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Preface

This student’s solutions manual accompanies Further Mathematics for Economic Analysis (2nd edition, FT
Prentice Hall, 2008). Its main purpose is to provide more detailed solutions to the problems marked with⊂SM⊃
in the text. The Manual should be used in conjunction with the answers in the book. In some few cases only
a part of the problem is done in detail, because the rest follows the same pattern.

At the end of this manual there is a list of misprints and other errors in the book, and even one or two in
the errata list in the preliminary and incomplete version of this manual released in September this year. We
would greatly appreciate suggestions for improvements from our readers as well as help in weeding out the
inaccuracies and errors that probably remain.

Oslo and Coventry, October 2008
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Chapter 1 Topics in Linear Algebra

1.2

1.2.3 Let A =
⎛⎝ 1 2 0

0 1 1
1 0 1

⎞⎠ be a matrix with the three given vectors as columns. Cofactor expansion of

|A| along the first row yields∣∣∣∣∣∣
1 2 0
0 1 1
1 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣ 1 1
0 1

∣∣∣∣− 2

∣∣∣∣ 0 1
1 1

∣∣∣∣+ 0 = 1 − 2(−1) = 3 �= 0

By Theorem 1.2.1 this shows that the given vectors are linearly independent.

1.2.6 Part (a) is just a special case of part (b), so we will only prove (b). To show that a1, a2, . . . , an are
linearly independent it suffices to show that if c1, c2, . . . , cn are real numbers such that

c1a1 + c2a2 + · · · + cnan = 0

then all the ci have to be zero. So suppose that we have such a set of real numbers. Then for each i = 1,
2, . . . , n, we have

ai · (c1a1 + c2a2 + · · · + cnan) = ai · 0 = 0 (1)

Since ai ·aj = 0 when i �= j , the left-hand side of (1) reduces to ai ·(ciai ) = ci‖ai‖2. Hence, ci‖ai‖2 = 0.
Because ai �= 0 we have ‖ai‖ �= 0, and it follows that ci = 0.

1.3

1.3.1 (a) The rank is 1. See the answer in the book.

(b) The minor formed from the first two columns in the matrix is

∣∣∣∣ 1 3
2 0

∣∣∣∣ = −6 �= 0. Since this minor

is of order 2, the rank of the matrix must be at least 2, and since the matrix has only two rows, the rank
cannot be greater than 2, so the rank equals 2.

(c) The first two rows and last two columns of the matrix yield the minor

∣∣∣∣−1 3
−4 7

∣∣∣∣ = 5 �= 0, so the rank

of the matrix is at least 2. On the other hand, all the four minors of order 3 are zero, so the rank is less
than 3. Hence the rank is 2. (It can be shown that r2 = 3r1 + r3, where r1, r2, and r3 are the rows of the
matrix.)

An alternative argument runs as follows: The rank of a matrix does not change if we add a multiple
of one row to another row, so⎛⎝ 1 2 −1 3

2 4 −4 7
−1 −2 −1 −2

⎞⎠ −2 1
←
←

∼
⎛⎝ 1 2 −1 3

0 0 −2 1
0 0 −2 1

⎞⎠ .
© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



2 C H A P T E R 1 T O P I C S I N L I N E A R A L G E B R A

Here ∼ means that the last matrix is obtained from the first one by elementary row operations. The last
matrix obviously has rank 2, and therefore the original matrix also has rank 2.

(d) The first three columns of the matrix yield the minor

∣∣∣∣∣∣
1 3 0
2 4 0
1 −1 2

∣∣∣∣∣∣ = −4 �= 0, so the rank is 3.

(e)

∣∣∣∣ 2 1
−1 4

∣∣∣∣ = 9 �= 0, so the rank is at least 2. All the four minors of order 3 are zero, so the rank must

be less than 3. Hence the rank is 2. (The three rows, r1, r2, and r3, of the matrix are linearly dependent,
because r2 = −14r1 + 9r3.)

(f) The determinant of the whole matrix is zero, so the rank must be less than 4. On the other hand, the
first three rows and the first three columns yield the minor∣∣∣∣∣∣

1 −2 −1
2 1 1

−1 1 −1

∣∣∣∣∣∣ = −7 �= 0

so the rank is at least 3. It follows that the matrix has rank 3.

1.3.2 (a) The determinant is (x + 1)(x − 2). The rank is 3 if x �= −1 and x �= 2. The rank is 2 if x = −1
or x = 2.

(a) By cofactor expansion along the first row, the determinant of the matrix A =
⎛⎝ x 0 x2 − 2

0 1 1
−1 x x − 1

⎞⎠
is

|A| = x · (−1)− 0 · 1 + (x2 − 2) · 1 = x2 − x − 2 = (x + 1)(x − 2)

If x �= −1 and x �= 2, then |A| �= 0, so the rank of A equals 3. If x = −1 or x = 2, then |A| = 0 and
r(A) ≤ 2. On the other hand, the minor we get if we strike out the first row and the third column in A is∣∣∣∣ 0 1
−1 x

∣∣∣∣ = 1 �= 0 for all x, so r(A) can never be less than 2.

Conclusion: r(A) =
{ 2 if x = −1 or x = 2

3 otherwise

(b) A little calculation shows that the determinant of the matrix is t3 + 4t2 − 4t − 16, and if we note that
this expression has t + 4 as a factor, it follows that the determinant is

t3 + 4t2 − 4t − 16 = t2(t + 4)− 4(t + 4) = (t2 − 4)(t + 4) = (t + 2)(t − 2)(t + 4)

Thus, if t does not equal any of the numbers −2, 2, and −4, the rank of the matrix is 3.

If we strike out the second row and the first column of the matrix, we get the minor

∣∣∣∣ 5 6
1 t + 4

∣∣∣∣ = 5t+14,

which is different from 0 for all the three special values of t that we found above, and thus the rank of
the matrix is { 2 if t = −4, −2, or 2

3 otherwise

(c) The first and third rows are identical, as are the second and fourth. But the first two rows are always
linearly independent. So the rank is 2 for all values of x, y, z, and w.

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008
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1.4
1.4.2 (a) It is clear that x1 = x2 = x3 = 0 is a solution. The determinant of the coefficient matrix is

D =
∣∣∣∣∣∣
1 −1 1
1 2 −1
2 1 3

∣∣∣∣∣∣ = 9 �= 0

Hence, by Cramer’s rule the solution is unique and the system has 0 degrees of freedom. (This agrees
with Theorem 1.4.2: since the rank of the coefficient matrix is 3 and there are 3 unknowns, the system
has 3 − 3 = 0 degrees of freedom.)

(b) By Gaussian elimination (or other means) we find that the solution is x1 = a, x2 = −a, x3 = −a,
and x4 = a, with a arbitrary. Thus, there is one degree of freedom. (We could get the number of degrees
of freedom from Theorem 1.4.2 in this case, too. The minor formed from the first three columns of the
coefficient matrix has determinant −3 �= 0, so the rank of the coefficient matrix is 3. Since there are 4
unknowns, the system has 4 − 3 = 1 degree of freedom.)

1.4.3 The determinant of the coefficient matrix is a2−7a = a(a−7). Thus, if a �= 0 and a �= 7, the system
has a unique solution. If a = 0 or a = 7, the rank of the coefficient matrix is 2 (why?), and the system
either has solutions with 1 degree of freedom or has no solutions at all, depending on the value of b. One
way of finding out is by Gaussian elimination, i.e. by using elementary row operations on the augmented
coefficient matrix:⎛⎝ 1 2 3 1

−1 a −21 2
3 7 a b

⎞⎠ 1 −3
←
←

∼
⎛⎝ 1 2 3 1

0 a + 2 −18 3
0 1 a − 9 b − 3

⎞⎠ ←
−(a + 2)

∼
⎛⎝ 1 2 3 1

0 0 −a2 + 7a −ab − 2b + 3a + 9
0 1 a − 9 b − 3

⎞⎠ ←
←

∼
⎛⎝ 1 2 3 1

0 1 a − 9 b − 3
0 0 a(7 − a) −ab − 2b + 3a + 9

⎞⎠
This confirms that as long as a �= 0 and a �= 7, the system has a unique solution for any value of b. But if
a = 0 or a = 7, the system has solutions if and only if −ab− 2b+ 3a+ 9 = 0, and then it has solutions
with 1 degree of freedom. (The rank of the coefficient matrix is 2 and there are 3 unknowns.)

If a = 0, then the system has solutions if and only if b = 9/2.
If a = 7, then the system has solutions if and only if −9b + 30 = 0, i.e. b = 10/3.

1.4.6 (a) |At | = (t − 2)(t + 3), so r(At ) = 3 if t �= 2 and t �= −3. Because the upper left 2 × 2 minor of
At is −1 �= 0, the rank of At can never be less than 2, so r(A2) = 2, r(A−3) = 2.

(b) Let x =
⎛⎝ x1

x2

x3

⎞⎠. The vector equation A−3x =
⎛⎝ 11

3
6

⎞⎠ is equivalent to the equation system

x1 + 3x2 + 2x3 = 11 (1)

2x1 + 5x2 − 3x3 = 3 (2)

4x1 + 10x2 − 6x3 = 6 (3)

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



4 C H A P T E R 1 T O P I C S I N L I N E A R A L G E B R A

Equation (3) is obviously equivalent to (2), so we can remove it, and then we are left with the two equations

x1 + 3x2 + 2x3 = 11 (1)

2x1 + 5x2 − 3x3 = 3 (2)

We can consider these equations as an equation system with x1 and x2 as the unknowns:

x1 + 3x2 = 11 − 2x3 (1′)
2x1 + 5x2 = 3 + 3x3 (2′)

For each value of x3 this system has the unique solution x1 = 19x3 − 46, x2 = −7x3 + 19. Thus the
vector equation A3x = (11, 3, 6)′ has the solution

x = (19s − 46, −7s + 19, s)′

where s runs through all real numbers.

1.5
1.5.1 For convenience, let A, B, . . . , F denote the matrices given in (a), (b), . . . , (f), respectively.

(a) The characteristic polynomial of the matrix A =
(

2 −7
3 −8

)
is

|A − λI| =
∣∣∣∣ 2 − λ −7

3 −8 − λ
∣∣∣∣ = λ2 + 6λ+ 5 = (λ+ 1)(λ+ 5)

so the eigenvalues of A are λ1 = −1 and λ2 = −5. The eigenvectors corresponding to an eigenvalue λ

are the vectors x =
(
x

y

)
�= 0 that satisfy Ax = λx, i.e.

2x − 7y = −x
3x − 8y = −y

}
⇐⇒ 3x = 7y for λ = −1

and
2x − 7y = −5x

3x − 8y = −5y

}
⇐⇒ 7x = 7y for λ = −5

This gives us the eigenvectors v1 = s

(
7
3

)
and v2 = t

(
1
1

)
, where s and t are arbitrary real numbers

(different from 0).

(b) The characteristic equation of B is |B − λI| =
∣∣∣∣ 2 − λ 4
−2 6 − λ

∣∣∣∣ = λ2 − 8λ + 20 = 0. B has two

complex eigenvalues, 4 ± 2i, and no real eigenvalues.

(c) The characteristic polynomial of C is |C−λI| = λ2−25, and we see immediately that the eigenvalues
are λ1 = 5 and λ2 = −5. The eigenvectors are determined by the equation systems

x + 4y = 5x
6x − y = 5y

}
⇐⇒ x = y and

x + 4y = −5x
6x − y = −5y

}
⇐⇒ y = −3

2
x

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



C H A P T E R 1 T O P I C S I N L I N E A R A L G E B R A 5

respectively, so the eigenvectors are

v1 = s

(
1
1

)
and v2 = t

(−2
3

)
where s and t are arbitrary nonzero numbers.

(d) The characteristic polynomial of D is

|D − λI| =
∣∣∣∣∣∣
2 − λ 0 0

0 3 − λ 0
0 0 4 − λ

∣∣∣∣∣∣ = (2 − λ)(3 − λ)(4 − λ)

The eigenvalues are obviously λ1 = 2, λ2 = 3, λ3 = 4, and the corresponding eigenvectors are

v1 = s

⎛⎝ 1
0
0

⎞⎠ , v2 = t

⎛⎝ 0
1
0

⎞⎠ , v3 = u

⎛⎝ 0
0
1

⎞⎠
where s, t , u are arbitrary nonzero numbers. (Note: The eigenvalues of a diagonal matrix are always
precisely the diagonal elements, and (multiples of) the standard unit vectors will be eigenvectors. But if
two or more of the diagonal elements are equal, there will be other eigenvectors as well. An extreme case
is the identity matrix In: all (nonzero) n-vectors are eigenvectors for In.)

(e) The characteristic polynomial of E is∣∣∣∣∣∣
2 − λ 1 −1

0 1 − λ 1
2 0 −2 − λ

∣∣∣∣∣∣ = −λ3 + λ2 + 2λ = −λ(λ2 − λ− 2)

The eigenvalues are the roots of the equation −λ(λ2 −λ− 2) = 0, namely λ1 = −1, λ2 = 0 and λ3 = 2.
The eigenvectors corresponding to λ1 = −1 are solutions of

Ex = −x ⇐⇒

⎧⎪⎨⎪⎩
2x1 + x2 − x3 = −x1

x2 + x3 = −x2

2x1 − 2x3 = −x2

⇐⇒
{
x1 = 1

2x3

x2 = − 1
2x3

⇐⇒
{
x2 = −x1

x3 = 2x1

so they are of the form v1 = s

⎛⎝ 1
−1

2

⎞⎠. Similarly, v2 = t

⎛⎝ 1
−1

1

⎞⎠ and v3 = u

⎛⎝ 2
1
1

⎞⎠ are the eigenvectors

corresponding to λ2 = 0 and λ3 = 2.

(f) The characteristic polynomial of F is∣∣∣∣∣∣
1 − λ −1 0
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣ = −λ3 + 4λ2 − 3λ = −λ(λ2 − 4λ+ 3) = −λ(λ− 1)(λ− 3)

The eigenvalues are therefore λ1 = 0, λ2 = 1, and λ3 = 3. By the same method as above we find that

the corresponding eigenvectors are v1 = s

⎛⎝ 1
1
1

⎞⎠, v2 = t

⎛⎝−1
0
1

⎞⎠, and v3 = u

⎛⎝ 1
−2

1

⎞⎠.
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1.5.2 (a) X′AX = X′(AX) = (x, y, z)

⎛⎝ ax + ayax + ay
bz

⎞⎠ = (ax2 + ay2 + 2axy + bz2) (a 1 × 1 matrix),

A2 =
⎛⎝ 2a2 2a2 0

2a2 2a2 0
0 0 b2

⎞⎠, A3 =
⎛⎝ 4a3 4a3 0

4a3 4a3 0
0 0 b3

⎞⎠
(b) The characteristic polynomial of A is p(λ) =

∣∣∣∣∣∣
a − λ a 0
a a − λ 0
0 0 b − λ

∣∣∣∣∣∣ = (λ2 − 2aλ)(b− λ), so the

eigenvalues of A are λ1 = 0, λ2 = 2a, λ3 = b.

(c) From (b) we get p(λ) = −λ3 + (2a + b)λ2 − 2abλ. Using the expressions for A2 and A3 that we
found in part (a), it is easy to show that p(A) = −A3 + (2a + b)A2 − 2abA = 0.

1.5.4 (a) The formula in Problem 1.9.7(b) yields

|A − λI| =

∣∣∣∣∣∣∣∣
4 − λ 1 1 1

1 4 − λ 1 1
1 1 4 − λ 1
1 1 1 4 − λ

∣∣∣∣∣∣∣∣ = (3 − λ)4
(

1 + 4

3 − λ
)
= (3 − λ)3(7 − λ)

Hence, the eigenvalues of A are λ1 = λ2 = λ3 = 3, λ4 = 7.

(b) An eigenvector x = (x1, x2, x3, x4)
′ of A corresponding to the eigenvalue λ = 3 must satisfy the

equation system (A − 3I)x = 0. The 4 equations in this system are all the same, namely

x1 + x2 + x3 + x4 = 0

The system has solutions with 4 − 1 = 3 degrees of freedom. One simple set of solutions is

x1 =

⎛⎜⎜⎝
1

−1
0
0

⎞⎟⎟⎠ , x2 =

⎛⎜⎜⎝
1
0

−1
0

⎞⎟⎟⎠ . x3 =

⎛⎜⎜⎝
1
0
0

−1

⎞⎟⎟⎠
These three vectors are obviously linearly independent because if

c1x1 + c2x2 + c3x3 =

⎛⎜⎜⎝
c1 + c2 + c3

−c1

−c2

−c3

⎞⎟⎟⎠
is the zero vector, then c1 = c2 = c3 = 0.

1.5.5 (c) If λ is an eigenvalue for C with an associated eigenvector x, then Cnx = λnx for every natural
number n. If C3 = C2 +C, then λ3x = λ2x+λx, so (λ3−λ2 −λ)x = 0. Then λ3−λ2 −λ = 0, because
x �= 0. If C+ In did not have an inverse, |C+ In| = 0. Then λ = −1 would be an eigenvalue for C, and
so we would have λ3 − λ2 − λ = 0, which is not true for λ = −1. Hence −1 is not an eigenvalue for C,
and consequently C + In has an inverse.
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1.6

1.6.1 (a) Let A =
(

2 1
1 2

)
. The characteristic polynomial of A is

p(λ) =
∣∣∣∣ 2 − λ 1

1 2 − λ
∣∣∣∣ = (2 − λ)2 − 1 = λ2 − 4λ+ 3 = (λ− 1)(λ− 3)

Thus, the eigenvalues are λ1 = 1 and λ2 = 3. The associated eigenvectors with length 1 are uniquely
determined up to sign as

x1 =
( 1

2

√
2

− 1
2

√
2

)
and x2 =

( 1
2

√
2

1
2

√
2

)
This yields the orthogonal matrix

P =
( 1

2

√
2 1

2

√
2

− 1
2

√
2 1

2

√
2

)
(It is easy to verify that P′P = I, i.e. P−1 = P′.) We therefore have the diagonalization

P−1AP =
( 1

2

√
2 − 1

2

√
2

1
2

√
2 1

2

√
2

)(
2 1

1 2

)( 1
2

√
2 1

2

√
2

− 1
2

√
2 1

2

√
2

)
=
(

1 0

0 3

)

(b) Let B =
⎛⎝ 1 1 0

1 1 0
0 0 2

⎞⎠. The characteristic polynomial of B is

∣∣∣∣∣∣
1 − λ 1 0

1 1 − λ 0
0 0 2 − λ

∣∣∣∣∣∣ = (2 − λ)((1 − λ)2 − 1
) = (2 − λ)(λ2 − 2λ) = −λ(λ− 2)2

(use cofactor expansion of the first determinant along the last row or the last column). The eigenvalues
are λ1 = 0 and λ2 = λ3 = 2. It is easily seen that one eigenvector associated with the eigenvalue
λ1 = 0 is x1 = (1,−1, 0)′. Eigenvectors x = (x1, x2, x3)

′ associated with the eigenvalue 2 are given by
(B − 2I)x = 0, i.e.

−x1 + x2 = 0

x1 − x2 = 0

0 = 0

This gives x1 = x2, x3 arbitrary. One set of linearly independent eigenvectors with length 1 is then

1√
2

⎛⎝ 1
−1

0

⎞⎠ , 1√
2

⎛⎝ 1
1
0

⎞⎠ ,
⎛⎝ 0

0
1

⎞⎠
Fortunately, these three vectors are mutually orthogonal (this is not automatically true for two eigenvectors
associated with the same eigenvalue), and so we have a suitable orthogonal matrix

P =
⎛⎜⎝

1
2

√
2 1

2

√
2 0

− 1
2

√
2 1

2

√
2 0

0 0 1

⎞⎟⎠
© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008
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It is now easy to verify that P−1 = P′ and

P−1BP =
⎛⎝ 0 0 0

0 2 0
0 0 2

⎞⎠
(c) The characteristic polynomial of C =

⎛⎝ 1 3 4
3 1 0
4 0 1

⎞⎠ is

∣∣∣∣∣∣
1 − λ 3 4

3 1 − λ 0
4 0 1 − λ

∣∣∣∣∣∣ = 4

∣∣∣∣ 3 1 − λ
4 0

∣∣∣∣+ (1 − λ) ∣∣∣∣ 1 − λ 3
3 1 − λ

∣∣∣∣ = (1 − λ)((1 − λ)2 − 25
)

(cofactor expansion along the last column), and so the eigenvalues are λ1 = 1, λ2 = 6, and λ3 = −4. An
eigenvector x = (x, y, z)′ corresponding to the eigenvalue λ must satisfy

Cx = λx ⇐⇒
x + 3y + 4z = λx

3x + y = λy

4x + z = λz

One set of unnormalized eigenvectors is

u =
⎛⎝ 0
−4

3

⎞⎠ , v =
⎛⎝ 5

3
4

⎞⎠ , w =
⎛⎝−5

3
4

⎞⎠
with lengths ‖u‖ = 5, ‖v‖ = ‖w‖ = 5

√
2, and a corresponding orthogonal matrix is

P =
⎛⎜⎝ 0 5

10

√
2 − 5

10

√
2

− 4
5

3
10

√
2 3

10

√
2

3
5

4
10

√
2 4

10

√
2

⎞⎟⎠
A straightforward calculation confirms that P′CP = diag(1, 6,−4) = diag(λ1, λ2, λ3).

