Mathematics 2 - sample problem set for December 7th 2011

- For this problem set, take the Autumn 2010 set (which is part of this PDF file) and remove problem 3. Instead
- Do one of the two below given problems. The first is taken from Spring 2008 if you have seen it already, I suggest that for a more realistic exam-alike setting, you do the second alternative.
- Both these problems (in addition to the entire Autumn 2010 set) will be reviewed in the December 7th lecture.

Problem 3, alternative (I) taken from Spring 2008 problem 1 Let for each d the matrix \mathbf{A}_{d} be given by

$$
\mathbf{A}_{d}=\left(\begin{array}{ccccc}
d^{2} & 1 & 2 & 3 & 4 \\
0 & -1 & 5 & 6 & 7 \\
0 & 0 & d^{2}+1 & 8 & 9 \\
0 & 0 & 0 & -1 & 10 \\
0 & 0 & 0 & 0 & d^{2}
\end{array}\right)
$$

(a) Calculate $\left|\mathbf{A}_{d}\right|$ and show that the nth power \mathbf{A}_{d}^{n} has an inverse if and only if $d \neq 0$.
(b) Consider the equation system

$$
\mathbf{A}_{d}^{2008} \mathbf{x}=\left(\begin{array}{l}
d \\
d \\
d \\
d \\
d
\end{array}\right)
$$

where \mathbf{x} is a vector $\left(x_{1}, \ldots, x_{5}\right)^{\prime}$ of five unknowns and \mathbf{A}_{d}^{2008} is the 2008th power of \mathbf{A}_{d}.
(i) For what values of d will the equation system have a unique solution?
(ii) Show that there always is a solution.

You may use the result given in part (a) no matter whether you managed to show it or not.

Problem 3, alternative II Define for $x \geq 0, y \geq 0$ the function $F(x, y)=x y+y^{1 / 4}$.
(a) The equation $F(x, y)=C$ defines y as a function of x. Find an expression for the elasticity of y with respect to x.
(b) Find an expression for the elasticity of substitution.

ECON3120/ECON4120 Mathematics 2

Monday December 13 2010, 09:00-12:00
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators. Grades given run from A (best) to E for passes, and F for fail.

You are required to state reasons for all your answers. Throughout the problem set, you are permitted to use without proof information given in a previous part (e.g. in problem 3 (b), you can use the information given in part (a), regardless of whether you managed to solve it or not).

Problem 1 Let r be a constant, and consider the differential equation

$$
\dot{x}(t)+2 x(t)=t e^{-r t} .
$$

(a) Find the general solution.
(b) For each of the values $r_{1}=-e$ and $r_{2}=e$ for the constant r, find the particular solution which passes through the origin, and check whether it tends to a limit as $t \rightarrow+\infty$.

Problem 2 (Part (b) will have more weight than part (a) when grading.)
Assume that the equation system

$$
\begin{aligned}
y+2 x-s+t e^{-t}+1 & =0 \\
x+y+e^{y+s}-\ln \left(1+t^{2}\right) & =0
\end{aligned}
$$

defines x and y as continuously differentiable functions of (s, t).
(a) Differentiate the equation system (i.e. calculate differentials).
(b) Find expressions for x_{s}^{\prime} and x_{t}^{\prime} and show that $x_{s t}^{\prime \prime}=0$.

Problem 3 (Part (b) will have less weight than part (a) when grading.)
Throughout this problem, k will be a fixed positive integer, A will be an $n \times n$ matrix, and \mathbf{I} will be the identity matrix of the same order. Define

$$
\mathbf{B}=\mathbf{I}-\mathbf{A} \quad \text { and } \quad \mathbf{C}=\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+\cdots+\mathbf{A}^{k}
$$

(a) Calculate the product $\mathbf{B C}$ and show that \mathbf{C} is the inverse of \mathbf{B} if and only if $\mathbf{A}^{k+1}=\mathbf{0}$.
(b) If \mathbf{C} is the inverse of \mathbf{B}, what do we then know about the number of solutions of the equation system $\mathbf{A x}=\mathbf{0}$? (Here, \mathbf{x} is the unknown.)

Problem 4 Let $f(x, y)=x y \ln (1+x y)$, and consider the problems

$$
\begin{array}{lll}
\max f(x, y) & \text { subject to } & (x-1)^{2}+(y-1)^{2} \leq 1 \\
\text { max } f(x, y) & \text { subject to } & (x-1)^{2}+(y-1)^{2}=1 \tag{L}
\end{array}
$$

(Notice «ธ» in (K) and «=» in (L).)
(a) Show that each of these problems has a solution, and state the Kuhn-Tucker conditions associated to problem (K) and the Lagrange conditions associated to problem (L).
(b) For each of the three points $(0,1),\left(1-\frac{1}{2} \sqrt{2}, 1-\frac{1}{2} \sqrt{2}\right)$ and $\left(1+\frac{1}{2} \sqrt{2}, 1+\frac{1}{2} \sqrt{2}\right)$, show that it satisfies the Lagrange conditions associated to problem (L), and check whether it satisfies the Kuhn-Tucker condition associated to problem (K).
(c) It can be shown - but you are not supposed to do so - that problem (L) has solution for the point $(x, y)=(q, q)$, where $q=1+\frac{1}{2} \sqrt{2}$. Find an approximation for the maximum value of f subject to the constraint $(x-1)^{2}+(y-1)^{2}=0.98$. You can express the answer in terms of q and/or $f(q, q)$ without calculating these quantities.

