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Problem 1

(a) The maximum point must satisfy the Lagrange conditions, and with the La-
grangian L(x,y) = In(1+x)+31In(1+y) — A(az +y —m) the first-order conditions
become

1
L =———Jda=0 1
1(x7y) 1-+-$ a 9 ( )
3
/
- _)\=0. 2
Li(w.y) = iy~ A=0 2
The constraint is
ar+y=m. (3)

3
Equation (2) implies A = 5o and then (1) yields
Y

1 3a
= l\a = .
1+ 1+y

Hence,
l+y=3a(14+2z)=3a+3ar < —3ar+y=3a—1.

Together with (3) this yields

m—3a+1 _3a—|—3m—1

T Y 1

This is the only point that satisfies the Lagrange conditions, and since we know
that there exists a maximum point, this point must be it.

(b) The set T is the triangular region with corners at LY
(0,0), (4,0), and (0,8). All points on the sides I, II, 8
III of the triangle belong to T', so T is a closed set. It

is also bounded and f is continuous, so the extreme

value theorem guarantees that f will attain both a
maximum and a minimum over 7. Because f has no III
stationary points, the extreme points must be on the T
boundary of T. It is also clear that f is strictly in-
creasing with respect to each of the variables, so (0, 0)
is the unique minimum point, and the maximum point
must be somewhere on II.
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The points on II all belong to the straight line 2x + y = 8, and it follows
from part (a) that the maximum of f(x,y) along that line (that is, on the part
where z > —1 and y > —1 so that f is defined) is attained at the point (z*,y*) =
(3/8,29/4). This point obviously belongs to the line segment II, and it is therefore
the maximum point for f over 1. The extreme wvalues of f are then

Fuaks = f(z*,y%) = f(% %) - 1n<%> + 3ln<§) ~ 6.6490933 ,
fain = £(0,0) = 0.

(The expression for fi,.xs can be simplified to 4In11 4+ 31n3 — 91n 2, but that is
not necessary.)

Problem 2
d /
(a) The result follows immediately from %(ln f(z)) = J; ((j)) .
(b) The standard procedure yields
e* .2t
T+er’ 1422
e’ 2t
/1—|—e$ dw-/1+t2 dt
In(1+ e”) = In(1+t*) + Cy (by part (a))
14e” =C(1+1t?) (with C = 1)

Solving for z yields = In(C(1 + t?) — 1). There are no constant solutions.

(c) We need to find the tangent to the solution curve at (tp,z9) = (1,0). The
slope of the tangent can be found directly from the differential equation, since
2t(1 + ")

(1+t2)e

With t = 1 and x = 0 this gives £ = 2. Thus the tangent is given by the equation
r—0=20t—-1) < z=2t—2,
and this equation is satisfied at (t,x) = (2,2).

Alternatively, we can first determine the solution curve through (g, z¢). Then
we need to find the corresponding value of C"

zo=In(C(1+t)—1) <= 0=In(2C -1) <= 2C—-1=1 < C=1.
Thus the solution curve in question is x = In(1+t? — 1) = 2Int, and & = 2/t, etc.

2
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Problem 3
(a) The derivative of S is given by

S'(t) = C(—ae ") (e ™ + b) "2 + Ce(—2) (e~ + b) 3 (—ae™ )
_ 2aCe”?* aCe ™  aCe ™ (e”™ — )

(et b3 (emat D)2 (emat 4 b)3

(b) We see from the answer in part (a) that
S () =0 < e =b < —at* =lnb < t* = —(Inb)/a.

The sign of S’(t) is the same as the sign of the factor e~ —b. This factor is strictly
decreasing with respect to t, so S’(t) > 0 for t < t* and S’(¢) < 0 for t > t*. Thus,
S is strictly increasing in the interval (—oo,t*] and strictly decreasing in [t*, 00),
and it follows that ¢t* is a global maximum point for S.

(c) Since a and b are positive, t* >0 <= Inb<0 < 0<b< 1.

(d) The substitution u = e~ + b yields du = —ae~ %" dt and
C [1 C C
t)dt = s u=E i K=—— 1K
/S /Ceat+b a/u2 " au+ a(e—at+b)+ ’
where K is the constant of integration. It follows that
T T —aT
C C 1 1 C 1—e@
/ S(t)dt = _—dtz—(_ - )z— — c ,
0 o a(e=t +b) al\e T +p 1+b a (e7*T +b)(b+1)
and
00 T C
t)ydt = 1li t)ydt = ————
| swa= g [ swar= o

because e T — 0 as T — 0.
Problem 4

(a) Cofactor expansion along the first row gives

1 —t
t—1 1

1 0

yAAZQ«”)_l‘ 1

‘th‘ ':—(1+t2—t)+t:—t2+2t—1.

(b) (i) With ¢t =1 the system becomes

y+z2=0
= —z
T —2z=0 <=
z
y+z=0

and the solutions of the system are (z,y,z) = (s, —s, s) for all real numbers s.

(ii) If t = 2, then |A;| = —1 # 0 and the system has only the trivial solution
(x,y,2) = (0,0,0).
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(c) If we both premultiply and postmultiply by B™! in the equation BC = CB,
we get

B !'(BC)B!'=B'(CBB! <= ICB'!=B"!Cl «+—= CB ' =B"!C,

and the last equation shows that B~! and C commute with each other.

Problem 5
By the rule Ina? = plna, we have In f(z) = ——— Inx = _ lnz and

Y - pma ~In(er — 1) ~In(er — 1)
I’'Hopital’s rule gives

1
113 7 xr __ 1 113 7 x
limlnf(x)zfzhm ZI; = lim & 0 im — S =
z—0+ 00 z—0t € z—0+ xer 0 z—0+ e¥ + xe”
e’ —1

It follows that lim f(z) = lim e™/(®) =¢l =,

z—0+ z—0+
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