1.6.5 For the given A, we have A2 = 5A−5I. Therefore A3 = A2A = (5A−5I)A = 5A2−5A = 20A−25I

and A4 = 20A2 − 25A = 75A − 100I =
(

50 75
75 125

)
.

1.7
1.7.5 (a) It is clear that Q(x1, x2) ≥ 0 for all x1 and x2 and that Q(x1, x2) = 0 only if x1 = x2 = 0, so Q

is positive definite.

(b) The symmetric coefficient matrix of Q is

⎛⎝ 5 0 1
0 2 1
1 1 4

⎞⎠. The leading principal minors are

D1 = 5, D2 =
∣∣∣∣ 5 0
0 2

∣∣∣∣ = 10, D3 =
∣∣∣∣∣∣
5 0 1
0 2 1
1 1 4

∣∣∣∣∣∣ = 33

Since all the leading principal minors are positive, it follows from Theorem 1.7.1 that Q is positive
definite. (An alternative way to see this is to write Q as a sum of squares: Q(x1, x2, x3) = (x1 + x3)

2 +
(x2 + x3)

2 + 4x2
1 + x2

2 + 2x2
3 is obviously nonnegative and it is zero only if all the square terms are zero.

But it is not always easy to see how to rewrite a quadratic form in this fashion.)
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(c) Since Q(x1, x2) = −(x1 − x2)
2 ≤ 0 for all x1 and x2, Q is negative semidefinite. But Q is not

definite, since Q(x1, x2) = 0 whenever x1 = x2.

(d) The symmetric coefficient matrix of Q is

⎛⎝−3 1 0
1 −1 2
0 2 −8

⎞⎠, and the leading principal minors are

D1 = −3 < 0, D2 = 2 > 0, and D3 = −4 < 0. By Theorem 1.7.1, Q is negative definite.

1.7.7 (a) The symmetric coefficient matrix of Q is

A =
(
a11 a12

a21 a22

)
=
(

3 −(5 + c)/2
−(5 + c)/2 2c

)
Since a11 > 0, the form can never be negative semidefinite. It is

(i) positive definite if a11 > 0 and |A| > 0,

(ii) positive semidefinite if a11 ≥ 0, a22 ≥ 0. and |A| ≥ 0,

(iii) indefinite if |A| < 0.

The determinant of A is

|A| = 6c − 1
4 (5 + c)2 = − 1

4 (c
2 − 14c + 25) = − 1

4 (c − c1)(c − c2)

where c1 = 7 − 2
√

6 ≈ 2.101 and c2 = 7 + 2
√

6 ≈ 11.899 are the roots of the quadratic equation
c2 − 14c + 25 = 0. It follows that

(1) Q is positive definite if c1 < c < c2, i.e. if c lies in the open interval (c1, c2);

(2) Q is positive semidefinite if c1 ≤ c ≤ c2, i.e. if c lies in the closed interval [c1, c2];

(3) Q is indefinite if c < c1 or c > c2, i.e. if c lies outside the closed interval [c1, c2].

1.7.10 (b) If x satisfies the Lagrange conditions, then Q(x) = x′Ax = x′(λx) = λx′x = λ‖x‖2 = λ,
because the constraint is simply ‖x‖2 = 1. Hence, the maximum and minimum values of Q(x) are
simply the largest and smallest eigenvalue of Q, which are λ1 = 9 and λ2 = −5. The corresponding
maximum and minimum points (eigenvectors) are ± 1

2

√
2 (1, 1) and ± 1

2

√
2 (1,−1), respectively.

1.8

1.8.3 Negative definite subject to the constraint, by Theorem 1.8.1:

∣∣∣∣∣∣∣∣∣∣

0 0 1 1 1
0 0 4 −2 1
1 4 −5 1 2
1 −2 1 −1 0
1 1 2 0 −2

∣∣∣∣∣∣∣∣∣∣
= −180 <

0.

1.8.4 Positive definite subject to the constraint, by Theorem 1.8.1:

∣∣∣∣∣∣∣∣∣∣

0 0 1 2 1
0 0 2 −1 −3
1 2 1 1 0
2 −1 1 1 0
1 −3 0 0 1

∣∣∣∣∣∣∣∣∣∣
= 25 > 0.

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



10 C H A P T E R 1 T O P I C S I N L I N E A R A L G E B R A

1.9

1.9.3 The obvious partitioning to use in (a) is with A11 as 2×2 matrix in the upper left corner of A, and in (b)
it is natural to let A11 be the upper left 1×1 matrix. In both cases the partitioned matrix will be of the form(

A11 0
0 A22

)
, i.e. A12 and A21 will both be zero matrices. If we use formula (1.9.4) we get � = A22,

whereas formula (1.9.5) gives �̃ = A11. In either case we find that

(
A11 0
0 A22

)−1

=
(

A−1
11 0
0 A−1

22

)
,

and the answers to (a) and (b) are as given in the book.

The matrix in (c) can be partitioned as A =
(

A11 A12

A21 A22

)
=
(

I4 v
v′ I1

)
, where I4 and I1 are the

identity matrices of orders 4 and 1, respectively, and v′ = (1, 1, 1, 0) is the transpose of the 4 × 1
matrix (column vector) v. If we use formula (1.9.4) in the book, we get � = I1 − v′v = (−2) = −2I1.

Then A−1
11 + A−1

11 A12�
−1A21A−1

11 = I4 − 1
2 vv′ = I4 − 1

2

⎛⎜⎜⎝
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

⎞⎟⎟⎠ = 1
2

⎛⎜⎜⎝
1 −1 −1 0

−1 1 −1 0
−1 −1 1 0

0 0 0 2

⎞⎟⎟⎠,

and −�−1A21A−1
11 = 1

2 I1v′I4 = 1
2 v′ = 1

2 (1, 1, 1, 0). Further, −A−1
11 A12�

−1 = 1
2 v, so we finally get

A−1 =
(

I4 − 1
2 vv′ 1

2 v
1
2 v′ − 1

2 I1

)
= 1

2

⎛⎜⎜⎜⎜⎝
1 −1 −1 0 1

−1 1 −1 0 1
−1 −1 1 0 1

0 0 0 2 0
1 1 1 0 −1

⎞⎟⎟⎟⎟⎠.

An alternative partitioning is A =
(

I3 W
W′ I2

)
, where W′ =

(
0 0 0
1 1 1

)
. Then � = I2 −WW′ =

I2 −
(

0 0
0 3

)
=
(

1 0
0 −2

)
, so �−1 = 1

2

(
2 0
0 −1

)
. A bit of calculation shows that −�−1W′ = 1

2 W

and WW′ =
⎛⎝ 1 1 1

1 1 1
1 1 1

⎞⎠, so A−1 =
(

I3 − 1
2 WW′ 1

2 W
1
2 W′ �−1

)
= 1

2

(
2I3 − WW′ W

W′ 2�−1

)
, as before.

(Note that because A is symmetric, A−1 must also be symmetric. Thus the upper right submatrix of A−1

must be the transpose of the lower left submatrix, which helps us save a little work.)

1.9.4 The matrix B =

⎛⎜⎜⎝
1 −x1 . . . −xn
x1 a11 . . . a1n
...

...
. . .

...

xn an1 . . . ann

⎞⎟⎟⎠ can be partitioned as B =
(

I1 −X′
X A

)
, where A and X

are as given in the problem. We evaluate the determinant of B by each of the formulas (6) and (7): By
formula (6),

|B| = |I1| · |A − XI−1
1 (−X′)| = |A + XX′|

and by formula (7),

|B| = |A| · |I1 − (−X′)A−1X| = |A| · |I1 + X′A−1X|
where the last factor is the determinant of a 1 × 1 matrix and therefore equal to the single element
1 + X′A−1X of that matrix.
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1.9.6 (a) Let A =
(

A11 A12

0 A22

)
, where A11 is a k×k matrix and A22 is (n−k)× (n−k). We will consider

two ways to demonstrate that |A| = |A11| |A22|.
(I) By definition, the determinant of the n × n matrix A is a sum �A of n! terms. Each of these terms
is the product of a sign factor and n elements from A, chosen so that no two elements are taken from
the same row of A or from the same column. The sign factor ±1 is determined by the positions of the
elements selected. (See EMEA or almost any book on linear algebra for details.)

A term in this sum will automatically be zero unless the factors from the first k columns are taken
from A11 and the last n− k factors from A22. If the factors are selected in this way, the term in question
will be a product of one term in the sum �1 making up |A11| and one from the sum �2 that makes up
|A22|. (The sign factors will match.) All such pairs of terms will occur exactly once and so�A = �1�2,
that is, |A| = |A11| |A22|.
(II) Suppose that A is upper triangular, i.e. all elements below the main diagonal are 0. Then A11 and
A22 are also upper triangular. We know that the determinant of a triangular matrix equals the product
of the elements on the main diagonal. (Just think of cofactor expansion along the first column, then the
second column, etc.) In this case it is clear that |A| = |A11| |A22|.

Of course, in the general case A need not be upper triangular at all, but we can make it so by means
of elementary row operations, more specifically the operations of (i) adding a multiple of one row to
another row and (ii) interchanging two rows. Operation (i) does not affect the value of the determinant,
while operation (ii) multiplies the value by −1. We perform such operations on the first k rows of A in
such a way that A11 becomes upper triangular, and then operate on the last n − k rows of A such that
A22 becomes upper triangular. The number σ of sign changes that |A| undergoes is then the sum of the
numbers σ1 and σ2 of sign changes inflicted on |A11| and |A22|, respectively. By the formula we showed
for the upper triangular case, (−1)σ |A| = (−1)σ1 |A11| · (−1)σ2 |A22|, and since σ1 + σ2 = σ , we get
|A| = |A11| |A22| in the general case too.

To show the formula

∣∣∣∣A11 0
A21 A22

∣∣∣∣ = |A11| |A22|, simply look at the determinant

∣∣∣∣A′
11 A′

21
0 A′

22

∣∣∣∣ of the

transposed matrix.

(b) The equality follows by direct multiplication. By the result in (a), the first factor on the left has
determinant |Ik| |In−k| = 1, and so, by (a) again,∣∣∣∣A11 A12

A21 A22

∣∣∣∣ = ∣∣∣∣A11 − A12A−1
22 A21 0

A21 A22

∣∣∣∣ = |A11 − A12A−1
22 A21| |A22|

1.9.7 (a) With D =
(

In A
0 Im

)
and E =

(
In −A
B Im

)
we get

DE =
(

In + AB 0
B Im

)
and ED =

(
In 0
B Im + BA

)
Cofactor expansion of the determinant of DE along each of the last m columns shows that |DE| =
|In + AB|. Similarly, cofactor expansion along each of the first n rows shows that |ED| = |Im + BA|.

Alternatively, we could use formula (7) with A22 = Im to evaluate |DE| and formula (6) with A11 = In
to evaluate |ED|.
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(b) With A and B as in the hint, AB is an n× n matrix with every column equal to A. Therefore

F = In + AB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a1 − 1

1

a1 − 1
. . .

1

a1 − 1
1

a2 − 1

a2

a2 − 1
. . .

1

a2 − 1
...

...
. . .

...
1

an − 1

1

an − 1
. . .

an

an − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

G =

⎛⎜⎜⎝
a1 1 . . . 1
1 a2 . . . 1
...

...
. . .

...

1 1 . . . an

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a1 − 1 0 . . . 0

0 a2 − 1 . . . 0
...

...
. . .

...

0 0 . . . an − 1

⎞⎟⎟⎠ (In + AB)

From the result in (a) it follows that

|G| = (a1 − 1)(a2 − 1) · · · (an − 1) |In + AB| = (a1 − 1)(a2 − 1) · · · (an − 1) |I1 + BA|

= (a1 − 1)(a2 − 1) · · · (an − 1)

(
1 +

n∑
i=1

1

ai − 1

)

Chapter 2 Multivariable Calculus

2.1

2.1.3 (a) The unit vector in the direction given by v = (1, 1) is a = 1
‖v‖v = 1√

2
(1, 1). By formula (2.1.8)

the directional derivative of f in this direction at (2, 1) is

f ′
a(2, 1) = ∇f (2, 1) · a = 1√

2
∇f (2, 1) · (1, 1) = 1√

2
(2, 1) · (1, 1) = 3√

2
= 3

√
2

2

Note: It is pure coincidence that the gradient of f at (2,1) equals (2,1).

(b) The gradient of g is ∇g(x, y, z) = ((1 + xy)exy − y, x2exy − x,−2z), and the unit vector in the
direction given by (1, 1, 1) is b = 1√

3
(1, 1, 1). Formula (2.8.1) gives

g′b(0, 1, 1) = ∇g(0, 1, 1) · b = 1√
3
(0, 0,−2) · (1, 1, 1) = − 2√

3
= −2

√
3

3

2.1.5 (a) The vector from (3, 2, 1) to (−1, 1, 2) is (−1, 1, 2)− (3, 2, 1) = (−4,−1, 1), and the unit vector
in this direction is a = 1√

18
(−4,−1, 1). The gradient of f is

∇f (x, y, z) =
(
y ln(x2+y2+z2)+ 2x2y

x2 + y2 + z2
, x ln(x2+y2+z2)+ 2xy2

x2 + y2 + z2
,

2xyz

x2 + y2 + z2

)
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By formula (2.1.8) the directional derivative of f at (1, 1, 1) in the direction a is

f ′
a(1, 1, 1) = (1/

√
18 )∇f (1, 1, 1) · (−4,−1, 1)

= (1/
√

18 ) (ln 3 + 2/3, ln 3 + 2/3, 2/3) · (−4,−1, 1) = −(5 ln 3 + 8/3)/
√

18

(b) At (1, 1, 1) the direction of fastest growth forf is given by∇f (1, 1, 1) = (ln 3+2/3, ln 3+2/3, 2/3).

2.1.6 The unit vector in the direction of maximal increase of f at (0, 0) is a = 1√
10
(1, 3) and therefore

∇f (0, 0) = ta for a number t ≥ 0. We also know that f ′
a(0, 0) = 4. On the other hand, by (2.1.8),

f ′
a(0, 0) = ∇f (0, 0) · a = ta · a = t‖a‖2 = t . Hence, t = 4 and

∇f (0, 0) = 4a = 4√
10
(1, 3) = 4

√
10

10
(1, 3) = 2

√
10

5
(1, 3)

2.1.9 (a) We know that y ′ = −F ′
1(x, y)/F

′
2(x, y), and by the chain rule for functions of several variables,

y ′′ = d

dx
(y ′) = − ∂

∂x

(
F ′

1(x, y)

F ′
2(x, y)

)
dx

dx
− ∂

∂y

(
F ′

1(x, y)

F ′
2(x, y)

)
dy

dx

= −F
′′
11F

′
2 − F ′

1F
′′
21

(F ′
2)

2
· 1 − F ′′

12F
′
2 − F ′

1F
′′
22

(F ′
2)

2

(
−F

′
1

F ′
2

)
= −(F ′′

11F
′
2 − F ′

1F
′′
21)F

′
2 + (F ′′

12F
′
2 − F ′

1F
′′
22)F

′
1

(F ′
2)

3
= −F ′′

11(F
′
2)

2 + 2F ′′
12F

′
1F

′
2 − F ′′

22(F
′
1)

2

(F ′
2)

3

(Remember that F ′′
21 = F ′′

12.) Expanding the determinant in the problem yields precisely the numerator
in the last fraction.

2.2
2.2.6 (a) If x and y are points in S and λ ∈ [0, 1], then ‖x‖ ≤ r , ‖y‖ ≤ r , and by the triangle inequality,

‖λx + (1 − λ)y‖ ≤ λ‖x‖ + (1 − λ)‖y‖ ≤ λr + (1 − λ)r = r . Hence, λx + (1 − λ)y belongs to S. It
follows that S is convex.

(b) S1 is the interior of the ball S, i.e. what we get when we remove the spherical “shell” {x : ‖x‖ = r}
from S. The triangle inequality shows that S1 is convex. The set S2 is the spherical shell we mentioned,
while S3 consists of the shell and the part of �n that lies outside S. Neither S2 nor S3 is convex.

2.2.7 (a) Let us call a set S of numbers midpoint convex if 1
2 (x1 + x2) whenever x1 and x2 belong to S.

The set S = � of rational numbers is midpoint convex, but it is not convex, for between any two rational
numbers r1 and r2 there are always irrational numbers. For example, let t = r1 + (r2 − r1)/

√
2. Then t

lies between r1 and r2. If t were rational, then
√

2 = (r2 − r1)/(t − r1) would also be rational, but we
know that

√
2 is irrational.

(b) SupposeS is midpoint convex and closed. Let x1 and x2 be points inS, with x1 < x2, and letλ in (0, 1).
We shall prove that the point z = λx1+(1−λ)x2 belongs to S. Since S is midpoint convex, it must contain
y1 = 1

2 (x1+x2), and then it contains y21 = 1
2 (x1+y1) = 3

4x1+ 1
4x2 and y22 = 1

2 (y1+x2) = 1
4x1+ 3

4x2.
We can continue in this fashion, constructing new midpoints between the points that have already been
constructed, and we find that S must contain all points of the form

k

2n
x1 + 2n − k

2n
x2 = k

2n
x1 +

(
1 − k

2n

)
x2, n = 1, 2, 3, . . . , k = 0, 1, . . . , 2n
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Thus, for each n we find 2n + 1 evenly spaced points in the interval [x1, x2] that all belong to S. The
distance between two neighbouring points in this collection is (x2 − x1)/2n. Now let r be any positive
number, and consider the open r-ball (open interval) B = B(z; r) = (z− r, z+ r) around z. Let n be so
large that (x2 − x1)/2n < 2r . Then B must contain at least one of the points (k/2n)x1 + (1 − k/2n)x2

constructed above, so B contains at least one point from S. It follows that z does indeed belong to
cl(S) = S.

2.2.8 Let S be a convex subset of � containing more than one point, and let a = inf S, b = sup S (where
a and b may be finite or infinite). Then a < b. In order to prove that S is an interval, it suffices to show
that S contains the open interval (a, b). Let x be a point in (a, b). Since x < b = sup S, there exists a β
in S with x < β. Similarly, there is an α in S with α < x. Then x is a convex combination of α and β,
and since S is convex, x belongs to S.

2.3
2.3.5 (a) z′′11(x, y) = −ex − ex+y , z′′12(x, y) = −ex+y , and z′′22(x, y) = −ex+y , so z′′11(x, y) < 0 and

z′′11z
′′
22 − (z′′12)

2 = e2x+y > 0. By Theorem 2.3.1, z is a strictly concave function of x and y.

(b) z is strictly convex, because z′′11 = ex+y + ex−y > 0 and z′′11z
′′
22 − (z′′12)

2 = 4e2x > 0.

(c) w = u2, where u = x + 2y + 3z. So w is a convex function of an affine function, hence convex
according to (2.3.8). It is not strictly convex, however, because it is constant on every plane of the form
x + 2y + 3z = c, and therefore constant along each line joining two points in such a plane.

2.3.6 (b) Let λ2 > λ1 > 0 and define μ = λ1/λ2. Then μ ∈ (0, 1) and by the concavity of f we have
μf (λ2x) + (1 − μ)f (0) ≤ f (μλ2x + (1 − μ)0), i.e. (λ1/λ2)f (λ2x) ≤ f (λ1x), so f (λ2x)/λ2 ≤
f (λ1x)/λ1. It also follows that if f is strictly concave, then f (λx)/λ is strictly decreasing as a function
of λ.

(c) Take any x �= 0 in the domain of f . Then x �= 2x and f ( 1
2 x + 1

2 2x) = f ( 3
2 x) = 3

2f (x) =
1
2f (x)+ f (x) = 1

2f (x)+ 1
2f (2x). Therefore f cannot be strictly concave.

2.3.8 The challenge here is mainly in getting the derivatives right, but with care and patience you will find
that

f ′′
11(v1, v2) = −Pv2

2, f ′′
12(v1, v2) = Pv1v2, f ′′

22(v1, v2) = −Pv2
1

where

P = (ρ + 1)δ1δ2A(v1v2)
−ρ−2(δ1v

−ρ
1 + δ2v

−ρ
2

)−(1/ρ)−2

These formulas show that for all v1 and v2, the “direct” second derivatives f ′′
11 and f ′′

22 have the same sign
as −(ρ + 1). Also, f ′′

11f
′′
22 − (f ′′

12)
2 = 0 everywhere. It follows from Theorem 2.3.1 that f is convex if

ρ ≤ −1, and concave if ρ ≥ −1. If ρ = −1 then f (v1, v2) = A(δ1v1 + δ2v2) is a linear function, which
indeed is both convex and concave.

The equation f ′′
11f

′′
22 − (f ′′

12)
2 = 0 is a consequence of the fact that f is homogeneous of degree 1,

see e.g. Section 12.6 on homogeneous functions in EMEA. Since f is homogeneous of degree 1, it is
linear along each ray from the origin and therefore it cannot be strictly convex or strictly concave for any
value of ρ.

2.3.9 (a) This is mainly an exercise in manipulating determinants. If you feel that the calculations below
look frightening, try to write them out in full for the case k = 3 (or k = 2). Note that z′′ij = aiaj z/xixj
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for i �= j , and z′′ii = ai(ai − 1)z/x2
i . Rule (1.1.20) tells us that a common factor in any column (or row)

in a determinant can be “moved outside”. Therefore,

Dk =

∣∣∣∣∣∣∣∣∣∣

z′′11 z′′12 . . . z′′1k
z′′21 z′′22 . . . z′′2k
...

