ECON3120/4120 Mathematics 2

Thursday 10 December 2009, 09:00-12:00.
There are 2 pages of problems to be solved.
All printed and written material may be used. Pocket calculators are allowed.
State reasons for all your answers.
Grades given: A (best), B, C, D, E, F, with E as the weakest passing grade.

Problem 1

(a) For what values of x does the following matrix have an inverse?

$$
\mathbf{A}=\left(\begin{array}{ccc}
x+3 & 0 & 2 \\
0 & 4-x & 3 \\
0 & 4 & -x
\end{array}\right)
$$

(b) Find a matrix \mathbf{B} such that $\mathbf{B}\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)=\binom{2 x-y+w}{x-y+2 z}$.
(Hint: What must be the order of \mathbf{B} ?)
(c) Find the matrix \mathbf{C} when $\left(\mathbf{C}^{-1}-2 \mathbf{I}_{2}\right)^{\prime}=-2\left(\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right)$.

Problem 2

(a) Use Lagrange's method to solve the problem

$$
\max x y \quad \text { subject to } \quad(x+2 a)(y+3 a)=A
$$

The constants a and A are positive, with $a^{2}<\frac{1}{6} A$.
(b) Denoting the optimal values of x and y by x^{*} and y^{*}, compute the value function $f^{*}(a, A)=x^{*} y^{*}$ and its partial derivatives with respect to A and a.
(c) Compare the results in part (b) with the values you find by using the envelope theorem.
(Cont.)

Problem 3

The following system defines u and v as differentiable functions of x and y in a neighbourhood of $P=(x, y, u, v)=(1,1,0,1)$,

$$
\begin{aligned}
u-v^{2}-2 x-y^{2} & =-4 \\
e^{x u}+e^{y v} & =1+e
\end{aligned}
$$

(a) Differentiate the system and express the differentials of u and v in terms of the differentials of x and y.
(b) Find the partial derivatives of v with respect to x and y at P.
(c) Estimate the value of $v(0.99,1.02)$.

Problem 4

(a) (In the integral below, k and r are constants and x is positive.)
(i) Show that for $r \neq-1$ we have

$$
\int\left(x+k x^{-r}\right)^{-1} d x=\frac{\ln \left|k+x^{r+1}\right|}{r+1}+C .
$$

$\left(\right.$ Recall that $\left.\frac{d}{d u}(\ln |u|)=\frac{1}{u}.\right)$
(ii) What happens to the integral when $r=-1$? For what values of k, if any, will you get the same expression for $r=-1$ as for $r \rightarrow-1$?
(b) Use (a) (i) to find the general solution of the differential equation

$$
\dot{x}=2\left(x-x^{2-e}\right) t /(e-1)
$$

where $e \approx 2.71828$ is the base number of the natural exponential function.
(c) Find the particular solution that passes through (e, e) and the particular solution that passes through $(1,1)$.

