
University of Oslo English
Department of Economics

ECON3120/4120 Mathematics 2

Thursday 10 December 2009, 09:00–12:00.

There are 2 pages of problems to be solved.

All printed and written material may be used. Pocket calculators are allowed.

State reasons for all your answers.

Grades given: A (best), B, C, D, E, F, with E as the weakest passing grade.

Problem 1

(a) For what values of x does the following matrix have an inverse?

A =

⎛
⎝ x + 3 0 2

0 4 − x 3
0 4 −x

⎞
⎠

(b) Find a matrix B such that B

⎛
⎜⎝

x
y
z
w

⎞
⎟⎠ =

(
2x − y + w
x − y + 2z

)
.

(Hint: What must be the order of B?)

(c) Find the matrix C when (C−1 − 2I2)′ = −2
(

1 −1
1 0

)
.

Problem 2

(a) Use Lagrange’s method to solve the problem

max xy subject to (x + 2a)(y + 3a) = A .

The constants a and A are positive, with a2 < 1
6A.

(b) Denoting the optimal values of x and y by x∗ and y∗, compute the value
function f∗(a, A) = x∗y∗ and its partial derivatives with respect to A and a.

(c) Compare the results in part (b) with the values you find by using the envelope
theorem.

(Cont.)
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Problem 3

The following system defines u and v as differentiable functions of x and y in a
neighbourhood of P = (x, y, u, v) = (1, 1, 0, 1),

u − v2 − 2x − y2 = −4
exu + eyv = 1 + e

(a) Differentiate the system and express the differentials of u and v in terms of
the differentials of x and y.

(b) Find the partial derivatives of v with respect to x and y at P .

(c) Estimate the value of v(0.99, 1.02).

Problem 4

(a) (In the integral below, k and r are constants and x is positive.)
(i) Show that for r �= −1 we have

∫
(x + kx−r)−1 dx =

ln |k + xr+1|
r + 1

+ C .

(Recall that
d

du
(ln |u|) =

1
u

.)

(ii) What happens to the integral when r = −1? For what values of k, if any,
will you get the same expression for r = −1 as for r → −1?

(b) Use (a) (i) to find the general solution of the differential equation

ẋ = 2(x − x2−e)t/(e − 1),

where e ≈ 2.71828 is the base number of the natural exponential function.

(c) Find the particular solution that passes through (e, e) and the particular
solution that passes through (1, 1).
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