...
. . .

...

z′′k1 z′′k2 . . . z′′kk

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1(a1 − 1)

x2
1

z
a1a2

x1x2
z · · · a1ak

x1xk
z

a2a1

x2x1
z

a2(a2 − 1)

x2
2

z · · · a2ak

x2xk
z

...
...

. . .
...

aka1

xkx1
z

aka2

xkx2
z · · · ak(ak − 1)

x2
k

z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)= a1a2 . . . ak

x1x2 . . . xk
zk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − 1

x1

a1

x1
· · · a1

x1

a2

x2

a2 − 1

x2
· · · a2

x2
...

...
. . .

...
ak

xk

ak

xk
· · · ak − 1

xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2)= a1a2 . . . ak

(x1x2 . . . xk)2
zk

∣∣∣∣∣∣∣∣
a1 − 1 a1 · · · a1

a2 a2 − 1 · · · a2
...

...
. . .

...

ak ak · · · ak − 1

∣∣∣∣∣∣∣∣

where equality (1) holds because aj z/xj is a common factor in column j for each j and equality (2) holds
because 1/xi is a common factor in row i for each i.

(b) More determinant calculations. Let sk =∑k
i=1 ai = a1+· · ·+ak . We use the expression forDk that

we found in part (a), and add rows 2, 3, . . . , k to the first row. Then each entry in the first row becomes
equal to sk − 1. Afterwards we take the common factor sk − 1 in row 1 and move it outside.

Dk = a1a2 . . . ak

(x1x2 . . . xk)2
zk

∣∣∣∣∣∣∣∣
sk − 1 sk − 1 · · · sk − 1
a2 a2 − 1 · · · a2
...

...
. . .

...

ak ak · · · ak − 1

∣∣∣∣∣∣∣∣
= (sk − 1)

a1a2 . . . ak

(x1x2 . . . xk)2
zk

∣∣∣∣∣∣∣∣
1 1 · · · 1
a2 a2 − 1 · · · a2
...

...
. . .

...

ak ak · · · ak − 1

∣∣∣∣∣∣∣∣
Now subtract column 1 from all the other columns. Rule (1.1.22) says that this does not change the value
of the determinant, so

Dk = (sk − 1)
a1a2 . . . ak

(x1x2 . . . xk)2
zk

∣∣∣∣∣∣∣∣
1 0 · · · 0
a2 −1 · · · 0
...

...
. . .

...

ak 0 · · · −1

∣∣∣∣∣∣∣∣ = (−1)k−1(sk − 1)
a1a2 . . . ak

(x1x2 . . . xk)2
zk

(c) By assumption, ai > 0 for all i, so if
∑n

i=1 ai < 1, then sk = ∑k
i=1 ai < 1 for all k. Therefore Dk

has the same sign as (−1)k . It follows from Theorem 2.3.2(b) that f is strictly concave.
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2.4
2.4.3 We shall show that Jensen’s inequality (2.4.2) holds for all natural numbersm, not just form = 3. Let

f be a function defined on a convex set S in �n and for each natural numberm let A(m) be the following
statement: “The inequality

f (λ1x1 + · · · + λmxm) ≥ λ1f (x1)+ · · · + λmf (xm)
holds for all x1, . . . , xm in S and all λ1 ≥ 0, . . . , λm ≥ 0 with λ1 + · · · + λm = 1.”

We shall prove that A(m) is true for every natural number m. It is obvious that A(1) is true, since
it just says that f (x) = f (x), and A(2) is also true, since f is concave. Now suppose that A(k) is true,
where k is some natural number greater than 1. We shall prove that A(k + 1) is also true.

Let x1, . . . , xk+1 be points in S and let λ1, . . . , λk+1 be nonnegative numbers with sum 1. We can
assume that λk+1 > 0, for otherwise we are really in the case m = k. Then μ = λk + λk+1 > 0 and we
can define y = (1/μ)(λkxk + λk+1xk+1). The point y is a convex combination of xk and xk+1, and so
y ∈ S. By A(k) we have

f (λ1x1 + · · · + λk+1xk+1) = f (λ1x1 + · · · + λk−1xk−1 + μy)

≥ λ1f (x1)+ · · · + λk−1f (xk−1)+ μf (y)
(∗)

Moreover, since f is concave, and (λk/μ)+ (λk+1/μ) = 1,

μf (y) = μf

(
λk

μ
xk + λk+1

μ
xk+1

)
≥ μ

(
λk

μ
f (xk)+ λk+1

μ
f (xk+1)

)
= λkf (xk)+ λk+1f (xk+1)

and this inequality together with (∗) yields

f (λ1x1 + · · · + λk+1xk+1) ≥ λ1f (x1)+ · · · + λk−1f (xk−1)+ λkf (xk)+ λk+1f (xk+1)

which shows thatA(k+1) is true. To sum up, we have shown that: (i)A(2) is true, (ii)A(k)⇒ A(k+1)
for every natural number k ≥ 2. It then follows by induction that A(m) is true for all m ≥ 2. Note that
both (i) and (ii) are necessary for this conclusion.

2.4.5 Let x, y belong to S and let λ ∈ [0, 1]. Then z = λx + (1 − λ)y belongs to S. To show that f is
concave, it is sufficient to show that λf (x)+ (1−λ)f (y) ≤ f (z). By assumption, f has a supergradient
p at z, and therefore

f (x)− f (z) ≤ p · (x − z) and f (y)− f (z) ≤ p · (y − z)

Since both λ and 1 − λ are nonnegative, it follows that

λf (x)+ (1 − λ)f (y)− f (z) = λ[f (x)− f (z)] + (1 − λ)[f (y)− f (z)]
≤ p · [λ(x − z)+ (1 − λ)(y − z)] = p · 0 = 0

by the definition of z.

2.4.6 Theorem 2.4.1(c) tells us that f (x, y) = x4 + y4 is a strictly convex function of (x, y) if and only if
f (x, y)− f (x0, y0) > ∇f (x0, y0) · (x − x0, y − y0) whenever (x, y) �= (x0, y0). Since ∇f (x0, y0) =
(4x3

0 , 4y3
0), we have

f (x, y)− f (x0, y0)− ∇f (x0, y0) · (x − x0, y − y0) = p(x, x0)+ p(y, y0)
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where p(t, t0) = t4 − t40 − 4t30 (t − t0) for all t and t0. Now, p(t, t0) = (t − t0)(t3 + t2t0 + t t20 − 3t30 ).
The second factor here is 0 if t = t0, so it is divisible by t − t0, and polynomial division yields

p(t, t0) = (t − t0)(t − t0)(t2 + 2t t0 + 3t20 ) = (t − t0)2[(t + t0)2 + 2t20 ]

The expression in square brackets is strictly positive unless t = t0 = 0, so it follows that p(t, t0) > 0
whenever t �= t0. Hence, p(x, x0)+ p(y, y0) > 0 unless both x = x0 and y = y0.

2.5

2.5.2 (a) f is linear, so it is concave and therefore also quasiconcave.

(c) The set of points for which f (x, y) ≥ −1 is P−1 = {(x, y) : y ≤ x−2/3}, which is not a convex
set (see Fig. M2.5.2(c), where P−1 is the unshaded part of the plane), so f is not quasiconcave. (It is
quasiconvex in the first quadrant, though.)

(d) The polynomial x3 + x2 + 1 is increasing in the interval (−∞,−2/3], and decreasing in [−2/3, 0].
So f is increasing in (−∞,−2/3] and decreasing in [−2/3,∞). (See Fig. M2.5.2(d).) Then the upper
level sets must be intervals (or empty), and it follows that f is quasiconcave. Alternatively, we could use
the result in the note below.

y

-2

-1

1

2

3

4

x
-4 -3 -2 -1 1 2 3 4

f (x) ≤ −1f (x) ≤ −1

y

-1

1

2

3

x
-3 -2 -1 1 2 3

y = x3 + x2 + 1

y = f (x)

Figure M2.5.2(c) Neither P a nor Pa
is convex for a = −1.

Figure M2.5.2(d) The graph of f .

A note on quasiconcave functions of one variable

It is shown in Example 2.5.2 in the book that a function of one variable that is increasing or decreasing
on a whole interval is both quasiconcave and quasiconvex on that interval. Now suppose f is a function
defined on an interval (a, b) and that there is a point c in (a, b such that f is increasing on (a, c] and
decreasing on [c, b). Then f is quasiconcave on the interval (a, b). This follows because the upper level
sets must be intervals. Alternatively we can use Theorem 2.5.1(a) and note that if x and y are points in
(a, b), then f (z) ≥ min{f (x), f (y)} for all z between x and y. We just have to look at each of the three
possibilities x < y ≤ c, x ≤ c < y, and c < x < y, and consider the behaviour of f over the interval
[x, y] in each case. This argument also holds if a = −∞ or b = ∞, and also in the case of a closed
or half-open interval. Similarly, if f is decreasing to the left of c and increasing to the right, then f is
quasiconvex.

We could use this argument in Problem 2.5.2(d), for instance.

2.5.6 Since f is decreasing and g is increasing, it follows from Example 2.4.2 that both of these functions
are quasiconcave as well as quasiconvex. Their sum, f (x) + g(x) = x3 − x, is not quasiconcave,
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however. For instance, it is clear from Fig. A2.5.6 in the answer section of the book that the upper level
set P0 = {x : f (x)+ g(x) ≥ 0} = [−1, 0]∪ [1,∞), which is not a convex set of �. Similarly, the lower
level set P 0 = (−∞,−1] ∪ [0, 1] is not convex, and so f + g is not quasiconvex either.

2.5.7 (a) Let f be single-peaked with a peak at x∗. We want to prove that f is strictly quasiconcave. That
is, we want to prove that if x < y and z is a point strictly between x and y, then f (z) > min{f (x), f (y)}.
There are two cases to consider:

(A) Suppose z ≤ x∗. Since x < z ≤ x∗ and f is strictly increasing in the interval [x, x∗], we have
f (z) > f (x).

(B) Suppose x∗ < z. Then x∗ < z < y, and since f is strictly decreasing in [x∗, y], we get f (z) > f (y).

In both cases we get f (z) > min{f (x), f (y)}, and so f is strictly quasiconcave

(b) No. Even if f is concave, it may, for example, be linear in each of the intervals (−∞, x∗] and
[x∗,∞), or in parts of one or both of these intervals, and in such cases f cannot be strictly concave.

2.5.11 With apologies to the reader, we would like to change the name of the function from f to h. So
h(x) is strictly quasiconcave and homogeneous of degree q ∈ (0, 1), with h(x) > 0 for all x �= 0 in
K and h(0) = 0, and we want to prove that h is strictly concave in the convex cone K. Define a new
function f by f (x) = h(x)1/q . Then f (x) is also strictly quasiconcave (use the definition) and satisfies
the conditions of Theorem 2.5.3. Let x �= y and let λ ∈ (0, 1).

Assume first that x and y do not lie on the same ray from the origin in �n. Then both f (x) and f (y)
are strictly positive and we can define α, β, μ, x′, and y′ as in the proof of Theorem 2.5.3. We get x′ �= y′
and f (x′) = f (y′), and (see the original proof)

f (λx + (1 − λ)y) = f (μx′ + (1 − μ)y′) > f (x′) = f (y′) = μf (x′)+ (1 − μ)f (y′)
= (μβ/α)f (x)+ (β − βμ)f (y) = λf (x)+ (1 − λ)f (y)

with strict inequality because f is strictly quasiconcave. Since 0 < q < 1, the qth power function t �→ tq

is strictly increasing and strictly concave, and therefore

h(λx + (1 − λ)y) = (f (λx + (1 − λ)y))q > (λf (x)+ (1 − λ)f (y))q
> λf (x)q + (1 − λ)f (y)q = λh(x)+ (1 − λ)h(y)

It remains to show that h(λx + (1 − λ)y) > λh(x) + (1 − λ)h(y) in the case where x and y lie on the
same ray from the origin. We can assume that x �= 0 and y = tx for some nonnegative number t �= 1.
Since the qth power function is strictly concave, (λ+ (1− λ)t)q > λ1q + (1− λ)tq = λ+ (1− λ)tq . It
follows that

h(λx + (1 − λ)y) = h
(
(λ+ (1 − λ)t)x) = (λ+ (1 − λ)t)qh(x)

>
(
λ+ (1 − λ)tq)h(x) = λh(x)+ (1 − λ)h(tx) = λh(x)+ (1 − λ)h(y)

2.6
2.6.1 (a) f ′

1(x, y) = yexy , f ′
2(x, y) = xexy , f ′′

11(x, y) = y2exy . f ′′
12(x, y) = exy + xyexy , f ′′

22(x, y) =
x2ex,y . With the exception of f ′′

12, these derivatives all vanish at the origin, so we are left with the quadratic
approximation f (x, y) ≈ f (0, 0)+ f ′′

12(0, 0)xy = 1 + xy.
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(b) f ′
1(x, y) = 2xex

−y2
, f ′

2(x, y) = −2yex
2−y2

, f ′′
11(x, y) = (2+4x2)ex

2−y2
, f ′′

12(x, y) = −4xyex
2−y2

,

f ′′
22(x, y) = (−2 + 4y2)ex

2−y2
. Hence, f ′

1(0, 0) = f ′
2(0, 0) = 0, f ′′

11(0, 0) = 2, f ′′
12(0, 0) = 0,

f ′′
22(0, 0) = −2.

Quadratic approximation: f (x, y) ≈ f (0, 0)+ 1
2f

′′
11(0, 0)x2 + 1

2f
′′
22(0, 0)y2 = 1 + x2 − y2.

(c) The first- and second-order derivatives are: f ′
1(x, y) = 1

1 + x + 2y
, f ′

2(x, y) = 2

1 + x + 2y
,

f ′′
11(x, y) = − 1

(1 + x + 2y)2
, f ′′

12(x, y) = − 2

(1 + x + 2y)2
, f ′′

22(x, y) = − 4

(1 + x + 2y)2
.

At (0, 0) we get f (0, 0) = 1, f ′
1(0, 0) = 1, f ′

2(0, 0) = 2, f ′′
11(0, 0) = −1, f ′′

2 (0, 0) = −2, f ′′
22(0, 0) =

−4, and the quadratic approximation to f (x, y) around (0, 0) is

f (x, y) ≈ f (0, 0)+ f ′
1(0, 0)x + f ′

2(0, 0)y + 1
2f

′′
11(0, 0)x2 + f ′′

12(0, 0)xy + 1
2f

′′
22(0, 0)y2

= 1 + x + 2y − 1
2x

2 − 2xy − 2y2

(There is a misprint in the answer in the first printing of the book.)

2.6.4 z is defined implicitly as a function of x and y by the equation F(x, y, z) = 0, where F(x, y, z) =
ln z− x3y+ xz− y. With x = y = 0 we get ln z = 0, so z = 1. Since F ′

3(x, y, z) = 1/z+ x = 1 �= 0 at
(x, y, z) = (0, 0, 1), z is aC1 function of x and y around this point. In order to find the Taylor polynomial
we need the first- and second-order derivatives of z with respect to x and y. One possibility is to use the
formula z′x = −F ′

1(x, y, z)/F
′
3(x, y, z) and the corresponding formula for z′y , and then take derivatives of

these expressions to find the second-order derivatives. That procedure leads to some rather nasty fractions
with a good chance of going wrong, so instead we shall differentiate the equation ln z = x3y − xz + y,
keeping in mind that z is a function of x and y. We get

z′x/z = 3x2y − z− xz′x �⇒ (1 + xz)z′x = 3x2yz− z2 (1)

z′y/z = x3 − xz′y + 1 �⇒ (1 + xz)z′y = x3z+ z (2)

Taking derivatives with respect to x and y in (1), we get

(z+ xz′x)z′x + (1 + xz)z′′xx = 6xyz+ 3x2yz′x − 2zz′x (3)

xz′yz
′
x + (1 + xz)z′′xy = 3x2z+ 3x2yz′y − 2zz′y (4)

and differentiating (2) with respect to y, we get

xz′yz
′
y + (1 + xz)z′′yy = x3z′y + z′y (5)

Now that we have finished taking derivatives, we can let x = y = 0 and z = 1 in the equations we have
found. Equations (1) and (2) give z′x = −1 and z′y = 1 (at the particular point we are interested in), and
then (3)–(5) give z′′xx = 3, z′′xy = −2, and z′′yy = 1. The quadratic approximation to z around (0, 0) is
therefore

z ≈ 1 − x + y + 3
2x

2 − 2xy + 1
2y

2

(The first printing of the book has a misprint in the answer to this problem, too—the coefficient of x2 is
wrong.)

2.7
2.7.2 (a) F(x, y, z) = x3 + y3 + z3 − xyz − 1 is obviously C1 everywhere, and F ′

3(0, 0, 1) = 3 �= 0,
so by the implicit function theorem the equation defines z as a C1 function g(x, y) in a neighbourhood
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of (x0, y0, z0) = (0, 0, 1). To find the partial derivatives g′1 and g′2 there is no need to use the matrix
formulation in Theorem 2.7.2. After all, g is just a single real-valued function, and the partial derivative
g′1(x, y) is just what we get if we treat y as a constant and take the derivative of g with respect to x.
Thus, g′1(x, y) = −F ′

1(x, y, z)/F
′
3(x, y, z) = −(3x2 − yz)/(3z2 − xy) and, in particular, g′1(0, 0) =

−F ′
1(0, 0, 1)/F ′

3(0, 0, 1) = 0. Likewise, g′2(0, 0) = 0.

(b) As in part (a), F ′
3 is C1 everywhere and F ′

3(x, y, z) = ez − 2z �= 0 for z = 0, so the equa-
tion F = 0 defines z as a C1 function g(x, y) around (x0, y0, z0) = (1, 0, 0). We get g′1(x, y) =
−F ′

1(x, y, z)/F
′
3(x, y, z) = 2x/(ez − 2z) and g′2(x, y, z) = −F ′

2/F
′
3 = 2y/(ez − 2z), so g′1(1, 0) = 2

and g′2(1, 0) = 0.

2.7.3 The given equation system can be written as f(x, y, z, u, v,w) = 0, where f = (f1, f2, f3) is the
function �3 ×�3 → �3 given by f1(x, y, z, u, v,w) = y2 − z+ u− v−w3 + 1, f2(x, y, z, u, v,w) =
−2x + y − z2 + u + v3 − w + 3, and f3(x, y, z, u, v,w) = x2 + z − u − v + w3 − 3. The Jacobian
determinant of f with respect to u, v, w is

∂(f1, f2, f3)

∂(u, v,w)
=
∣∣∣∣∣∣

1 −1 −3w2

1 3v2 −1
−1 −1 3w2

∣∣∣∣∣∣ = 6w2 − 2

This determinant is different from 0 at P , so according to Theorem 2.7.2 the equation system does define
u, v, andw asC1 functions of x, y, and z. The easiest way to find the partial derivatives of these functions
with respect to x is probably to take the derivatives with respect to x in each of the three given equations,
remembering that u, v, w are functions of x, y, z. We get

u′x − v′x − 3w2w′
x = 0

−2 + u′x + 3v2v′x − w′
x = 0

2x − u′x − v′x + 3w2w′
x = 0

⎫⎪⎬⎪⎭ , so at P we get

⎧⎪⎨⎪⎩
u′x − v′x − 3w′

x = 0

u′x − w′
x = 2

−u′x − v′x + 3w′
x = −2

The unique solution of this system is u′x = 5/2, v′x = 1, w′
x = 1/2. (In the first printing of the book w′

x

was incorrectly given as 5/2.)

2.7.4 The Jacobian determinant is

∣∣∣∣ f ′
u f ′

v

g′u g′v

∣∣∣∣ = ∣∣∣∣ eu cos v −eu sin v
eu sin v eu cos v

∣∣∣∣ = e2u(cos2 v+ sin2 v) = e2u, which

is nonzero for all u (and v).

(a) eu �= 0, so the equations imply cos v = sin v = 0, but that is impossible because cos2 v+ sin2 v = 1.

(b) We must have cos v = sin v = e−u, and since cos2 v + sin2 v = 1 we get 2 cos2 v = 1 and
therefore sin v = cos v = √

1/2 = 1
2

√
2. (Remember that cos v = e−u cannot be negative.) The only

values of v that satisfy these equations are v = ( 1
4 + 2k)π , where k runs through all integers. Further,

eu = 1/ cos v = √
2 gives u = 1

2

√
2.

2.7.6 The Jacobian is x1. We find that x1 = y1 + y2, x2 = y2/(y1 + y2) (provided y1 + y2 �= 0). The
transformation maps the given rectangle onto the set S in the y1y2-plane given by the inequalities

(i) 1 ≤ y1 + y2 ≤ 2, (ii)
1

2
≤ y2

y1 + y2
≤ 2

3

The inequalities (i) show that y1 + y2 > 0, and if we multiply by 6(y1 + y2) in (ii) we get the equivalent
inequalities

3(y1 + y2) ≤ 6y2 ≤ 4(y1 + y2) ⇐⇒ y1 ≤ y2 ≤ 2y1 (iii)
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It follows that S is a quadrilateral with corners at (1/2, 1/2), (1, 1), (2/3, 4/3), and (1/3, 2/3). See figure
M2.7.6.

y2

y1

y2 = 2y1

y2 = y1

y1 + y2 = 2

y1 + y2 = 1
21

1

2

S

Figure M2.7.6

2.7.8 (a) J =
∣∣∣∣∣
∂
∂r
(r cos θ) ∂

∂θ
(r cos θ)

∂
∂r
(r sin θ) ∂

∂θ
(r sin θ)

∣∣∣∣∣ =
∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r

(b) J �= 0 everywhere except at the origin in the rθ -plane, so T is locally one-to-one in A. But it is not
globally one-to-one in A, since we have, for example, T (r, 0) = T (r, 2π).

