Answers to the examination problems in ECON3120/4120 Mathematics 2, 10 December 2009

Problem 1

(a) Cofactor expansion along the first column gives

$$|\mathbf{A}| = (x+3)[(4-x)(-x)-12] = (x+3)(x^2-4x-12) = (x+3)(x+2)(x-6)$$
, so the matrix has an inverse provided $x \neq -3$, $x \neq -2$, and $x \neq 6$.

- (b) The matrix **B** must be 2×4 , and we see that $\mathbf{B} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & -1 & 2 & 0 \end{pmatrix}$.
- (c) Transposing each side yields $\mathbf{C}^{-1} 2\mathbf{I}_2 = -2\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, so

$$\mathbf{C}^{-1} = 2\mathbf{I}_2 - 2\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 2 & 2 \end{pmatrix}.$$

By the formula for the inverse of a 2×2 matrix,

$$\mathbf{C} = \begin{pmatrix} 0 & -2 \\ 2 & 2 \end{pmatrix}^{-1} = \frac{1}{4} \begin{pmatrix} 2 & 2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 0 \end{pmatrix}.$$

Problem 2

(a) The Lagrangian is $\mathcal{L} = xy - \lambda((x+2a)(y+3a) - A)$, and the first-order conditions are:

(i)
$$\mathcal{L}'_x = y - \lambda(y + 3a) = 0$$
 (ii) $\mathcal{L}'_y = x - \lambda(x + 2a) = 0$

Eliminating λ , we get

$$\frac{y}{y+3a} = \frac{x}{x+2a}$$
, that is, $xy + 2ay = xy + 3ax$, and so $y = \frac{3}{2}x$

Inserting $y = \frac{3}{2}x$ into the constraint yields the quadratic equation $x^2 + 4ax + 4a^2 - 2A/3 = 0$. The positive solution of this equation is $x = \sqrt{2A/3} - 2a$, and then $y = \frac{3}{2}(\sqrt{2A/3} - 2a) = \sqrt{3A/2} - 3a$.

(b) With $x^* = \sqrt{2A/3} - 2a$, $y^* = \frac{3}{2}(\sqrt{2A/3} - 2a)$ (with corresponding $\lambda = x^*/(x^* + 2a) = 1 - a\sqrt{6/A}$)

$$f^*(a,A) = x^*y^* = \frac{3}{2}(x^*)^2 = \frac{3}{2}(\sqrt{2A/3} - 2a)^2 = 6a^2 - 2\sqrt{6}a\sqrt{A} + A$$

and thus $\partial f^*(a,A)/\partial A = -a\sqrt{6/A} + 1$, and $\partial f^*(a,A)/\partial a = 12a - 2\sqrt{6A}$.

(c) Writing the Lagrangian as $\mathcal{L}(x,y,A,a) = xy - \lambda((x+2a)(y+3a)-A)$, we get $\partial \mathcal{L}(x,y,A,a)/\partial A = \lambda$ (as expected) and $\partial \mathcal{L}(x,y,A,a)/\partial a = -\lambda(2(y+3a)+3(x+2a)) = -\lambda(12a+3x+2y)$. Evaluating these partials at (x^*,y^*) , we get $(\partial \mathcal{L}(x,y,A,a)/\partial A)_{(x^*,y^*)} = \lambda = 1 - a\sqrt{6/A}$ and $(\partial \mathcal{L}(x,y,A,a)/\partial a)_{(x^*,y^*)} = -\lambda(12a+3x^*+2y^*) = -(1-a\sqrt{6/A})(12a+6x^*) = -(1-a\sqrt{6/A})6\sqrt{2A/3} = -2\sqrt{6A}+12a$. So the envelope theorem confirms the results in (b).

Problem 3

(a) Differentiation yields

$$du - 2v dv - 2 dx - 2y dy = 0$$
$$e^{xu}(x du + u dx) + e^{yv}(y dv + v dy) = 0$$

At P,

$$du - 2 dv - 2 dx - 2 dy = 0$$
$$du + e dv + e dy = 0$$

i.e.

$$du - 2 dv = 2 dx + 2 dy$$
$$du + e dv = -e dy$$

It follows that

$$du = \frac{2e}{e+2} dx$$
, $dv = \frac{-2}{e+2} dx - dy$ (*)

(b) From (*) we read off
$$v'_x(1,1) = \frac{-2}{e+2}$$
, $v'_y(1,1) = -1$.

(c)
$$v(0.99, 1.02) \approx v(1, 1) + v'_x(1, 1)(-0.01) + v'_y(1, 1)(0.02)$$

= $1 + \frac{-2}{e+2}(-0.01) + (-1)0.02 \approx 1.016$.

Problem 4

- (a) (i) The derivative of the right-hand side equals the integrand on the left.
- (ii) On the left we get $\int (x+kx)^{-1} dx = \int \frac{1}{(k+1)x} dx = \frac{\ln x}{k+1} + C_1$. The limit of the integral in (i) as $r \to -1$ is

$$\lim_{r\to -1}\frac{\ln|k+x^{r+1}|}{r+1}+C$$

The denominator in the fraction tends to 0, and the numerator tends to $\ln |k+1|$, so the limit can exist only if k=0. Then

$$\lim_{r \to -1} \frac{\ln |k + x^{r+1}|}{r+1} + C = \lim_{r \to -1} \frac{\ln x^{r+1}}{r+1} + C = \lim_{r \to -1} \frac{(r+1) \ln x}{r+1} + C = \ln x + C,$$

which is the same as on the left.

(b) The equation is separable. It has one constant solution, given by $x=x^{2-e}$, i.e. x=1. For $x\neq 1$ we get

$$\int \frac{1}{x - x^{2-e}} \, dx = \int \frac{2t}{e - 1} \, dt.$$

Using the result in (a) (i) with k = -1 and r = e - 2, we get

$$\frac{\ln|x^{e-1}-1|}{e-1} = \frac{t^2}{e-1} + C,$$

i.e.

$$\ln|x^{e-1} - 1| = t^2 + C(e - 1).$$

This yields

$$x^{e-1} - 1 = C_2 e^{t^2}$$
, and so $x^{e-1} = 1 + C_2 e^{t^2}$,

where $C_2 = \pm e^{C(e-1)}$. (Note that the constant solution would correspond to $C_2 = 0$.)

(c) The solution through (e, e) is given by $C_2 = e^{-e^2}(e^{e-1} - 1)$, and the solution through (1, 1) is the constant solution x = 1.