1: + 2y)2 .

With A = fill(:l%y)a B = f{/Q(xay)7 and C' = féIQ(xay)7 the test gives

Point A B C AC — B? Result
11 .
(2,0) 5 1 —-10 54 Local max. point
17 26 8 108
| =L | 2| 22 _=° le poi
(3,1) 3 F E = Saddle point
3
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Problem 4

(a) We use formula (5) on page 334 in EMEA (page 13 in MA II) with a = —1
and b(t) = e' — t, and get

z=Ce' + ¢ /(1 —te” ") dt. (%)
To evaluate the integral we use integration by parts on the second term:
l/kl—ie_ﬁch::t—l/}e_tdt::t+¢e_t—l/ﬁffidt::t+¢e_ﬁ+e_t (+ const.)

(The constant of integration is already taken care of by C in (x).) Inserting this
integral into (%) we get
z=Ce +te' +t+1.

(b) The solution will pass through (tg,z¢) = (1,2) if and only if C' is such that
2=Ce+e+1+1, ie. C=-1.

Thus the desired solution is z = (t—1)e* +¢+1, and K is the graph of this solution
in the tz-plane. The derivative of x is @ = te! + 1, so the slope of the tangent to
K at (to,x9) = (1,2) is a = e + 1. Hence the equation of the tangent is

x—2=(e+1)(t—1) or,equivalently, == (e+1)t—e+ 1.
A point (¢,z) belongs to both K and this tangent if and only if
r=(t—1)e" +t+1 and z=(e+1)t—ec+1.
These equations imply

t—1e'+t+1=(e+1)t—e+1l=(t—1e+t+1
— (t-Def=(t—-1)e <= ({—-1)(c"—¢e)=0.
The last equation is satisfied for ¢ = 1 but not for any other value of ¢. (For if

t # 1, then e' # e too, and then (t — 1)(e! —e) # 0.) Thus (¢,z) = (1,2) is the
only point that lies on both K and the tangent we found above.

M2xh08fasit 11.12.2008 890