2.7.10 (a) Taking differentials in the equation system

1 + (x + y)u− (2 + u)1+v = 0

2u− (1 + xy)eu(x−1) = 0
(1)

we get

u(dx + dy)+ (x + y) du− e(1+v) ln(2+u)
[

ln(2 + u) dv + 1 + v
2 + u du

]
= 0

2 du− eu(x−1)(y dx + x dy)− (1 + xy)eu(x−1)((x − 1) du+ u dx) = 0

If we now let x = y = u = 1 and v = 0, we get

2 du+ dx + dy − 3 ln 3 dv − du = 0
and

2 du− dx − dy − 2 dx = 0

Rearranging this system gives
du− 3 ln 3 dv = −dx − dy

2 du = 3 dx + dy
with the solutions

du = 3

2
dx + 1

2
dy and dv = 1

3 ln 3

(
5

2
dx + 3

2
dy

)
Hence,

u′x(1, 1) = ∂u

∂x
(1, 1) = 3

2
and v′x(1, 1) = ∂v

∂x
(1, 1) = 5

6 ln 3
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(Alternatively we could have used the formula for the derivatives of an implicit function, but it is still a
good idea to substitute the values of x, y, u, and v after finding the derivatives.)

(b) Define a function f by f (u) = u − aeu(b−1). Then f (0) = −a and f (1) = 1 − aeb−1. Since
b ≤ 1, we have eb−1 ≤ e0 = 1. It follows that aeb−1 ≤ a ≤ 1, so f (1) ≥ 0. On the other hand,
f (0) ≤ 0, so the intermediate value theorem ensures that f has at least one zero in [0, 1]. Further,
f ′(u) = 1 − a(b − 1)eu(b−1) ≥ 1, because a(b − 1) ≤ 0. Therefore f is strictly increasing and cannot
have more than one zero, so the solution of f (u) = 0 is unique.

(c) For given values of x and y, let a = (1+xy)/2 and b = x. The equation in part (b) is then equivalent
to the second equation in system (1). Thus we get a uniquely determined u, and this u belongs to [0, 1].
(Note that, when x and y lie in [0, 1], then the values of a and b that we have chosen also lie in [0, 1].)
The first equation in (1) now determines v uniquely, as

v = −1 + ln(1 + (x + y)u)
ln(2 + u)

2.8
2.8.1 (a) The system has 7 variables, Y , C, I , G, T , r , and M , and 4 equations, so the counting rule says

that the system has 7 − 4 = 3 degrees of freedom.

(b) We can write the system as

f1(M, T ,G, Y,C, I, r) = Y − C − I −G = 0

f2(M, T ,G, Y,C, I, r) = C − f (Y − T ) = 0

f3(M, T ,G, Y,C, I, r) = I − h(r) = 0

f4(M, T ,G, Y,C, I, r) = r −m(M) = 0

(∗)

Suppose that f , h, and m are C1 functions and that the system has an equilibrium point (i.e. a solution
of the equations), (M0, T0,G0, Y0, C0, I0, r0). The Jacobian determinant of f = (f1, f2, f3, f4) with
respect to (Y, C, I, r) is

∂(f1, f2, f3, f4)

∂(Y, C, I, r)
=

∣∣∣∣∣∣∣∣
1 −1 −1 0

−f ′(Y − T ) 1 0 0
0 0 1 −h′(r)
0 0 0 1

∣∣∣∣∣∣∣∣ = 1 − f ′(Y − T )

so by the implicit function theorem the system (∗) defines Y , C, I , and r as C1 functions of M , T , and
G around the equilibrium point if f ′(Y − T ) �= 1.

Note that the functionsh andm have no influence on the Jacobian determinant. The reason is that once
M , T , and G are given, the last equation in (∗) immediately determines r , and the next to last equation
then determines I . The problem therefore reduces to the question whether the first two equations can
determine Y and T when the values of the other variables are given. The implicit function theorem tells
us that the answer will certainly be yes if the Jacobian determinant∣∣∣∣∂(f1, f2)

∂(Y, C)

∣∣∣∣ = ∣∣∣∣ 1 −1
−f ′(Y − T ) 1

∣∣∣∣ = 1 − f ′(Y − T )

is nonzero, i.e. if f ′(Y − T ) �= 1.
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2.8.2 (a) The Jacobian determinants are

∂(u, v)

∂(x, y)
=
∣∣∣∣ u′x u′y
v′x v′y

∣∣∣∣ = ∣∣∣∣ ex+y ex+y

4x + 4y − 1 4x + 4y − 1

∣∣∣∣ = 0 (i)

∂(u, v)

∂(x, y)
=
∣∣∣∣ u′x u′y
v′x v′y

∣∣∣∣ =
∣∣∣∣∣∣∣∣

1

y

−x
y2

−2y

(y + x)2
2x

(x + y)2

∣∣∣∣∣∣∣∣ =
2x

y(y + x)2 − 2x

y(y + x)2 = 0 (ii)

(b) (i) It is not hard to see that v = 2(x + y)2 − (x + y) and x + y = ln u, so v = 2(ln u)2 − ln u.

(ii) We have x = uy, so

v = y − uy
y + uy = 1 − u

1 + u

2.8.3 We need to assume that the functions f and g are C1 in an open ball around (x0, y0). For all (x, y) in
A the Jacobian determinant is

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣ =
∣∣∣∣ f ′

1(x, y) f ′
2(x, y)

g′1(x, y) g′2(x, y)

∣∣∣∣ = 0

so f ′
2(x, y)g

′
1(x, y) = f ′

1(x, y)g
′
2(x, y). Since f ′

1(x0, y0) �= 0, the equationG(x, y, u) = u−f (x, y) =
0 defines x as a function x = ϕ(y, u) in an open ball around (y0, u0), where u0 = f (x0, y0). Within
this open ball we have ϕ′1(y, u) = ∂x/∂y = −(∂G/∂y)/(∂G/∂x) = −f ′

2(x, y)/f
′
1(x, y). Moreover,

v = g(x, y) = g(ϕ(y, u), y). If we let ψ(y, u) = g(ϕ(y, u), y), then ψ ′
1(y, u) = g′1ϕ′1 + g′2 =

−f ′
2g

′
1/f

′
1 + g′2 = −f ′

1g
′
2/f

′
1 + g′2 = 0. Thus, ψ(y, u) only depends on u, and v = ψ(y, u) is a function

of u alone. Hence, v is functionally dependent on u.
(If we let F(u, v) = v − ψ(y0, u), then F satisfies the requirements of definition (2.8.5).)

Chapter 3 Static Optimization

3.1
3.1.3 (a) The first-order conditions for maximum are

1

3
pv

−2/3
1 v

1/2
2 − q1 = 0,

1

2
pv

1/3
1 v

−1/2
2 − q2 = 0

with the unique solution

v∗1 = 1

216
p6q−3

1 q−3
2 , v∗2 = 1

144
p6q−2

1 q−4
2

The objective function pv1/3
1 v

1/2
2 − q1v1 − q2v2 is concave, cf. the display (2.5.6) on Cobb–Douglas

functions, and therefore (v∗1 , v∗2) is a maximum point.

(b) The value function is

π∗(p, q1, q2) = p(v∗1)
1/3(v∗2)

1/2 − q1v
∗
1 − q2v

∗
2 = 1

432
p6q−2

1 q−3
2
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and it follows that
∂π∗(p, q1, q2)

∂p
= 1

72
p5q−2

1 q−3
2 = (v∗1)

1/3(v∗2)
1/2

∂π∗(p, q1, q2)

∂q1
= − 1

216
p6q−3

1 q−3
2 = −v∗1 ,

∂π∗(p, q1, q2)

∂q2
= − 1

144
p6q−2

1 q−4
2 = −v∗2

3.1.5 The first-order conditions for maximum are

f ′
1(x, y, r, s) = r2 − 2x = 0, f ′

2(x, y, r, s) = 3s2 − 16y = 0

with the solutions x∗(r, s) = 1
2 r

2 and y∗(r, s) = 3
16 s

2. Since f (x, y, r, s) is concave with respect to
(x, y), the point (x∗, y∗) is a maximum point. Moreover,

f ∗(r, s) = f (x∗, y∗, r, s) = 1

4
r4 + 9

32
s4

so
∂f ∗(r, s)
∂r

= r3,
∂f ∗(r, s)
∂s

= 9

8
s3

On the other hand,
∂f (x, y, r, s)

∂r
= 2rx,

∂f (x, y, r, s)

∂s
= 6sy

so [
∂f (x, y, r, s)

∂r

]
(x,y)=(x∗,y∗)

= 2rx∗ = r3,

[
∂f (x, y, r, s)

∂s

]
(x,y)=(x∗,y∗)

= 6sy∗ = 9

8
s3

in accordance with the envelope result (3.1.3).

3.1.6 We want to maximize

π(v, p,q, a) = π(v1, . . . , vn;p, q1, . . . , qn, a1, . . . , an) =
n∑
i=1

(pai ln(vi + 1)− qivi)
with respect to v1, . . . , vn for given values of p, q = (q1, . . . , qn), and a = (a1, . . . , an). Since ∂π/∂vi =
pai/(vi + 1)− qi , the only stationary point is v∗ = v∗(p,q, a) = (v∗1 , . . . , v∗n), where v∗i = pai/qi − 1.
Since π is concave with respect to v1, . . . , vn, this is a maximum point. The corresponding maximum
value is

π∗(p, q1, . . . , qn, a1, . . . , an) =
n∑
i=1

(pai ln(v∗i + 1)− qiv∗i ) =
n∑
i=1

(
pai ln

(pai
qi

)− qi(pai
qi

− 1
))

=
n∑
i=1

(pai lnp + pai ln ai − pai ln qi − pai + qi)
Easy calculations now yield

∂π∗(p,q, a)
∂p

=
n∑
i=1

ai ln
(pai
qi

) = n∑
i=1

ai ln(v∗i + 1) =
[
∂π(v, p,q, a)

∂p

]
v=v∗(p,q,a)

∂π∗(p,q, a)
∂qi

= −pai
qi

+ 1 = −v∗i =
[
∂π(v, p,q, a)

∂qi

]
v=v∗(p,q,a)

∂π∗(p,q, a)
∂ai

= p ln
(pai
qi

) = p ln(v∗i + 1) =
[
∂π(v, p,q, a)

∂ai

]
v=v∗(p,q,a)

in accordance with formula (3.1.3).
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3.2
3.2.1 The first-order conditions are

f ′
1(x1, x2, x3) = 2x1 − x2 + 2x3 = 0

f ′
2(x1, x2, x3) = −x1 + 2x2 + x3 = 0

f ′
3(x1, x2, x3) = 2x1 + x2 + 6x3 = 0

The determinant of this linear equation system is 4, so by Cramer’s rule it has a unique solution. This
solution is of course (x1, x2, x3) = (0, 0, 0). The Hessian matrix is (at every point)

H = f ′′(x1, x2, x3) =
⎛⎝ 2 −1 2
−1 2 1

2 1 6

⎞⎠
with leading principal minors D1 = 2, D2 =

∣∣∣∣ 2 −1
−1 2

∣∣∣∣ = 3, and D3 = |H| = 4, so (0, 0, 0) is a local

minimum point by Theorem 3.2.1(a).

3.2.3 (a) The first-order conditions are

f ′
1(x, y, z) = 2x + 2xy = 0

f ′
2(x, y, z) = x2 + 2yz = 0

f ′
3(x, y, z) = y2 + 2z− 4 = 0

This system gives five stationary points: (0, 0, 2), (0,±2, 0), (±√3,−1, 3/2). The Hessian matrix is

f ′′(x, y, z) =
⎛⎝ 2 + 2y 2x 0

2x 2z 2y
0 2y 2

⎞⎠
with leading principal minors D1 = 2 + 2y, D2 = 4(1+ y)z− 4x2, and D3 = 8(1+ y)(z− y2)− 8x2.
The values of the leading principal minors at the stationary points are given in the following table:

D1 D2 D3

(0, 0, 2) 2 8 16

(0, 2, 0) 6 0 −96

(0,−2, 0) −2 0 32

(
√

3,−1, 3/2) 0 −12 −24

(−√3,−1, 3/2) 0 −12 −24

It follows from Theorem 3.2.1 that (0, 0, 2) is a local minimum point, and all the other stationary points
are saddle points.

(b) The stationary points are the solutions of the equation system

f ′
1(x1, x2, x3, x4) = 8x2 − 8x1 = 0

f ′
2(x1, x2, x3, x4) = 20 + 8x1 − 12x2

2 = 0

f ′
3(x1, x2, x3, x4) = 48 − 24x3 = 0

f ′
4(x1, x2, x3, x4) = 6 − 2x4
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The first equation gives x2 = x1, and then the second equation gives 12x2
1 − 8x1 − 20 = 0 with the two

solutions x1 = 5/3 and x1 = −1. The last two equations determine x3 and x4. There are two stationary
points, (5/3, 5/3, 2, 3) and (−1,−1, 2, 3). The Hessian matrix is

f ′′(x1, x2, x3, x4) =

⎛⎜⎜⎝
−8 8 0 0

8 −24x2 0 0
0 0 −24 0
0 0 0 −2

⎞⎟⎟⎠
and the leading principal minors of the Hessian are

D1 = −8, D2 = 192x2 − 64 = 64(3x2 − 1), D3 = −24D2, D4 = 48D2

At (−1,−1, 2, 3)we getD2 < 0, so this point is a saddle point. The other stationary point, (5/3, 5/3, 2, 3),
we get D1 < 0, D2 > 0, D3 < 0, and D4 > 0, so this point is a local maximum point.

3.3

3.3.2 (a) The admissible set is the intersection of the sphere x2+y2+z2 = 216 and the plane x+2y+3z = 0,
which passes through the center of the sphere. This set (a circle) is closed and bounded (and nonempty!),
and by the extreme value theorem the objective function does attain a maximum over the admissible set.
The Lagrangian is L(x, y, z) = x + 4y + z − λ1(x

2 + y2 + z2 − 216) − λ2(x + 2y + 3z), and the
first-order conditions are:

(i) 1 − 2λ1x − λ2 = 0, (ii) 4 − 2λ1y − 2λ2 = 0, (iii) 1 − 2λ1z− 3λ2 = 0

From (i) and (ii) we get λ2 = 1 − 2λ1x = 2 − λ1y, which implies λ1(y − 2x) = 1. Conditions (i)
and (iii) yield 1 − 2λ1x = 1

3 − 2
3λ1z = 0, which implies λ1(

2
3z − 2x) = − 2

3 . Multiply by − 3
2 to get

λ1(3x − z) = 1.
It follows that y − 2x = 3x − z, so z = 5x − y. Inserting this expression for z in the constraint

x + 2y + 3z = 0 yields 16x − y = 0, so y = 16x and z = −11x. The constraint x2 + y2 + z2 = 216

then yields (1 + 256 + 121)x2 = 216, so x2 = 216/378 = 4/7, and x = ± 2
7

√
7. Hence there are two

points that satisfy the first-order conditions:

x1 = ( 2
7

√
7, 32

7

√
7,− 22

7

√
7
)
, x2 = (− 2

7

√
7,− 32

7

√
7, 22

7

√
7
)

The multipliers are then λ1 = 1/(y − 2x) = 1/(14x) = ± 1
28

√
7 and λ2 = 1 − 2λ1x = 6

7 .
The objective function, f (x, y, z) = x + 4y + z, attains it maximum value fmax = 108

7

√
7 at x1,

with λ1 = 1
28

√
7, λ2 = 6

7 . (The point x2 is the minimum point and fmin = − 108
7

√
7.)

Comment: It is clear that the Lagrangian is concave if λ1 > 0 and convex if λ1 < 0. Therefore
part (b) of Theorem 3.3.1 is sufficient to show that x1 is a maximum point and x2 is a minimum point in
this problem, so we did not need to use the extreme value theorem.

(b) Equation (3.3.10) shows that �f ∗ ≈ λ1 · (−1)+ λ2 · 0.1 = − 1
28

√
7 + 0.6

7 ≈ −0.009.
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3.3.4 (a) With the Lagrangian L(x, y) = 1
2 ln(1 + x1)+ 1

4 ln(1 + x2)− λ(2x1 + 3x2 −m), the first-order
conditions are

(i)
1

2(1 + x1)
− 2λ = 0, (ii)

1

4(1 + x2)
− 3λ = 0

Equations (i) and (ii) yield

λ = 1

4(1 + x1)
= 1

12(1 + x2)
�⇒ 1 + x1 = 3(1 + x2) ⇐⇒ x1 − 3x2 = 2

Together with the constraint 2x1+3x2 = m this gives x1 = x∗1 (m) = 1
3 (m+2), x2 = x∗2 (m) = 1

9 (m−4),
and then λ = 3

4 (m+ 5)−1.

(b) U∗(m) = 1
2 ln(1+x∗1 (m))+ 1

4 ln(1+x∗2 (m)) = 1
2 ln( 1

3 (m+5))+ 1
4 ln( 1

9 (m+5)) = 3
4 ln(m+5)−ln 3,

so dU∗/dm = 3
4 (m+ 5)−1 = λ.

3.3.6 (a) The two constraints determine an ellipsoid centred at the origin and a plane through the origin,
respectively. The admissible set is the curve of intersection of these two surfaces, namely an ellipse. This
curve is closed and bounded (and nonempty), so the extreme value theorem guarantees the existence of
both maximum and minimum points. It is not very hard to show that the matrix g′(x) in Theorem 3.3.1
has rank 2 at all admissible points, so the usual first-order conditions are necessary.

Lagrangian: L(x, y, z) = x2 + y2 + z2 − λ1(x
2 + y2 + 4z2 − 1) − λ2(x + 3y + 2z). First-order

conditions:

(i) 2x − 2λ1x − λ2 = 0, (ii) 2y − 2λ1y − 3λ2 = 0, (iii) 2z− 8λ1z− 2λ2 = 0

From (i) and (ii) we get (iv) λ2 = 2(1 − λ1)x = 2
3 (1 − λ1)y.

(A) If λ1 = 1, then λ2 = 0 and (iii) implies z = 0. The constraints reduce to x2+y2 = 1 and x+3y = 0,
and we get the two candidates

(x, y, z) = (± 3
10

√
10 ,∓ 1

10

√
10 , 0

)
(∗)

(B) If λ1 �= 1, then (iv) implies y = 3x, and the second constraint gives z = −5x. The first constraint
then yields x2 + 9x2 + 100x2 = 1 which leads to the two candidates

(x, y, z) = (± 1
110

√
110,± 3

110

√
110 ,∓ 5

110

√
110

)
(∗∗)

In this case the multipliers λ1 and λ2 can be determined from equations (i) and (iii), and we get λ1 = 7
22

and λ2 = 15
11x.

The objective function, x2 + y2 + z2, attains its maximum value 1 at the points (∗), while the points
(∗∗) give the minimum value 7/22. It is worth noting that with λ1 = 1 the Lagrangian is concave (linear,
in fact), so Theorem 3.3.1(b) shows that the points in (∗) are maximum points, even if we do not check the
rank condition in Theorem 3.3.1(a) (but without that rank condition we cannot be sure that the first-order
conditions are necessary, so there might be other maximum points beside the two that we have found).

(There is a much simpler way to find the maximum points in this problem: Because of the first
constraint, the objective function x2+y2+z2 equals 1−3z2, which obviously has a maximum for z = 0.
We then just have to solve the equations x2 + y2 = 1 and x + 3y = 0 for x and y.)

(b) �f ∗ ≈ 1 · 0.05 + 0 · 0.05 = 0.05.
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3.3.10 There was a misprint in this problem in the first printing of the book: The constraints should all be
equality constraints, so please correct gj (x, r) ≤ 0 to gj (x, r) = 0 for j = 1, . . . , m.

