ECON3120/ECON4120 Mathematics 2

Monday December 13 2010, 09:00–12:00

There are 2 pages of problems to be solved.

All printed and written material may be used, as well as pocket calculators.

Grades given run from A (best) to E for passes, and F for fail.

You are required to state reasons for all your answers. Throughout the problem set, you are permitted to use without proof information given in a previous part (e.g. in problem 3 (b), you can use the information given in part (a), regardless of whether you managed to solve it or not).

Problem 1 Let r be a constant, and consider the differential equation

$$\dot{x}(t) + 2x(t) = te^{-rt}.$$

- (a) Find the general solution.
- (b) For each of the values $r_1 = -e$ and $r_2 = e$ for the constant r, find the particular solution which passes through the origin, and check whether it tends to a limit as $t \to +\infty$.

Problem 2 (Part (b) will have more weight than part (a) when grading.) Assume that the equation system

$$y + 2x - s + te^{-t} + 1 = 0$$
$$x + y + e^{y+s} - \ln(1+t^2) = 0$$

defines x and y as continuously differentiable functions of (s,t).

- (a) Differentiate the equation system (i.e. calculate differentials).
- (b) Find expressions for x'_s and x'_t and show that $x''_{st} = 0$.

Problem 3 (Part (b) will have less weight than part (a) when grading.) Throughout this problem, k will be a fixed positive integer, \mathbf{A} will be an $n \times n$ matrix, and \mathbf{I} will be the identity matrix of the same order. Define

$$\mathbf{B} = \mathbf{I} - \mathbf{A}$$
 and $\mathbf{C} = \mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^k$

- (a) Calculate the product **BC** and show that **C** is the inverse of **B** if and only if $\mathbf{A}^{k+1} = \mathbf{0}$.
- (b) If C is the inverse of B, what do we then know about the number of solutions of the equation system $\mathbf{A}\mathbf{x} = \mathbf{0}$? (Here, \mathbf{x} is the unknown.)

Problem 4 Let $f(x,y) = xy \ln(1+xy)$, and consider the problems

$$\max f(x,y)$$
 subject to $(x-1)^2 + (y-1)^2 \le 1$ (K)

max
$$f(x,y)$$
 subject to $(x-1)^2 + (y-1)^2 = 1$ (L)

(Notice \leq in (K) and \leq in (L).)

- (a) Show that each of these problems has a solution, and state the Kuhn–Tucker conditions associated to problem (K) and the Lagrange conditions associated to problem (L).
- (b) For each of the three points (0,1), $(1-\frac{1}{2}\sqrt{2},1-\frac{1}{2}\sqrt{2})$ and $(1+\frac{1}{2}\sqrt{2},1+\frac{1}{2}\sqrt{2})$, show that it satisfies the Lagrange conditions associated to problem (L), and check whether it satisfies the Kuhn–Tucker condition associated to problem (K).
- (c) It can be shown but you are not supposed to do so that problem (L) has solution for the point (x,y)=(q,q), where $q=1+\frac{1}{2}\sqrt{2}$. Find an approximation for the maximum value of f subject to the constraint $(x-1)^2+(y-1)^2=0.98$. You can express the answer in terms of q and/or f(q,q) without calculating these quantities.