Now consider two problems, namely the problem in (3.3.13) and the problem

max f (x, r) subject to

{
gj (x, r) = 0,

ri = bm+i ,
j = 1, . . . , m

i = 1, . . . , k
(∗)

The Lagrangian for problem (3.3.13) is L(x, r) = f (x, r) −∑m
j=1 λjgj (x, r) and the Lagrangian for

problem (∗) is L̃(x, r) = f (x, r)−∑m
j=1 λjgj (x, r)−∑k

i=1 λm+i (ri−bm+i ). The first-order conditions
for maximum in problem (∗) imply that

∂L̃(x, r)
∂ri

= ∂f (x, r)
∂ri

−
m∑
j=1

∂gj (x, r)
∂ri

− λm+i = 0, i = 1, . . . , k

Equation (3.3.9) implies that ∂f ∗(r)/∂ri = λm+i , and so

∂f ∗(r)
∂ri

= λm+i = ∂f (x, r)
∂ri

−
m∑
j=1

∂gj (x, r)
∂ri

= ∂L(x, r)
∂ri

3.4

3.4.3 Lagrangian: L(x, y, z) = x+y+z−λ1(x
2+y2+z2−1)−λ2(x−y−z−1). First-order conditions:

(i) 1 − 2λ1x − λ2 = 0, (ii) 1 − 2λ1y + λ2 = 0, (iii) 1 − 2λ1z+ λ2 = 0

Equations (ii) and (iii) give 2λ1y = 2λ1z. If λ1 = 0, then (i) and (ii) yield 1 − λ2 = 0 and 1 + λ2 = 0.
This is clearly impossible, so we must have λ1 �= 0, and therefore y = z. We solve this equation together
with the two constraints, and get the two solutions

(x1, y1, z1) = (1, 0, 0), λ1 = 1, λ2 = −1

(x2, y2, z2) = (− 1
3 ,− 2

3 ,− 2
3 ), λ1 = −1, λ2 = 1

3

In the second-derivative test (Theorem 3.4.1) we now have n = 3 and m = 2, so all we need check is

B3(x, y, z) =

∣∣∣∣∣∣∣∣∣∣

0 0 2x 2y 2z
0 0 1 −1 −1

2x 1 −2λ1 0 0
2y −1 0 −2λ1 0
2z −1 0 0 −2λ1

∣∣∣∣∣∣∣∣∣∣
A little tedious computation yields B3(x1, y1, z1) = −16 and B3(x2, y2, z2) = 16. Hence (x1, y1, z1) is
a local maximum point and (x2, y2, z2) is a local minimum point.
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3.5
3.5.2 (a) The Lagrangian is L(x, y) = ln(x + 1)+ ln(y + 1)− λ1(x + 2y − c)− λ2(x + y − 2), and the

necessary Kuhn–Tucker conditions for (x, y) to solve the problem are:

L′
1(x, y) =

1

x + 1
− λ1 − λ2 = 0 (1)

L′
2(x, y) =

1

y + 1
− 2λ1 − λ2 = 0 (2)

λ1 ≥ 0, and λ1 = 0 if x + 2y < c (3)

λ2 ≥ 0, and λ2 = 0 if x + y < 2 (4)

Of course, (x, y) must also satisfy the constraints

x + 2y ≤ c (5)

x + y ≤ 2 (6)

(b) Let c = 5/2. We consider the four possible combinations of λ1 = 0, λ1 > 0, λ2 = 0, and λ2 > 0.

(I) λ1 = λ2 = 0. This contradicts (1), so no candidates.

(II) λ1 > 0, λ2 = 0. From (3) and (5), x+2y = 5/2. Moreover, by eliminatingλ1 from (1) and (2) we get
x+1 = 2y+2. The last two equations have the solution x = 7/4, y = 3/8. But then x+y = 17/8 > 2,
contradicting (6). No candidates.

(III) λ1 = 0, λ2 > 0. From (4) and (6), x + y = 2. Moreover, eliminating λ2 from (1) and (2) we get
x = y, and so x = y = 1. But then x + 2y = 3 > 5/2, contradicting (5). No candidates.

(IV) λ1 > 0, λ2 > 0. Then x+ y = 2 and x+ 2y = 5/2, so x = 3/2, y = 1/2. We find that λ1 = 4/15
and λ2 = 2/15, so this is a candidate, and the only one.

The Lagrangian is obviously concave in x and y, so (x, y) = (3/2, 1/2) solves the problem.

(c) If we assume that V (c) is a differentiable function of c, then formula (3.5.6) yields V ′(5/2) = λ1 =
4/15.

A direct argument can run as follows: For all values of c such that λ1 and λ2 are positive, x and y
must satisfy the constraints with equality, and so x = 4 − c and y = c − 2. Then equations (1) and (2)
yield

λ1 = 1

y + 1
− 1

x + 1
= 1

c − 1
− 1

5 − c and λ2 = 2

x + 1
− 1

y + 1
= 2

5 − c −
1

c − 1

It is clear that these expressions remain positive for c in an open interval around c = 5/2. (More precisely,
they are both positive if and only if 7/3 < c < 3.) For such c, the derivative of the value function is

V ′(c) = ∂V

∂x

dx

dc
+ ∂V

∂y

dy

dc
= − 1

1 + x + 1

1 + y = λ1

3.5.3 We reformulate the problem as a standard maximization problem:

maximize −4 ln(x2 + 2)− y2 subject to

{−x2 − y ≤ −2

−x ≤ −1
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The Lagrangian is L(x, y) = −4 ln(x2 + 2)− y2 − λ1(−x2 − y + 2)− λ2(−x + 1), so the necessary
Kuhn–Tucker conditions together with the constraints are:

L′
1 = − 8x

x2 + 2
+ 2λ1x + λ2 = 0 (i)

L′
2 = −2y + λ1 = 0 (ii)

λ1 ≥ 0, and λ1 = 0 if x2 + y > 2 (iii)

λ2 ≥ 0, and λ2 = 0 if x > 1 (iv)

x2 + y ≥ 2 (v)

x ≥ 1 (vi)

We try the four possible combinations of zero or positive multipliers:

(A) λ1 = 0, λ2 = 0. From (i) we see that x = 0, which contradicts x ≥ 1.

(B) λ1 = 0, λ2 > 0. From (iv) and (vi), x = 1, and (ii) gives y = 0. This contradicts (v).

(C) λ1 > 0, λ2 = 0. From (iii) and (v) we get x2 + y = 2. Equation (i) gives λ1 = 4/(x2 + 2), and then

(ii) gives y = λ1/2 = 2/(x2+2). Inserted into x2+y = 2, this gives x4 = 2, or x = 4
√

2. It follows
that y = 2/(

√
2+ 2) = 2−√

2, and λ1 = 4− 2
√

2. So (x, y, λ1, λ2) = (
4
√

2, 2−√
2, 4− 2

√
2, 0)

is a candidate.

(D) λ1 > 0, λ2 > 0. Then (iii)–(vi) imply x2 + y = 2 and x = 1. So x = y = 1. Then from (i),
λ2 + 2λ1 = 8/3 and (ii) gives λ1 = 2. But then λ2 = 8/3 − 4 < 0. Contradiction.

Thus the only possible solution is the one given in (C), and the minimum value of f (x, y) = 4 ln(x2+2)+
y2 under the given constraints is f ( 4

√
2, 2−√

2 ) = 4 ln(
√

2+2)+(2−√
2 )2 = 4 ln(

√
2+2)+6−4

√
2.

3.5.4 With the Lagrangian L(x, y) = −(x−a)2−(y−b)2−λ1(x−1)−λ2(y−2)we get the Kuhn–Tucker
necessary conditions for (x, y) to be a maximum point:

L′
1(x, y) = −2(x − a)− λ1 = 0 (i)

L′
2(x, y) = −2(y − b)− λ2 = 0 (ii)

λ1 ≥ 0, and λ1 = 0 if x < 1 (iii)
λ2 ≥ 0, and λ2 = 0 if y < 2 (iv)

Of course, a maximum point (x, y) must also satisfy the constraints (v) x ≤ 1 and (vi) y ≤ 2.
We try the four possible combinations of λ1 = 0, λ1 > 0, λ2 = 0, and λ2 > 0.

(A) λ1 = 0, λ2 = 0. Equations (i) and (ii) give x = a and y = b. Because of the constraints this is
possible only if a ≤ 1 and b ≤ 2.

(B) λ1 = 0, λ2 > 0. We get x = a and y = 2. Constraint (v) implies a ≤ 1, and equation (ii) yields

b = y + 1
2λ2 > y = 2.

(C) λ1 > 0, λ2 = 0. This gives x = 1, y = b, a = 1 + 1
2λ1 > 1, and b ≤ 2.

(D) λ1 > 0, λ2 > 0. With both multipliers positive, both constraints must be satisfied with equality:
x = 1, y = 2. We also get a = 1 + 1

2λ1 > 1 and b = 2 + 1
2λ2 > 2.

We observe that in each of the four cases (A)–(D) there is exactly one point that satisfies the Kuhn–
Tucker conditions, and since the objective function is concave, these points are maximum points. Which
case applies depends on the values of a and b. The solution can be summarized as x∗ = min{a, 1},
y∗ = min{b, 2}.
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The admissible set in this problem is the same as in Example 3.5.1, and the maximization problem
is equivalent to finding an admissible point as close to (a, b) as possible. It is readily seen that the point
(x∗, y∗) given above is the optimal point. In particular, in case (A) the point (a, b) itself is admissible
and is also the optimal point.

3.5.6 (a) With the Lagrangian L(x, y) = x5 − y3 − λ1(x − 1) − λ2(x − y) the Kuhn–Tucker conditions
and the constraints are

L′
1(x, y) = 5x4 − λ1 − λ2 = 0 (i)

L′
2(x, y) = −3y2 + λ2 = 0 (ii)

λ1 ≥ 0, and λ1 = 0 if x < 1 (iii)
λ2 ≥ 0, and λ2 = 0 if x < y (iv)
x ≤ 1 (v)
x ≤ y (vi)

Consider the four possible combinations of zero or positive multipliers:

(A) λ1 = 0, λ2 = 0. Equations (i) and (ii) give x = 0 and y = 0. Thus (x1, y1) = (0, 0) is a candidate
for optimum.

(B) λ1 = 0, λ2 > 0. Since λ2 > 0, the complementary slackness condition (iv) tells us that we cannot
have x < y, while constraint (vi) says x ≤ y. Therefore x = y. Equations (i) and (ii) then give
5x4 = 0 + λ2 = 3y2, and thus 5y4 = 3y2. Since λ2 �= 0 we have y �= 0, and therefore 5y2 = 3, so
x = y = ±√3/5 = ±√15/25 = ± 1

5

√
15. We get two new candidates, (x2, y2) = ( 1

5

√
15, 1

5

√
15 )

and (x3, y3) = (− 1
5

√
15,− 1

5

√
15 ).

(C) λ1 > 0, λ2 = 0. Now (ii) gives y = 0, while (iii) and (v) give x = 1. But this violates constraint
(vi), so we get no new candidates for optimum here.

(D) λ1 > 0, λ2 > 0. The complementary slackness conditions show that in this case both constraints
must be satisfied with equality, so we get one new candidate point, (x4, y4) = (1, 1)

Evaluating the objective function h(x, y) = x5 − y3 at each of the four maximum candidates we have
found shows that

h(x1, y1) = h(x4, y4) = 0

h(x2, y2) = x5
2 − y3

2 = x5
2 − x3

2 = (x2
2 − 1)x3

2 = − 2
5x

3
2 = − 6

125

√
15

h(x3, y3) = h(−x2,−y2) = −h(x2, y2) = 6
125

√
15

(For the last evaluation we used the fact that h is an odd function, i.e. h(−x,−y) = −h(x, y).) Hence, if
there is a maximum point for h in the feasible set, then (x3, y3) is that maximum point. Note that although
the feasible set is closed, it is not bounded, so it is not obvious that there is a maximum. But part (b) of
this problem will show that a maximum point does exist.

(b) Let h(x, y) = x5 − y3 and define f (x) = maxy≥x h(x, y). Since h(x, y) is strictly decreasing with
respect to y, it is clear that we get the maximum when y = x, so f (x) = h(x, x) = x5 − x3. To find the
maximum of f (x) for x ≤ 1 we take a look at

f ′(x) = 5x2 − 3x2 = 5x2(x2 − 3
5 ) = 5x2(x + x2)(x − x2)
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where x2 = √
3/5 = 1

5

√
15 (as in part (a)). It is clear that

f ′(x) > 0 if x ∈ (−∞,−x2) or x ∈ (x2,∞)

f ′(x) < 0 if x ∈ (−x2, 0) or x ∈ (0, x2)

Therefore f is strictly increasing in the interval (−∞,−x2], strictly decreasing in [−x2, x2], and strictly
increasing again in [x2,∞). It follows that f (x) will reach its highest value when x = −x2 or when
x = 1. (Draw a graph!) Since f (−x2) = 6

125 and f (1) = 0, the maximum point is −x2 (= x3).
So why does this show that the point (x3, y3) that we found in part (a) really is a maximum point in

that problem? The reason is that for every point (x, y) with x ≤ 1 and x ≤ y we have

h(x, y) ≤ f (x) ≤ f (x3) = h(x3, x3) = h(x3, y3)

3.6

3.6.2 Lagrangian: L(x, y) = xy + x + y − λ1(x
2 + y2 − 2)− λ2(x + y − 1). First-order conditions:

L′
1(x, y) = y + 1 − 2λ1x − λ2 = 0 (i)

L′
2(x, y) = x + 1 − 2λ1y − λ2 = 0 (ii)

λ1 ≥ 0, and λ1 = 0 if x2 + y2 < 2 (iii)

λ2 ≥ 0, and λ2 = 0 if x + y < 1 (iv)

It is usually a good idea to exploit similarities and symmetries in the first-order conditions. In the present
case, we can eliminate λ2 from (i) and (ii) to get

y − 2λ1x = x − 2λ1y ⇐⇒ (1 + 2λ1)(y − x) = 0

Since 1+2λ1 ≥ 1, this implies y = x for any point that satisfies the first-order conditions. Now consider
the various combinations of zero or positive values of λ1 and λ2:

(A) λ1 = 0, λ2 = 0. Equations (i) and (ii) give (x, y) = (−1,−1).

(B) λ1 = 0, λ2 > 0. Sinceλ2 > 0, we must have x+y = 1, and since x = y, we get (x, y) = (1/2, 1/2).

(C) λ1 > 0, λ2 = 0. Now x2 + y2 = 2 because λ1 > 0, and since x = y we get x = y = ±1. The
point (1, 1) violates the constraint x + y ≤ 1. If x = y = −1, then equation (i) yields 2λ1 = λ2 = 0,
contradicting the assumption λ1 > 0. Thus there are no candidate points in this case. (We did get the
point (−1,−1) in case (A) above.)

(D) λ1 > 0, λ2 > 0. In this case both constraints must be active, i.e. x2 + y2 = 1 and x + y = 1. Since
x = y, the first constraint yields x = y = 1/2, but then x2 +y2 �= 2. So no candidates in this case either.

Comparing the values of the objective function xy + x + y at the two points (−1,−1) and (1/2, 1/2)
shows that (1/2, 1/2) must be the maximum point. (The extreme value theorem guarantees that there
really is a maximum point.)
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3.7
3.7.1 (a) The Lagrangian is L(x, y) = 100 − e−x − e−y − e−z − λ1(x + y + z− a)− λ2(x − b) and the

Kuhn–Tucker conditions are

e−x − λ1 − λ2 = 0 (i)

e−y − λ1 = 0 (ii)

e−z − λ1 = 0 (iii)

λ1 ≥ 0, and λ1 = 0 if x + y + z < a (iv)

λ2 ≥ 0, and λ2 = 0 if x < b (v)

Equations (ii) and (iii) imply that λ1 > 0 and y = z. From (iv) we get x + y + z = a, so x + 2y = a.

(A) Suppose λ2 = 0. Then (i) and (ii) imply λ1 = e−x and x = y. Hence x + y + z = 3x = a, so
x = a/3, and therefore a/3 ≤ b, i.e. a ≤ 3b.

(B) Suppose λ2 > 0. Condition (v) now implies x = b, and so y = (a − x)/2 = (a − b)/2. Then
λ1 = e−y = e−(a−b)/2, and (i) yieldsλ2 = e−b−e−(a−b)/2. Sinceλ2 > 0, we must have−b > −(a−b)/2,
i.e. a > 3b.

Thus, the Kuhn–Tucker conditions have a unique solution in each of the two cases a ≤ 3b and a > 3b.
The Lagrangian is concave, so we know that the points we have found really are optimal.

(b) See the answer in the book for the evaluation of ∂f ∗(a, b)/∂a and ∂f ∗(a, b)/∂b. Strictly speaking,
if a = 3b, you must consider the one-sided derivatives and show that the left and right derivatives are the
same, but things work out all right in that case too.

3.7.3 (a) Consider the maximization problem and write it in standard form as

maximize f (x, y) = x2 + y2 subject to

{
2x2 + 4y2 ≤ s2

−2x2 − 4y2 ≤ −r2

(∗)
(∗∗)

We use the Lagrangian L(x, y, r, s) = x2 + y2 − λ1(2x2 + 4y2 − s2)+ λ2(2x2 + 4y2 − r2), and get the
Kuhn–Tucker conditions

L′
1 = 2x − 4λ1x + 4λ2x = 0 (i)

L′
2 = 2y − 8λ1y + 8λ2y = 0 (ii)

λ1 ≥ 0, and λ1 = 0 if 2x2 + 4y2 < s2 (iii)

λ2 ≥ 0, and λ2 = 0 if 2x2 + 4y2 > r2 (iv)

If λ1 = 0, then (i) and (ii) would yield

(2 + 4λ2)x = 0 �⇒ x = 0, (2 + 8λ2)y = 0 �⇒ y = 0

which contradicts the constraint 2x2 + 4y2 ≥ r2. Therefore we must have λ1 > 0 and 2x2 + 4y2 = s2.
Moreover, we cannot have λ2 > 0, for that would imply 2x2 + 4y2 = r2 < s2, which contradicts
2x2 + 4y2 = s2. Hence, λ1 > 0, λ2 = 0. Equations (i) and (ii) reduce to

(i′) (2 − 4λ1)x = 0 and (ii′) (2 − 8λ1)y = 0
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If x = 0, then y �= 0 (because 2x2 + 4y2 = s2 > 0), and (ii′) implies λ1 = 1/4. If x �= 0, then (i′)
implies λ1 = 1/2. We are left with the two possibilities

(A) λ1 = 1/2, y = 0, x = ± 1
2

√
2 s (B) λ1 = 1/4, x = 0, y = ± 1

2 s

Case (A) gives the optimum points, (x∗, y∗) = (± 1
2

√
2 s, 0), and f ∗(r, s) = f (x∗, y∗) = 1

2 s
2. To verify

the envelope result (3.7.5), note that

∂L(x, y, r, s)/∂r = −2λ2r, ∂L(x, y, r, s)/∂s = 2λ1s

If we insert the optimal values of x∗ and y∗ and the corresponding values λ1 = 1/2 and λ2 = 0 of the
multipliers, we get

∂L(x∗, y∗, r, s)/∂r = 0 = ∂f ∗(r, s)/∂r, ∂L(x∗, y∗, r, s)/∂s = s = ∂f ∗(r, s)/∂s

in accordance with (3.7.5).

(b) The minimization problem is equivalent to maximizing g(x, y) = −f (x, y) subject to the constraints
(∗) and (∗∗) in part (a). We get a new Lagrangian L(x, y, r, s) = −x2 − y2 − λ1(2x2 + 4y2 − s2) +
λ2(2x2 + 4y2 − r2), and the first-order conditions are as in (a), except that (i) and (ii) are replaced by

L
′
1 = −2x − 4λ1x + 4λ2x = 0 (i′)

L
′
2 = −2y − 8λ1y + 8λ2y = 0 (ii′)

The solution proceeds along the same lines as in (a), but this time λ2 = 0 is impossible, so we get λ2 > 0
and λ1 = 0. The optimum points are (x∗, y∗) = (0,± 1

2 r), with λ2 = 1/4, and g∗(r, s) = g(x∗, y∗) =
−(x∗)2 − (y∗)2 = − 1

4 r
2, and the minimum value of f is f ∗(r, s) = −g∗(r, s) = 1

4 r
2. The equations in

(3.7.5) now become

L
′
r (x

∗, y∗, r, s) = −2λ2r = − 1
2 r =

∂g∗

∂r
= −∂f

∗

∂r
, L

′
s(x

∗, y∗, r, s) = 2λ1s = 0 = ∂g∗

∂s
= −∂f

∗

∂s

(c) The admissible set is the area between two ellipses, and the problems in (a) and (b) are equivalent to
finding the largest and the smallest distance from the origin to a point in this admissible set.

3.7.4 Let r and s be points in the domain of f ∗, let λ ∈ [0, 1], and put t = λr+(1−λ)s. We want to prove that
f ∗(t) ≥ λf ∗(r)+(1−λ)f ∗(s). There are points x and y such that f ∗(r) = f (x, r) and f ∗(s) = f (y, s).
Let w = λx + (1 − λ)y. Since g is convex, we have g(w, t) � λg(x, r)+ (1 − λ)g(y, s) � 0, so (w, t)
is admissible. And since f is concave, we have

f ∗(t) ≥ f (w, t) = f (λ(x, r)+ (1 − λ)(y, s))

≥ λf (x, r)+ (1 − λ)f (y, s) = λf ∗(r)+ (1 − λ)f ∗(s)

3.8
3.8.2 (a) Lagrangian: L(x, y) = xy − λ(x + 2y − 2). Kuhn–Tucker conditions:

∂L/∂x = y − λ ≤ 0 (= 0 if x > 0) (i)

∂L/∂y = x − 2λ ≤ 0 (= 0 if y > 0) (ii)

λ ≥ 0 (= 0 if x + 2y < 2) (iii)
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There are admissible points where xy > 0, so we cannot have x = 0 or y = 0 at the optimum point
or points. It follows that (i) and (ii) must be satisfied with equality, and λ must be positive. Hence,
x = 2λ = 2y and x + 2y = 2, so x = 1, y = 1/2, λ = 1/2. (The extreme value theorem guarantees
that there is a maximum, since the admissible set is closed and bounded. It is the closed line segment
between (2, 0) and (0, 1).)

(b) As in part (a), there are admissible points where xαyβ > 0, so we may just as well accept (2, 0) and
(0, 1) as admissible points and replace the constraints x > 0 and y > 0 by x ≥ 0 and y ≥ 0. Then the
extreme value theorem guarantees that there is a maximum point in this case too, and it is clear that both
x and y must be positive at the optimum. With the Lagrangian L(x, y) = xαyβ − λ(x + 2y − 2) we get
the Kuhn–Tucker conditions

∂L/∂x = αxα−1yβ − λ ≤ 0 (= 0 if x > 0) (i)

∂L/∂y = βxαyβ−1 − 2λ ≤ 0 (= 0 if y > 0) (ii)

λ ≥ 0 (= 0 if x + 2y < 2) (iii)

It is clear that (i), (ii), and (iii) must all be satisfied with equality, and that λ > 0. From (i) and (ii) we
get βxαyβ−1 = 2λ = 2αxα−1yβ , so βx = 2αy. This equation, combined with (iii) yields the solution:
x = 2α/(α + β), y = β/(α + β).

(If we had not extended the admissible set to include the end points, then we could not have used the
extreme value theorem to guarantee a maximum, but with the conditions on α and β the Lagrangian is
concave, so we could still be certain that the point we have found is a maximum point. But the argument
above, with a closed and bounded admissible set, works for all positive values of α and β, even if L is
not concave.)

3.8.3 With the Lagrangian L(x, y, c) = cx + y − λ(x2 + 3y2 − 2) we get the Kuhn–Tucker conditions:

L′
1 = c − 2λx ≤ 0 (= 0 if x > 0) (i)

L′
2 = 1 − 6λy ≤ 0 (= 0 if y > 0) (ii)

λ ≥ 0 (= 0 if x2 + 3y2 < 2) (iii)

If λ = 0, then (ii) implies 1 ≤ 0, but that is impossible. Hence, λ > 0 and x2 + 3y2 = 2. Further, (ii)
implies 6λy ≥ 1, so y > 0. Therefore (ii) is an equality and y = 1/6λ.

(A) If x = 0, then (i) implies c ≤ 2λx = 0. Further, 3y2 = 2, so y = √
2/3 = √

6/3, and λ = 1/6y =√
6/12.

(B) If x > 0, then (i) is satisfied with equality and c = 2λx > 0, and x = c/2λ. The equation
x2 + 3y2 = 2 then leads to λ = √6(3c2 + 1)/12, x = 6c/

√
6(3c2 + 1), and y = 2/

√
6(3c2 + 1).

Since the admissible set is closed and bounded and the objective function f (x, y) = cx+y is continuous,
the extreme value theorem guarantees that there is a maximum point for every value of c. The cases (A)
and (B) studied above show that the Kuhn–Tucker conditions have exactly one solution in each case, so
the solutions we found above are the optimal ones.

If c ≤ 0, then we are in case (A) and f ∗(c) = cx∗ + y∗ = √
6/3.

If c > 0, then we are in case (B) and f ∗(c) = cx∗ + y∗ = √6(3c2 + 1)/3.

The value function f ∗(c) is obviously continuous for c �= 0, and because limc→0+ f
∗(c) = √

6/3 =
f ∗(0) = limc→0− f

∗(c), it is continuous at c = 0 too. The value function is differentiable at all c �= 0,
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and it is not hard to show that both one-sided derivatives of f ∗(c) at c = 0 are 0, so f ∗ is differentiable
there too.

For c ≤ 0 we get (f ∗)′(c) = 0 = x∗, and a little calculation shows that (f ∗)′(c) = x∗ for all c > 0 as
well. Thus (f ∗)′(c) = L′

3(x
∗, y∗, c) for all c in accordance with equation (3.7.5).

3.8.5 See Fig. A3.8.5 in the answer section of the book. Since the Lagrangian

L(x, y) = x + y − 1
2 (x + y)2 − 1

4x − 1
3y − λ1(x − 5)− λ2(y − 3)− λ3(−x + 2y − 2)

is concave, a point that satisfies Kuhn–Tucker conditions must be a maximum point. The objective
function has no stationary points, so any maximum points must lie on the boundary of S. The Kuhn–
Tucker conditions are:

L′
1(x, y) = 1 − (x + y)− 1

4 − λ1 + λ3 ≤ 0 (= 0 if x > 0) (i)

L′
2(x, y) = 1 − (x + y)− 1

3 − λ2 − 2λ3 ≤ 0 (= 0 if y > 0) (ii)

λ1 ≥ 0 (= 0 if x < 5) (iii)

λ2 ≥ 0 (= 0 if y < 3) (iv)

λ3 ≥ 0 (= 0 if −x + 2y < 2) (v)

The solution is x = 3/4, y = 0, with λ1 = λ2 = λ3 = 0.
Once we have found or been told about this point it is easy to check that it satisfies (i)–(v), but otherwise

it can be a very tedious job to go through all possible combinations of zero or positive multipliers as well
as x = 0 or x > 0 and y = 0 or y > 0. In this problem there are 32 different combinations to check if
we do not see any shortcuts. In fact it would probably be more efficient to check each of the five straight
line segments that form the boundary of S. But it would hardly be practical to do that in a problem with
more than two variables, because it quickly becomes difficult to visualize the geometry of the admissible
set.

3.8.6 (a) The last inequality in (∗) gives
m∑
j=1

λ∗j (gj (x
∗)− bj ) ≥

m∑
j=1

λj (gj (x∗)− bj ) for all λ � 0 (∗∗)

If gk(x∗) > bk for some k, then
∑m
j=1 λj (gj (x

∗)− bj ) can be made arbitrary large by choosing λk large
and λj = 0 for all j �= k. Hence, gj (x∗) ≤ bj , j = 1, . . . , m. By choosing all λj equal to 0 in (∗∗),
we get

∑m
j=1 λ

∗
j (gj (x

∗) − bj ) ≥ 0. Now, λ∗j ≥ 0 and gj (x∗) ≤ bj for every j , so each λ∗j (gj (x∗) − bj )

must be zero, and then
∑m
j=1 λ

∗
j (gj (x

∗) − bj ) = 0. Finally, whenever x is admissible, the inequality

L̂(x,λ∗) ≤ L̂(x∗,λ∗) implies thatf (x)−f (x∗) ≤∑m
j=1 λ

∗
j [gj (x)−gj (x∗)] =∑m

j=1 λ
∗
j [gj (x)−bj ] ≤ 0.

Therefore f (x) ≤ f (x∗), so x∗ solves problem (1).

(b) Proof of the second inequality in (∗): Under the given assumptions, L̂(x∗,λ∗) − L̂(x∗,λ) =∑m
j=1 λj [gj (x∗)− bj ]−∑m

j=1 λ
∗
j [gj (x∗)− bj ] =∑m

j=1 λj [gj (x∗)− bj ] ≤ 0 when λ ≥ 0. Since the first

inequality in (∗) is assumed, we have shown that (x∗,λ∗) is a saddle point for L̂.

3.9
3.9.1 (A) implies that π(x∗) ≥ π(x̂), i.e. f (x∗)−∑m

j=1 λjgj (x
∗) ≥ f (x̂)−∑m

j=1 λjgj (x̂). But, because x̂
also solves (3.9.1), f (x̂) = f (x∗) and then

∑m
j=1 λjgj (x̂) ≥

∑m
j=1 λjgj (x

∗). Thus, because λj ≥ 0 and
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gj (x̂) ≤ bj , j = 1, . . . , m, and also because of (3.9.5), we have

m∑
j=1

λjbj ≥
m∑
j=1

λjgj (x̂) ≥
m∑
j=1

λjgj (x∗) =
m∑
j=1

λjbj (∗)

Here the two middle terms, being squeezed between two equal numbers, must themselves be equal.
Therefore f (x̂) −∑m

j=1 λjgj (x̂) = f (x∗) −∑m
j=1 λjgj (x

∗) ≥ f (x) −∑m
j=1 λjgj (x) for all x � 0,

proving (A). Also, if gk(x̂) < bk and λk > 0 for any k, then
∑m
j=1 λj (gj (x̂)− bj ) < 0, which contradicts

(∗). Thus x̂ satisfies (A)–(C).

3.10

3.10.1 (a) Since the admissible set is closed and bounded, there is at least one maximum point in this
problem. We use Theorem 3.8.3 (necessary first-order conditions for problems with mixed constraints).
With L(x, y, z, a) = x2 + y2 + z2 − λ(2x2 + y2 + z2 − a2)− μ(x + y + z), the necessary conditions
are:

∂L/∂x = 2x − 4λx − μ = 0 ⇐⇒ 2(1 − 2λ)x = μ (i)

∂L/∂y = 2y − 2λy − μ = 0 ⇐⇒ 2(1 − λ)y = μ (ii)

∂L/∂z = 2z− 2λz− μ = 0 ⇐⇒ 2(1 − λ)z = μ (iii)

λ ≥ 0, and λ = 0 if 2x2 + y2 + z2 < a2 (iv)

There is no sign restriction on μ, since the corresponding constraint is an equality, not an inequality.
If λ = 0, we get x = y = z = μ/2, which implies 3x = 0, so x = y = z = μ = 0. But the point

(x, y, z) = (0, 0, 0) is obviously not a maximum point but a global minimum point in this problem.
If λ > 0, then 2x2 + y2 + z2 = a2 because of complementary slackness. There are two possibilities:

λ = 1 and λ �= 1.
(A) If λ �= 1 then (ii) and (iii) imply y = z, so the constraints yield x+2y = 0 and 2x2 +2y2 = a2,

with the solutions (x, y, z) = (± 1
5

√
10 a,∓ 1

10

√
10 a,∓ 1

10

√
10 a). Since x = −2y, equations (i) and (ii)

yield −4(1 − 2λ)y = μ = 2(1 − λ)y, so λ = 3/5.
(B) If λ = 1, then μ = 0 and x = 0, so y + z = 0 and y2 + z2 = a2, with y = −z = √a2/2. This

gives the two points (x, y, z) = (0,± 1
2

√
2 a,∓ 1

2

√
2 a).

If we evaluate the objective function x2 + y2 + z2 at each of the points we have found, we find that
the two points (x∗, y∗, z∗) = (0,± 1

2

√
2 a,∓ 1

2

√
2 a), with λ = 1, μ = 0 both solve the problem. We

have found several other points that satisfy the necessary conditions for a maximum but are not maximum
points. Such is often the case when the Lagrangian is not concave.

(b) f ∗(a) = a2, so df ∗(a)/da = 2a, and ∂L(x∗, y∗, z∗, a)/∂a = 2λa = 2a.

3.11

3.11.1 Assume first that f is a function of just one variable, and let x0 be any point in A ⊆ �. There are
three cases to consider:

(I) If f (x0) > 0, then f (x) > 0 for all x in an open interval U around x0 (because f is continuous).
Then, for all x in U we have f+(x)2 = f (x)2, and so (d/dx)(f+(x)2) = 2f (x)f ′(x) = 2f+(x)f ′(x).
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(II) If f (x0) < 0, then there is an open interval V around x0 such that for all x in V we have f (x) < 0
and f+(x) = 0, and then (d/dx)(f+(x)2) = 0 = 2f+(x)f ′(x).
(III) (The most interesting case.) If f (x0) = 0, let K = |f ′(x0)|. There is then an open interval W
around x0 such that for all x �= x0 in W ,∣∣∣∣f (x)− f (x0)

x − x0
− f ′(x0)

∣∣∣∣ < 1, which implies

∣∣∣∣f (x)− f (x0)

x − x0

∣∣∣∣ < |f ′(x0)| + 1 = K + 1

and therefore
|f (x)| = |f (x)− f (x0)| < (K + 1)|x − x0|

Then for all x �= x0 in W , we get∣∣∣∣f+(x)2 − f+(x0)
2

x − x0

∣∣∣∣ = ∣∣∣∣f+(x)2

x − x0

∣∣∣∣ ≤ ∣∣∣∣ f (x)2x − x0

∣∣∣∣ < (K + 1)2|x − x0| → 0 as x → x0

and so ((f+)2)′(x0) = 0 = 2f+(x0)f
′(x0).

Thus, in all three cases we have shown that (d/dx)(f+(x)2) = 2f+(x)f ′(x). This result immediately
carries over to the partial derivatives of f+(x)2 if f is a function �n → �:

∂

∂xi
(f+(x))2 = 2f+(x)

∂

∂xi
f (x)

and the gradient of f+(x)2 is

∇(f+(x)2) =
( ∂

∂x1
(f+(x))2, . . . ,

∂

∂xn
(f+(x))2

)
= 2f+(x)

( ∂

∂x1
f (x), . . . ,

∂

∂xn
f (x)

)
= 2f+(x)∇f (x)

Note that f need not really beC1. All that is needed is that all the first-order partial derivatives of f exist.

Chapter 4 Topics in Integration

4.1

4.1.5 (a) Expand the integrand. We get∫ 9

4

(
√
x − 1)2

x
dx =

∫ 9

4

x − 2
√
x + 1

x
dx =

∫ 9

4

(
1− 2√

x
+ 1

x

)
dx =

9

4
(x − 4

√
x + ln x) = 1+ ln

9

4

(b) With u = 1 +√
x we get x = (u− 1)2, dx = 2(u− 1) du, and∫ 1

0
ln(1 +√

x ) dx =
∫ 2

1
2(u− 1) ln u du =

2

1
(u− 1)2 ln u−

∫ 2

1

(u− 1)2

u
du

= ln 2 −
2

1

( 1
2u

2 − 2u+ ln u
) = 1

2
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(c) Let u = 1 + x1/3. Then x = (u− 1)3, dx = 3(u− 1)2 du, and∫ 27

0

x1/3

1 + x1/3
dx =

∫ 4

1

u− 1

u
3(u− 1)2 du =

∫ 4

1

3u3 − 9u2 + 9u− 3

u
du = · · · = 45

2
− 3 ln 4

4.2
4.2.2 We use formula (4.2.1) and then introduce u = αx2 as a new variable, assuming α �= 0. This yields

F ′(α) =
∫ 1

0

∂

∂α
(xeαx

2
) dx =

∫ 1

0
x3eαx

2
dx = 1

2α2

∫ α

0
ueu du = 1

2α2

α

0
(ueu − eu) = αeα − eα + 1

2α2

Direct calculation of F yields F(α) = 1

2α

1

0
eαx

2 = eα − 1

2α
, which gives F ′(α) = αeα − eα + 1

2α2
,

confirming the result above.
We assumed above that α �= 0. If α = 0, then formula (4.2.1) yields F ′(0) = ∫ 1

0 x
3 dx = 1/4. To

get the answer by differentiating F directly, we need to know that F(0) = ∫ 1
0 x dx = 1/2. Then

F ′(0) = lim
α→0

F(α)− F(0)
α

= lim
α→0

eα − 1 − α
2α2

= “0

0

” = · · · = 1

4
as it should be.

4.2.6 By Leibniz’s formula (Theorem 4.2.1),

ẋ(t) = e−δ(t−τ)y(t)+
∫ t

−∞
−δe−δ(t−τ)y(τ ) dτ = y(t)− δx(t)

4.2.8 See the answer in the book. In order to use Leibniz’s formula (Theorem 4.2.2 in this case) we need
to know that there exist functions p(τ) and q(τ) such that

∫ t
−∞ p(τ) dτ and

∫ t
−∞ q(τ) dτ converge, and

such that |f ′(t − τ)k(τ )| ≤ p(τ) and |G′
t (τ, t)| ≤ q(τ) for all τ ≤ t . Since G′(τ, t) = −k(τ )f (t − τ),

the inequality for G′
t boils down to |k(τ )f (t − τ)| ≤ q(τ) for all τ ≤ t .

4.2.10 (a) g′(Q) = c + h ∫ Q0 f (D) dD − p ∫ a
Q
f (D) dD, and g′′(Q) = (h+ p)f (Q) ≥ 0.

(b) Since
∫ a

0 f (D) dD = 1, we have∫ a

Q

f (D) dD =
∫ a

0
f (D) dD −

∫ Q

0
f (D) dD = 1 −

∫ Q

0
f (D) dD

and therefore
g′(Q) = c − p + (h+ p)

∫ Q

0
f (D) dD

Since Q∗ is the minimum point of g(Q), it must be a stationary point—that is, g′(Q∗) = 0. Therefore
c − p + (h+ p)F(Q∗) = 0, which implies F(Q∗) = (p − c)/(p + h).

4.3
4.3.2 From the functional equation (4.3.2), �( 3

2 ) = �( 1
2 + 1) = 1

2�(
1
2 ) = 1

2

√
π . The given formula is thus

correct for n = 1. Suppose it is correct for n = k. Then, using (4.3.2),

�(k + 1 + 1
2 ) = �((k + 1

2 )+ 1) = (k + 1
2 )�(k + 1

2 ) = (k + 1
2 )

(2k − 1)!

22k−1(k − 1)!

√
π

= 2k + 1

2

(2k − 1)!

22k−1(k − 1)!

√
π = (2k − 1)! 2k(2k + 1)

2 · 2k · 22k−1(k − 1)!

√
π = (2k + 1)!

22k+1k!

√
π

Thus the proposed formula is valid also for n = k+1. By mathematical induction it is true for all natural
numbers n.
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4.3.5 (a) Introduce u = λx as a new variable. Then∫ ∞

−∞
f (x) dx = λα

�(α)

∫ ∞

0
xα−1e−λx dx = λα

�(α)

∫ ∞

0
(u/λ)α−1e−u

1

λ
du = 1

�(α)

∫ ∞

0
uα−1e−u du = 1

(b) M(t) =
∫ ∞

−∞
etxf (x) dx = λα

�(α)

∫ ∞

0
xα−1e−(λ−t)x dx. With u = (λ − t)x as a new variable we

get

M(t) = λα

�(α)

∫ ∞

0

uα−1e−u

(λ− t)α du =
λα

�(α)

�(α)

(λ− t)α =
( λ

λ− t
)α = λα(λ− t)−α

Differentiation gives M ′(t) = αλα(λ− t)−α−1 and in general

M(n)(t) = α(α + 1) · · · (α + n− 1)λα(λ− t)−α−n = �(α + n)
�(α)

λα

(λ− t)α+n
Hence,

M ′(0) = α

λ
and M(n)(0) = α(α + 1) · · · (α + n− 1)

λn
= �(α + n)

�(α)λn

(Alternatively we could have used the formula M(n)(0) = ∫∞−∞ xnf (x) dx from Problem 4.2.5.)

4.4

4.4.2 The inner integral is
1

x2

∫ b

0

1

x
ey/x dy = 1

x2

y=b

y=0
ey/x = 1

x2
eb/x− 1

x2
, so I =

∫ a

1

( 1

x2
eb/x− 1

x2

)
dx.

With w = 1

x
, we get x = 1

w
and dx = − 1

w2
dw. Therefore I =

∫ 1/a

1
(w2ebw − w2)

(
− 1

w2

)
dw =∫ 1/a

1
(−ebw + 1) dw = 1

b
(eb − eb/a)+ 1

a
− 1.

4.4.3 The integral I = ∫∫
R
f (x, y) dx dy is

I =
∫ 1

0

(∫ a

0

2k

(x + y + 1)3
dx
)
dy =

∫ 1

0

( x=a

x=0
− k

(x + y + 1)2

)
dy

=
∫ 1

0

( k

(y + 1)2
− k

(y + a + 1)2

)
dy =

1

0

(
− k

y + 1

k

y + a + 1

)
= −k

2
+ k

a + 2
+ k − k

a + 1
= k(a2 + 3a)

2(a2 + 3a + 2)

The integral equals 1 if k = ka = 2(a2 + 3a + 2)

a2 + 3a
= 2 + 4

a2 + 3a
. Obviously, ka > 2 if a > 0.

4.4.5 The innermost integral is∫ 1

0
(x2

1 + x2
2 + · · · + x2

n) dx1 =
1

0
[ 1

3x
3
1 + x1(x

2
2 + x2

3 + · · · + x2
n)] = 1

3 + x2
2 + x2

3 + · · · + x2
n

Next,∫ 1

0
( 1

3 + x2
2 + x2

3 + · · · + x2
n) dx2 =

1

0
[ 1

3x2 + 1
3x

3
2 + x2(x

2
3 + x2

4 + · · · + x2
n)] = 2

3 + x2
3 + x2

4 + · · · + x2
n

etc. By induction, I = n/3.
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4.5

4.5.2 If y ∈ [0, 1], then x runs from 0 to y, and if y ∈ [1, 2], then x must run from
√
y − 1 to 1. Thus,

V =
∫ 1

0

(∫ y

0
xy2 dx

)
dy +

∫ 2

1

(∫ 1

√
y−1

xy2 dx
)
dy =

∫ 1

0

y4

2
dy +

∫ 2

1

(
y2 − y3

2

)
dy = 67

120

4.5.6 |x − y| = x − y if x ≥ y and y − x if x < y. Hence (see Fig. A4.5.6(a) in the book),

∫ 1

0

∫ 1

0
|x − y| dx dy =

∫∫
A

|x − y| dx dy +
∫∫

B

|x − y| dx dy

=
∫ 1

0

[∫ y

0
(y − x) dx +

∫ 1

y

(x − y) dx
]
dy =

∫ 1

0

[ x=y
x=0

(
yx − 1

2
x2)+ x=1

x=y

(1

2
x2 − yx)] dy

=
∫ 1

0

[
y2 − 1

2
y2 + 1

2
− y − 1

2
y2 + y2] dy = 1

0

(
y2 − y + 1

2

)
dy =

1

0

(1

3
y3 − 1

2
y2 + 1

2
y
) = 1

3

4.6

4.6.1 (a) Use the same subdivision as in Example 4.6.1, except that j = 0, . . . , 2n− 1. Then

(2x∗i − y∗j + 1)�xi �yj =
(

2
i

n
− j

n
+ 1
)1

n

1

n
= 2

i

n3
− j

n3
+ 1

n2

and
2n−1∑
j=0

n−1∑
i=0

(
2
i

n3
− j

n3
+ 1

n2

)
= 2

1

n3

2n−1∑
j=0

(n−1∑
i=0

i
)
− 1

n3

n−1∑
i=0

(2n−1∑
j=0

j
)
+ 1

n2

2n−1∑
j=0

(n−1∑
i=0

1
)

= 2
1

n3

2n−1∑
j=0

1

2
n(n− 1)− 1

n3

n−1∑
i=0

1

2
(2n− 1)2n+ 1

n2

2n−1∑
j=0

n

= 2
1

n3

1

2
n(n− 1)2n− 1

n3

1

2
(2n− 1)2nn+ 1

n2
n2n = 2 − 1

n
→ 2

as n→∞.

4.7
y

x

P1

P2

P3

Q1 Q2 Q3

Figure M4.7.2
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4.7.2 Assume for convenience that the points Pi = (xi, yi), i = 1, 2, 3, all lie in the first quadrant, and that
x1 ≤ x2 ≤ x3. Figure M4.7.2 shows the triangle P1P2P3 together with the normals from the Pi to the
corresponding pointsQi on the x-axis. For each pair (i, j)with i < j , the points Pi ,Qi ,Qj , and Pj form
a quadrilateral with two parallel sides (called a trapezium in Britain, a trapezoid in the US), whose area is
Tij = 1

2 (xj − xi)(yi + yj ). If P2 lies below the line P1P3, then the area of the triangle is T13 − T12 − T23,

and an easy computation shows that this equalsA = 1
2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣. If P2 lies above P1P3, then the area

of the triangle is T12 + T23 − T13 = −A. In either case the area equals |A|.
If the xi are in a different order from what we assumed above, we can renumber them. That may

change the sign of the determinant but not its absolute value. Finally, if the triangle does not lie in the
first quadrant, we can move it there by a parallel translation. Such a translation will not change the area
of the triangle, nor will it change the value of the determinant, since we are just adding multiples of the
first column to the other two columns.

4.7.3 (b) In this problem it is convenient to use polar coordinates centred at (0, 1), so let x = r cos θ ,
y = 1 + r sin θ . The Jacobian is ∂(x, y)/∂(r, θ) = r in this situation too, and∫∫

A

x2 dx dy =
∫ 2π

0

(∫ 1/2

0
r3 cos2 θ dr

)
dθ =

∫ 2π

0

( r=1/2

r=0

r4

4
cos2 θ

)
dθ = 1

64

∫ 2π

0
cos2 θ dθ = π

64

4.7.5 (b) Introduce new variables u = y − 2x, v = 3x + y. Then x = − 1
5u + 1

5v, y = 3
5u + 2

5v and

J = ∂(x, y)
∂(u, v)

= − 1
5 . It follows that

∫∫
A2

(x + y) dx dy =
∫ 8

4

(∫ 1

−1

(2

5
u+ 3

5
v
)
|J | du

)
dv =

∫ 8

4

(∫ 1

−1

(2

5
u+ 3

5
v
)1

5
du
)
dv = 144/25

4.8

4.8.1 (a) Use polar coordinates and let An = {(x, y) : 1 ≤ x2 + y2 ≤ n2}. Then∫∫
An

(x2+y2)−3 dx dy =
∫ 2π

0

(∫ n

1
r−6r dr

)
dθ

∗= 2π
∫ n

1
r−5 dr = 1

2π(1−n−4)→ 1
2π as n→∞

About the equality
∗=: The integral Jn =

∫ n
1 r

−6r dr is independent of θ , therefore
∫ 2π

0 Jn dθ = 2πJn.

(b) With polar coordinates and with An as in part (a), we get

In =
∫∫

An

(x2 + y2)−p dx dy = 2π
∫ n

1
r1−2p dr =

⎧⎨⎩ 2π
n2−2p − 1

2 − 2p
if p �= 1

2π ln n if p = 1

If p > 1, then In → π/(p − 1) as n→∞, but if p ≤ 1, then In →∞.

4.8.4 Note that the integrand takes both positive and negative values in the domain of integration. In the
calculations of the two iterated integrals the positive and the negative parts will more or less balance
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each other, but not in exactly the same way. The two iterated integrals
∫ d

1

∫ b
1 y(y + x)−3 dx dy and∫ b

1

∫ d
1 y(y+ x)−3 dy dx both tend to ∞ as b and d tend to ∞, and so do the integrals of x(y+ x)−3. The

trouble arises when we try to take the difference. That leads us into an ∞−∞ situation that does not
lead to any definite value.

4.8.6 (b) Introduce new variables u = x + y, v = x − y. Then x = 1
2 (u + v), y = 1

2 (u − v), and the
Jacobian determinant is ∂(x, y)/∂(u, v) = −1/2. The square B ′

n = [−n, n] × [−n, n] in the uv-plane
corresponds to the square Bn with corners (2n, 0), (0, 2n), (−2n, 0), and (0,−2n) in the xy-plane,

and In =
∫∫

Bn

e−(x−y)2

1 + (x + y)2 dx dy =
∫ n

−n

( ∫ n

−n
e−v2

1 + u2

1

2
du
)
dv =

∫ n

−n
e−v

2
dv

∫ n

−n
1

2

1

1 + u2
du =∫ n

−n
e−v

2
dv · arctan n. Let n → ∞. Then In →

∫ ∞

−∞
e−v

2
dv · π

2
= √

π · π
2
= π3/2

2
. (Here we used

Poisson’s integral formula (4.3.3).)

4.8.7 (b) With polar coordinates and with the sets An as in Example 3,∫∫
A

− ln(x2 + y2)√
x2 + y2

dx dy = lim
n→∞

∫ π/2

0

(∫ 1

1/n
− ln r2

r
r dr

)
dθ = −π lim

n→∞

∫ 1

1/n
ln r dr = · · · = π

Chapter 5 Differential Equations I: First-order Equations
in One Variable

5.1
5.1.6 The statement of the problem is slightly inaccurate. Instead of “for all t” it should have said “for all t in

some open interval I around 0”. With that modification the answer in the book is quite correct. (Actually,
the given differential equation has no solution defined on the entire real line. One can show that, with the
initial condition x(0) = 0, the equation has the solution x = tan( 1

2 t
2) over (−√π,√π), but this solution

cannot be extended to any larger interval because x(t) runs off to infinity as t approaches either endpoint.

5.2
x

1
t

1

x2 + y2 = 4, x > 0

Figure M5.2.2

5.2.2 The solution curves are semicircles (not full circles) of the form t2 + x2 = C, x �= 0, with C an
arbitrary positive constant. (This can be shown by direct differentiation, or by solving the separable
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equation ẋ = −t/x using the method set out in the next section.) The integral curve through (0, 2) is
given by t2+x2 = 4, x > 0, in other words it is the graph of the function x(t) = √

4 − t2 over the interval
(−2, 2). The lower semicircle shown in Fig. M5.2.2 is the graph of another function, x(t) = −√4 − t2,
which is also a solution of the differential equation, but not the one you were asked to find. (The figure
in answer in the book is misleading since it shows a full circle.)

5.3

5.3.3 (a) One constant solution, x ≡ 0. Otherwise, separating the variables,∫
dx

x
=
∫

1 − t
t

dt =
∫ (1

t
− 1
)
dt �⇒ ln |x| = ln |t | − t + C1

Hence, |x| = eln |t |−t+C1 = eln |t |e−t eC1 = C2|t |e−t , so x = Cte−t , where C = ±C2 = ±eC1 . The
integral curve through (t0, x0) = (1, 1/e) is x = te−t .
(b) One constant solution, x ≡ 0. Otherwise,

ẋ

x
= t2

1 + t3 �⇒ ln |x| = 1
3 ln |1 + t3| + C1 �⇒ x = C

3
√

1 + t3

Integral curve through (t0, x0) = (0, 2) for C = 2.

(c) No constant solutions.
∫
x dx =

∫
t dt �⇒ 1

2x
2 = 1

2 t
2 +C1 �⇒ x2 = t2 +C, where C = 2C1.

An integral curve through (t0, x0) = (
√

2, 1) must have C = −1 and x > 0, so x = √
t2 − 1.

(d) The equation is equivalent to ẋ = e−2t (x + 1)2. One constant solution, x ≡ −1. The nonconstant
solutions are found by separating the variables:∫

dx

(x + 1)2
=
∫
e−2t dt �⇒ − 1

x + 1
= − 1

2e
−2t + C1 �⇒ x = 1 − e−2t + C

1 + e−2t − C

where C = 1 + 2C1. For the solution to pass through (t0, x0) we must have 1 − e0 +C = 0, i.e. C = 0,

so x = 1 − e−2t

1 + e−2t
.

5.3.6 For convenience we shall suppose that x > 0 and t > 0.

(a) The equation
t ẋ

x
= a is separable, and we get

∫
dx

x
=
∫
a

t
dt �⇒ ln x = a ln t + C1 = ln ta + C1 �⇒ x = eln x = ta · eC1 = Cta

where C = eC1 .

(b) Here,
t ẋ

x
= at + b. That gives

∫
dx

x
=
∫
at + b
t

dt =
∫ (

a + b

t

)
dt �⇒ ln x = at + b ln t + C1 �⇒ x = Ceat tb
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(c) The equation
t ẋ

x
= ax + b gives

ẋ

x(ax + b) =
1

t
. Since

1

x(ax + b) =
1

b

(1

x
− a

ax + b
)

, we get

∫ (1

x
− a

ax + b
)
dx =

∫
b

t
dt �⇒ ln x − ln |ax + b| = b ln t + C1 �⇒ x

ax + b = Ctb

where C = ±eC1 , and finally x = Cbtb

1 − Catb .

5.3.8 (a) Let P = Anα0a
b and Q = αv + ε. Separating the variables we get

∫
Kc−b dK = P

∫
eQt dt .

Integration yields
K1−b+c

1 − b + c = P

Q
eQt + C1. Hence, K =

[P
Q
(1 − b + c)eQt + C

]1/(1−b+c)
, where

C = C1(1 − b + c).
(b) We separate the variables and get

∫
x dx

(β − αx)(x − a) =
∫
dt . The hint in the problem gives

∫
β dx

β − αx +
∫

a dx

x − a = (β − αa)
∫
dt ⇐⇒ −β

α
ln |β − αx| + a ln |x − a| = (β − αa)t +C1

⇐⇒ β

α
ln |β − αx| − a ln |x − a| = ln |β − αx|β/α + ln |x − a|−a = −(β − αa)t − C1

⇐⇒ |β − αx|β/α|x − a|−a = e−(β−αa)t−C1 = e−(β−αa)t e−C1 = Ce(αa−β)t

where C = e−C1 . We have the same answer as in the book (since |β − αx| = |αx − β|).
5.3.9 (a) Note first that L = L0e

λt = [Lα0e
αλt ]1/α , so as t →∞,

K

L
=
[
Kα

0 + (sA/λ)Lα0 (eαλt − 1)
]1/α

[Lα0e
αλt ]1/α

=
[
Kα

0

Lα0e
αλt

+ sA

λ
(1 − e−αλt )

]1/α

→
( sA
λ

)1/α

and
X

L
= AK1−αLα

L
= A

(K
L

)1−α → A
( sA
λ

)(1−α)/α = A1/α
( s
λ

)(1−α)/α
(b) The equation is separable, dK/dt = sAK1−αLα = sAK1−αbα(t + a)α . We get∫

Kα−1 dK = sAbα
∫
(t + a)pα dt �⇒ 1

α
Kα = sAbα

pα + 1
(t + a)pα+1 + C

The initial condition gives C = 1

α
Kα

0 − sAbα

pα + 1
apα+1, and so

K = [Kα
0 + sαAbα ((t + a)pα+1 − apα+1) /(pα + 1)

]1/α
It follows that

K

L
=

[
Kα

0 + sαAbα

pα + 1

(
(t + a)pα+1 − apα+1)]1/α

[
bα(t + α)pα]1/α

=
[

Kα
0

bα(t + α)pα + sαA

pα + 1

(
t + a − apα+1

(t + α)pα
)]1/α

→∞ as t →∞
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5.4

5.4.6 Use formula (5.4.6) to solve these equations.

(b) Here
∫
a(t) dt = − ∫ (1/t) dt = − ln t , and (5.4.6) yields the solution x = Ct + t2.

(c) In this case,
∫
a(t) dt = − 1

2 ln(t2 − 1), and (5.4.6) yields the solution x = C
√
t2 − 1 + t2 − 1.

(d) Here a(t) = −2/t , b(t) = −2a2/t2,
∫
a(t) dt = −2 ln t , which leads to x = Ct2 + 2a2/3t .

5.4.9 From x = X/N , by logarithmic differentiation, ẋ/x = Ẋ/X − Ṅ/N . Moreover, (ii) implies that
Ẋ/X = aṄ/N , so ẋ/x = (a−1)Ṅ/N = (a−1)[α−β(1/x)]. It follows that ẋ = (a−1)αx−(a−1)β.
The solution is x(t) = [x(0) − β/α]eα(a−1)t + β/α. Then (ii) and x = X/N together imply that
N(t) = [x(t)/A]1/(a−1), X(t) = A[N(t)]a . If 0 < a < 1, then x(t) → β/α, N(t) → (β/αA)1/(a−1),
and X(t)→ A(β/αA)a/(a−1) as t →∞.

5.4.10 (b) It suffices to note that (1 − e−ξ t )/ξ > 0 whenever ξ �= 0 (look at ξ > 0 and ξ < 0 separately).
Then apply this with ξ = ασ − μ. Faster growth per capita is to be expected because foreign aid
contributes positively.

(c) Using equation (∗∗), we get x(t) =
[
x(0)+

( σ

ασ − μ
)H0

N0

]
e−(ρ−ασ)t +

( σ

μ− ασ
)H0

N0
e(μ−ρ)t .

Note that, even if ασ < ρ, x(t) is positive and increasing for large t as long as μ > ρ. So foreign aid
must grow faster than the population.

5.5

5.5.2 With f (t, x) = 1 and g(t, x) = t/x+2, we have (g′t −f ′
x)/f = 1/x, so we are in Case (II). It follows

from (5.5.11) that we can choose β(x) = exp(
∫
(1/x) dx) = exp(ln x) = x as an integrating factor.

Hence, x + (t + 2x)ẋ = 0 is exact, and (8) easily yields h(t, x) = tx + x2 − t0x0 − x2
0 . The solution of

the differential equation is obtained from tx + x2 = C, where C is a constant. We assumed that t > 0

and x > 0, so C will be positive, and the solution of tx + x2 = C is x = − 1
2 t +

√
1
4 t

2 + C.

5.6

5.6.1 (a) With t > 0, the given equation is equivalent to the Bernoulli equation ẋ+(2/t)x = xr with r = 2.
Let z = x1−r = x−1 = 1/x, so that x = 1/z. Then ẋ = −z−2ż and the differential equation becomes

−z−2ż+ (2/t)z−1 = z−2 ⇐⇒ ż− (2/t)z = −1

whose solution is z = Ct2 + t . Thus x = (Ct2 + t)−1.

(b) The equation is a Bernoulli equation as in (5.6.1), with r = 1/2. Thus we substitute z = x1−1/2 =
x1/2, i.e. x = z2. Then ẋ = 2zż and the given equation becomes

2zż = 4z2 + 2et z ⇐⇒ ż− 2z = et

(Recall that x is assumed to be positive, and therefore z > 0.) Formula (5.4.4) yields

z = e2t (C +
∫
e−2t et dt) = e2t (C +

∫
e−t dt) = e2t (C − e−t ) = Ce2t − et .
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(Alternatively we could go back to the method that was used to deduce (5.4.4) and calculate like this:

ż− 2z = et ⇐⇒ (ż− 2z)e−2t = e−t

⇐⇒ d

dt
(ze−2t ) = e−t ⇐⇒ ze−2t = −e−t + C, etc.)

The solution of the given equation is therefore

x = z2 = (Ce2t − et )2

(c) As in part (a), we substitute x = 1/z, with ẋ = −z−2 dz. This leads to the differential equation

ż− (1/t)z = −(ln t)/t

Formula (5.4.6) yields the solution

z = eln t
(
C −

∫
e− ln t ln t

t
dt
)
= t
(
C −

∫
ln t

t2
dt
)
= Ct + ln t + 1 �⇒ x = (Ct + ln t + 1)−1

(The answer in the book also lists x ≡ 0 as a solution, and it certainly satisfies the equation, but the
problem explicitly calls for solutions with x > 0.)

5.6.3 Introducing z = K1−b as a new variable, we find that (see (5.6.3)) ż + Pz = Qe(av+ε)t , where
P = αδ(1 − b) and Q = αAna0(1 − b). According to (5.4.4), the solution of this linear differential
equation is

z = Ce−P t +Qe−P t
∫
eP te(av+ε)t dt = Ce−P t +Qe−P t

∫
e(av+ε+P)t dt

= Ce−P t +Qe−P t 1

av + ε + P e
(av+ε+P)t = Ce−P t + Qe(av+ε)t

av + ε + P
Insert the values of P and Q. Then K = z1/(1−b) gives the answer in the book.

5.6.4 Introduce z = K1−α as a new variable. By (5.6.3), we get the equation ż− γ2(1− α)z = γ1b(1− α).
According to (5.4.3), the solution is z = Ceγ2(1−α)t − γ1b/γ2. Then K = z1/(1−α) gives the answer in
the book.

5.6.7 The equation is of the form ẋ = g(x/t) with g(z) = 1 + z − z2. According to Problem 5.6.6,
the substitution z = x/t leads to the separable equation t ż = g(z) − z = 1 − z2. This has the two
constant solutions z = −1 and z = 1. To find the other solutions, we separate the variables and get∫

dz

1 − z2
=
∫
dt

t
. By a well-known identity,

∫
1

2

( 1

1 + z + 1

1 − z
)
dz =

∫
dt

t
+ C. Integration

yields 1
2 ln |1 + z| − 1

2 ln |1 − z| = ln |t | + C, so

ln
∣∣∣1 + z
1 − z

∣∣∣ = 2 ln |t | + 2C = ln t2 + 2C �⇒ 1 + z
1 − z = At2

where A = ±e2C . Solving for z gives z = At2 − 1

At2 + 1
, and finally x = tz = At3 − t

At2 + 1
. In addition we have

the two solutions x = −t and x = t , corresponding to z = ±1.

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



48 C H A P T E R 5 D I F F E R E N T I A L E Q U A T I O N S I : F I R S T - O R D E R E Q U A T I O N S I N O N E V A R I A B L E

5.7

5.7.3 (a) This is a separable equation with solution x(t) = (1+Aet )/(1−Aet )whereA = (x0−1)/(x0+1)
for x0 �= −1. For x0 = −1 we get the constant solution x(t) ≡ −1. For x0 �= 1, x(t)→ −1 as t → ∞.
If x0 > 1, which occurs when 0 < A < 1, then x(t) → ∞ as t → (− lnA)−, and x(t) → −∞ as
t → (− lnA)+. See Fig. A5.7.3(a) in the answer section of the book for some integral curves.

5.7.4 (a) ∂k∗/∂s = f (k∗)/[λ − sf ′(k∗)] > 0 and ∂k∗/∂λ = −k∗/[λ − sf ′(k∗)] < 0 when λ > sf ′(k∗).
In equilibrium, capital per worker increases as the savings rate increases, and decreases as the growth
rate of the work force increases. From F(K,L) = Lf (k) with k = K/L, we obtain F ′

K(K,L) =
Lf ′(k)(1/L) = f ′(k).

(b) From equations (i) to (iv), c = (X − K̇)/L = (1 − s)X/L = (1 − s)f (k). But sf (k∗) = λk∗, so
when k = k∗ we have c = f (k∗)−λk∗. The necessary first-order condition for this to be maximized w.r.t.
k∗ is that f ′(k∗) = λ. But F(K,L) = Lf (k) and so F ′

K = Lf ′(k)dk/dK = f ′(k) because k = K/L

with L fixed. Thus ∂F/∂K = λ.

(c) See the answer in the book.

5.8

5.8.4 The equation is separable, and the solution through (t0, x0) = (0, 1
2 ) is x = 1/(1+ e−t ). If condition

(3) in Theorem 5.8.3 were satisfied, then for every t , there would exist numbers a(t) and b(t) such that
|x(1 − x)| ≤ a(t)|x| + b(t) for all x. But then |1 − x| ≤ a(t) + b(t)/|x|, which clearly is impossible
when x is sufficiently large. Similarly, (4) implies x2(1−x) ≤ a(t)x2 +b(t), so 1−x ≤ a(t)+b(t)/x2,
which becomes impossible as x →−∞.

5.8.5 See Fig. M5.8.5. For t < a, ϕ̇(t) = −2(t − a) = 2(a − t) = 2
√
(a − t)2 = 2

√|ϕ(t)|. The argument
for t > b is similar. For t in (a, b) we have ϕ̇(t) = 0 = 2

√|ϕ(t)|. For t < a, (ϕ(t)− ϕ(a))/(t − a) =
−(t − a)2/(t − a) = −(t − a) = a − t , and for t slightly larger than a, (ϕ(t) − ϕ(a))/(t − a) = 0.
It follows that when t is near a,

∣∣(ϕ(t) − ϕ(a))/(t − a)
∣∣ ≤ |t − a|, so ϕ is differentiable at a, and

ϕ̇(a) = limt→a(ϕ(t) − ϕ(a))/(t − a) = 0 = 2
√|ϕ(a)|. In the same way we show that the differential

equation is satisfied at t = b.

x

−3

−2

−1

1

2

3

t−4 −3 −2 −1 1 2 3 4

x = ϕ(t)

Figure M5.8.5
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6 Differential Equations II: Second-Order Equations and
Systems in the Plane

6.1
6.1.4 In each of these three equations, let u = ẋ. That will give simple first-order equations for u which

you can solve, and afterwards find x as x = ∫ u dt .
(a) Putting u = ẋ, we get u̇ + 2u = 8, which has the solution (see (5.4.3)) u = Ce−2t + 4. But then

x =
∫
(Ce−2t + 4) dt = − 1

2Ce
−2t + 4t + B = Ae−2t + 4t + B, with A = − 1

2C.

(b) With u = ẋ, we get u̇− 2u = 2e2t , with the solution (see (5.4.4))

u = Ce2t + e2t
∫
e−2t2e2t dt = Ce2t + e2t

∫
2 dt = Ce2t + e2t2t = (C + 2t)e2t

Integration by parts then yields

x =
∫
(C + 2t)e2t dt = 1

2 (C + 2t)e2t − 1
2

∫
2e2t dt

= 1
2 (C + 2t)e2t − 1

2e
2t + B = 1

2 (C − 1)e2t + te2t + B = Ae2t + te2t + B

with A = 1
2 (C − 1).

(c) Let u = ẋ. Then u̇ − u = t2, which has the solution (see (5.4.4)) u = Aet + et
∫
e−t t2 dt . Using

integration by parts twice gives
∫
e−t t2 dt = −t2e−t − 2te−t − 2e−t , and so u = Aet − t2 − 2t − 2.

Then x =
∫
(Aet − t2 − 2t − 2) dt = Aet − 1

3 t
3 − t2 − 2t + B.

6.1.6 (a) Suppose x = ϕ(t) is a solution of ẍ = F(x, ṡ). We know that if ẋ = ϕ̇(t) �= 0, then the equation
x − ϕ(t) = 0 defines t as a function of x, with

dt

dx
= − (∂/∂x)(x − ϕ(t))

(∂/∂t)(x − ϕ(t)) = −
∂
∂x
(x − ϕ(t))

∂
∂t
(x − ϕ(t)) =

1

ϕ̇(t)
= 1

ẋ

Therefore ẋ = 1/t ′, where t ′ = dt/dx. (The prime ′ denotes differentiation with respect to x.) Now the
chain rule gives

ẍ = d

dt
(ẋ) = d

dt

( 1

t ′
)
= d

dx

( 1

t ′
)dx
dt

= − t ′′

(t ′)2
1

t ′
= − t ′′

(t ′)3

and the differential equation ẍ = F(x, ẋ) becomes

− t ′′

(t ′)3
= F(x, 1/t ′) ⇐⇒ t ′′ = −(t ′)3F(x, 1/t ′)

(b) (i) Obviously, x(t) ≡ C is a solution for any constant C. The equation for t ′′ in (a) becomes
t ′′ = −(t ′)3(−x)(1/t ′3) = x, or d2t/dx2 = x. Integration yields dt/dx = 1

2x
2 + A, and further
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integration results in t = 1
6x

3 +Ax +B, where A and B are arbitrary constants. A nonconstant solution
of the equation ẍ = −xẋ3 is therefore given implicitly by the equation x3 + A1x + B1 = 6t .

(ii) In this case, x(t) ≡ C is a solution for every constant C �= 0. For solutions with ẋ �= 0 we use the
transformation in (a) and get

t ′′ = −(t ′)3
(1/(t ′)2

x

)
= − t

′

x
⇐⇒ t ′′

t ′
= −1

x
⇐⇒ ln |t ′| = − ln |x| + A1

This yields t ′ = A2/x, where A2 = ±eA1 , and then t = ∫ t ′ dx = A2 ln |x| + B1. This yields ln |x| =
At + B2, where A = 1/A2 and B2 = −B1/A2. Finally, x = ±eB2eAt = BeAt .

(Note that the constants A and B here are different from 0. If we let A = 0 in Beat , we recover the
constant solutions mentioned at the beginning.)

6.2

6.2.3 (a) Direct calculations show that ü1 + u̇1 − 6u1 = 0 and ü2 + u̇2 − 6u2 = 0. Since u1 and u2 are not
proportional, Theorem 6.2.1(a) says that the general solution of ẍ + ẋ − 6x = 0 is x = Au1 + Bu2 =
Ae2t + Be−3t .

(b) Theorem 6.2.1(b) now tells us that the general solution isAu1 +Bu2 +u∗, where u∗ is any particular
solution of the equation. Since the right-hand side of the equation is a polynomial of degree 1, we try to find
a particular solution of the formu∗ = Ct+D. We get ü∗+u̇∗−6u∗ = C−6(Ct+D) = −6Ct+(C−6D),
so u∗ is a solution if and only if −6C = 6 and C = 6D, in other words if and only if C = −1 and
D = −1/6. Thus the general solution of the given equation is x = Ae2t + Be−3t − t − 1/6.

6.2.5 Let x = (t + k)−1. Then ẋ = −(t + k)−2, ẍ = 2(t + k)−3, and

(t + a)(t + b)ẍ + 2(2t + a + b)ẋ + 2x

= (t + k)−3[2(t + 2)(t + b)− 2(2t + a + b)(t + k)+ 2(t + k)2]
= (t + k)−32

[
k2 − (a + b)k + ab] = (t + k)−32(k − a)(k − b)

Thus x = (t + k)−1 solves the given differential equation if and only if k = a or k = b. Since a �= b, the
functions u1 = (t + a)−1 and u2 = (t + b)−1 are not proportional, and the general solution of the given
equation is x = Au1 + Bu2 = a(t + a)−1 + B(t + b)−1.

6.3

6.3.2 (a) The characteristic equation is r2 − 1 = 0, with roots r = 1 and r = −1. The general solu-
tion of the corresponding homogeneous differential equation is therefore (Case (I) in Theorem 6.3.1),
x = Aet + Be−t . To find a particular solution of the given equation we try u∗(t) = p sin t + q cos t .
Then u̇∗ = p cos t − q sin t , and ü∗ = −p sin t + q cos t . Inserting this into the given equation yields
−2p sin t − 2q cos t = sin t . Thus p = −1/2 and q = 0. The general solution of ẍ − x = sin t is
therefore x = Aet + Be−t − 1

2 sin t .

(b) The general solution of the homogeneous equation is again x = Aet +Be−t . Since e−t is a solution
of the homogeneous equation, we try u∗(t) = pte−t . Then u̇∗(t) = pe−t −pte−t and ü∗(t) = −pe−t −
pe−t + pte−t , which inserted into the given equation yields −2pe−t = e−t , so p = −1/2, and the
general solution is x = Aet + Be−t − 1

2 te
−t .
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(c) The characteristic equation is r2 − 10r + 25 = (r − 5)2 = 0, so r = 5 is a double root. The general
solution of the homogeneous equation is therefore (Case (II) in Theorem 6.3.1), x = Ae5t + Bte5t . To
find a particular solution we try u∗(t) = pt + q, and find p = 2/75, q = 3/125. Hence, the general
solution of the given equation is x = Ae5t + Bte5t + 2

75 t + 3
125 .

6.3.3 (a) The characteristic equation is r2+2r+1 = (r+1)2 = 0, so r = −1 is a double root. The general
solution of the homogeneous equation is therefore (Case (II) in Theorem 6.3.1), x = Ae−t + Bte−t . To
find a particular solution we try u∗(t) = Ct2 +Dt+E. Then u̇∗ = 2Ct+D, and ü∗ = 2C. Inserted into
the given equation this yields 2C+4Ct+2D+Ct2+Dt+E = t2, orCt2+(4C+D)t+2C+2D+E = t2.
Equating like powers of t yields C = 1, 4C +D = 0, and 2C + 2D + E = 0. It follows that D = −4,
and E = 6. So the general solution is x = Ae−t + Bte−t + t2 − 4t + 6. The constants A and B are
determined by the initial conditions. The condition x(0) = 0 yields A + 6 = 0, so A = −6. Since
ẋ(t) = −Ae−t + Be−t − Bte−t + 2t − 4, the condition ẋ(0) = 1 implies −A + B − 4 = 1, and so
B = A+ 5 = −1. The required solution is x = −6et − tet + t2 − 4t + 6.

(b) The characteristic equation is r2 + 4 = 0, so r = ±2i are the complex roots. The general solution of
the homogeneous equation is therefore (Case (III) in Theorem 6.3.1), x = A sin 2t + B cos 2t . To find
a particular solution we try u∗(t) = Ct + D, and find C = 1 and D = 1/4. It follows that the general
solution is x = A sin 2t+B cos 2t+ t+1/4. To find the solution with the given initial conditions we must
determine A and B. The initial condition x(π/2) = 0 gives A sin π + B cosπ + π/2 + 1/4 = 0. Since
sin π = 0 and cosπ = −1, we find B = π/2 + 1/4. Since ẋ = 2A cos 2t − 2B sin 2t + 1, the equation
ẋ(π/2) = 0 gives −2A+ 1 = 0. Therefore A = 1/2, and so x = 1

2 sin 2t + ( 1
4 + 1

2π) cos t + t + 1
4 .

6.3.4 Since the right-hand side is a linear function of t , we try to find a particular solution of the form
u∗ = P t +Q. We get u̇∗ = P and ü∗ = 0, so we must have

γ [β + α(1 − β)]P − γ δ∗P t − γ δ∗Q = −γ δ∗kt − γ δ∗L0

It follows that P = k and Q = L0 + [β + α(1 − β)]k/δ∗.
The characteristic equation is r2 + γ [β + α(1 − β)]r − γ δ∗ = 0, with roots

r = − 1
2γ [β + α(1 − β)] ± 1

2

√
γ 2[β + α(1 − β)]2 + 4γ δ∗

Oscillations occur if the characteristic roots are complex, i.e. if and only if 1
4γ

2[β+α(1−β)]2+γ δ∗ < 0.

6.3.8 (a) This is an Euler differential equation. With x = t r , we get ẋ = rtr−1, and ẍ = r(r − 1)tr−2.
Inserting this into the given equation and cancelling t r gives the equation r2 + 4r + 3 = 0, with roots
r = −1 and r = −3. The general solution is therefore x = At−1 + Bt−3.

(b) Substituting x = t r into the homogeneous equation yields the equation r2 −4r+3 = (r−1)(r−3).
The general solution of the homogeneous equation is therefore x = At + Bt3. To find a particular
solution of the nonhomogeneous equation, t2ẍ − 3t ẋ + 3x = t2, we try u∗(t) = P t2 +Qt + R. Then
u̇∗ = 2P t +Q, and ü∗ = 2P . Inserted into the given equation this yields

2P t2 − 3t (2P t +Q)+ 3P t2 + 3Qt + 3R = t2 ⇐⇒ −P t2 + 3R = t2

This holds for all t if and only ifP = −1 andR = 0. (Note thatQ did not appear in the last equation. That
is becauseQt is a solution of the homogeneous equation.) One particular solution of the nonhomogeneous
equation is therefore u∗ = −t2, and so the general solution is x = At + Bt3 − t2.
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6.3.10 By Leibniz’s rule, p̈ = a[D(p(t))− S(p(t))] = a(d1 − s1)p + a(d0 − s0). In other words, p must
satisfy p̈ + a(s1 − d1)p = a(d0 − s0). Note that a(s1 − d1) > 0, and see the answer in the book.

6.4

6.4.3 Write the equation as p̈(t) − λp(t) = k, where λ = γ (a − α). If λ > 0, then the solution is
p(t) = Aert + Be−rt − k/r2, where r = √

λ; if λ = 0, then the solution is p(t) = At + B + 1
2kt

2; if
λ < 0, then the solution is p(t) = A cos

√−λ t + B sin
√−λ t − k/λ.

The equation is not stable for any values of the constants. This is obvious from the form of the
solutions—if λ ≥ 0, the corresponding homogeneous equation has solutions that run off to infinity, and
if λ < 0 the solutions oscillate with a fixed amplitude.

We can also see the instability from the criterion in (6.4.2): The characteristic equation is r2−λ = 0.
If λ > 0, this equation has two real solutions, one positive and one negative. If λ = 0, the characteristic
roots are r1 = r2 = 0. If λ < 0, the equation has complex roots with real part equal to 0.

6.5

6.5.2 (a) If we add the two equations we get ẋ+ ẏ = (a+ b)(x+ y). Hence x+ y = Ce(a+b)t . Because of
the initial conditions x(0) = 1

2 , y(0) = 1
2 , we must have C = 1. This implies ẋ = a(x + y) = ae(a+b)t

and ẏ = be(a+b)t .
If a + b �= 0, then

x = ae(a+b)t

a + b + A, y = be(a+b)t

a + b + B

for suitable constants A and B. The initial conditions yield

A = x(0)− a

a + b = 1

2
− a

a + b = b − a
2(a + b) , B = y(0)− b

a + b = 1

2
− b

a + b = a − b
2(a + b)

and so

x(t) = 2ae(a+b)t + b − a
2(a + b) , y(t) = 2be(a+b)t + a − b

2(a + b)

If a + b = 0, then ẋ = a and ẏ = b = −a, and therefore

x = 1
2 + at, y = 1

2 − at

(b) The first equation gives y = ẋ − 2tx, and if we use this in the second equation we get

ẍ − 2x − 2t ẋ = −2t − 2x ⇐⇒ ẍ − 2t ẋ = −2t

This is a first-order linear equation for ẋ with general solution ẋ = Ce−t2 + 1. From the first equation
and the initial conditions we get ẋ(0) = 0 + y(0) = 1, so C = 0. Therefore ẋ = 1. Because x(0) = 1,
we get x = t + 1, and y = ẋ − 2tx = 1 − 2t (t + 1) = −2t2 − 2t + 1.

(c) The first equation yields y = − 1
2 ẋ + 1

2 sin t . From the second equation we then get

− 1
2 ẍ + 1

2 cos t = 2x + 1 − cos t ⇐⇒ ẍ + 4x = −2 + 3 cos t (∗)
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The corresponding homogeneous equation, ẍ+4x = 0, has the general solution x = A cos 2t+B sin 2t .
To find a particular solution of (∗) we try u∗ = C + D cos t + E sin t . Then ü∗ = −D cos t − E sin t
and ü∗ + 4u∗ = 4C + 3D cos t + 3E sin t . It follows that C = −1/2, D = 1, and E = 0. Thus
the general solution of (∗) is x = A cos 2t + B sin 2t − 1

2 + cos t , and we get y = − 1
2 ẋ + 1

2 sin t =
−A cos 2t +B sin 2t + sin t . The initial conditions x(0) = y(0) = 0 yield B − 1

2 + 1 = 0 and −A = 0,
so the solutions we are looking for are

x = − 1
2 cos 2t + cos t − 1

2 , y = − 1
2 sin 2t + sin t

6.5.3 The first equation givesp = e−2t (ẋ−x). Then ṗ = −2e−2t (ẋ−x)+e−2t (ẍ−ẋ) = e−2t (ẍ−3ẋ+2x).
If we insert these expressions for p and ṗ into the second equation, we get

e−2t (ẍ − 3ẋ + 2x) = 2e−2t x − e−2t (ẋ − x) = e−2t (3x − ẋ) �⇒ ẍ − 2ẋ − x = 0

The general solution of the last equation is x = Ae(1+
√

2 )t + Be(1−
√

2 )t , where 1±√
2 are the roots of the

characteristic equation, r2 − 2r − 1 = 0. A straightforward calculation gives ẋ − x = A
√

2e(1+
√

2 )t −
B
√

2e(1−
√

2 )t and then p = e−2t (ẋ − x) = A
√

2e(
√

2−1)t − B√2e(−
√

2−1)t .

6.5.4 From the first equation, σ = απ − π̇ . Inserting this into the second equation, we get

απ̇ − π̈ = π − α

β
π + 1

β
π̇ ⇐⇒ π̈ +

( 1

β
− α
)
π̇ +

(
1 − α

β

)
π = 0 (∗)

which is a second-order differential equation for π with constant coefficients. The characteristic equation
is r2+ (1/β−α)r+ (1−α/β) = 0, with roots r1,2 = 1

2 (α−1/β)± 1
2

√
(α + 1/β)2 − 4. If α+1/β > 2,

then r1 and r2 are real and different, and the general solution of (∗) is π = Aer1t + Ber2t . It follows that
σ = απ − π̇ = (α − r1)Aer1t + (α − r2)Ber2t .

6.6

6.6.3 (ii) The equilibrium point of the linear system ẋ = x + 2y, ẏ = −y, is (x∗, y∗) = (−5, 2). Let
z = x + 5 and w = y − 2 (cf. example 6.5.4). The given equation system is equivalent to the system

ẇ = w + 2z

ż = −z ⇐⇒
(
ẇ

ż

)
= A

(
w

z

)
(∗)

with coefficient matrix A =
(

1 2
0 −1

)
. Since the trace of A is 0, the system is not globally asymptotically

stable. The eigenvalues of A are λ1 = 1 and λ2 = −1, with corresponding eigenvectors

(
1
0

)
and

(
1

−1

)
.

According to (6.5.9), the solution of (∗) is

(
w

z

)
= Aet

(
1
0

)
+ Be−t

(
1

−1

)
=
(
Aet + Be−t
−Be−t

)
. The

solution of the given system is therefore x = z − 5 = Aet + Be−t − 5 and y = w + 2 = −Be−t + 2,
the same solution as in (i).

It is clear that ifA �= 0, then x does not converge to the equilibrium value as t →∞, which confirms
that the system is not asymptotically stable.
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6.6.4 (a) From the first equation, y = 1
2 (ẋ − ax − α). The second equation then yields

1
2 (ẍ − aẋ) = 2x + 1

2a(ẋ − ax − α)+ β ⇐⇒ ẍ − 2aẋ + (a2 − 4)x = 2β − αa (♦)
The characteristic equation is r2 −2ar+a2 −4 = 0, which has the roots r1,2 = a±2. It follows that the
homogeneous equation associated with (♦) has the general solution xH = Ae(a−2)t + Be(a+2)t . Hence,
the general solution of equation (♦) itself is xH+u∗, where u∗ is any particular solution of (♦). Since the
right-hand side of the equation is a constant, we look for a suitable constant u∗, which turns out to be u∗ =
(2β−αa)/(a2−4). Thus, the general solution of (♦) is x = Ae(a−2)t + Be(a+2)t + (2β − αa)/(a2 − 4).

Then the equation y = 1
2 (ẋ − ax − α) yields y = −Ae(a−2)t + Be(a+2)t + (2α − aβ)/(a2 − 4).

(b) The equilibrium point (x∗, y∗) is given by the equation system

ax∗ + 2y∗ + α = 0, 2x∗ + ay∗ + β = 0

Easy calculations show that x∗ = (2β − αa)/(a2 − 4) and y∗ = (2α − aβ)/(a2 − 4). Of course, this
is just the stationary solution of the system in part (a), given by A = B = 0. The equilibrium point is
globally asymptotically stable if and only if e(a−2)t and e(a+2)t both tend to 0 as t →∞, and this happens
if and only if both a − 2 and a + 2 are negative, i.e. if and only if a < −2.

An alternative way to check stability is to consider the trace and determinant of the coefficient matrix

A =
(
a 2
2 a

)
. We get tr(A) = 2a and |A| = a2 − 4, and Theorem 6.6.1 says that the equilibrium point

is globally asymptotically stable if and only if 2a < 0 and a2 − 4 > 0, which is equivalent to a < −2.

(c) With a = −1, α = −4, and β = −1, the general solution of the system is x = Ae−3t + Bet + 2,
y = −Ae−3t + Bet + 3. It is clear that this will converge to the equilibrium point (2, 3) if and only if
B = 0. One such solution is then x = e−3t + 2, y = −e−3t + 3. This solution moves towards (2, 3)
along the line x + y = 5, and so do all the convergent solutions, i.e. the solutions with B = 0.

6.7
6.7.4 (a) See Figs. A6.7.4(a) and (b) in the answer section of the book. The system has a single equilibrium

point, namely (0, 0). It seems clear from the phase diagram that this is not a stable equilibrium. Indeed,
the equations show that any solution through a point on the y-axis below the origin will move straight
downwards, away from (0, 0).

(b) The first equation has the general solution x = Ae−t , and the initial condition x(0) = −1 implies
A = −1, so x = −e−t . The second equation is the system the becomes ẏ = e−t y − y2, which is a
Bernoulli equation.

With z = y1−2 = y−1 = 1/y we get y = 1/z, ẏ = −ż/z2, and

−ż/z2 = e−t (1/z)− 1/z2 �⇒ ż+ e−t z = 1

If we use formula (5.4.7) with a(t) = e−t , b(t) = 1, t0 = 1, and z0 = 1, we get− ∫ t
s
a(ξ) dξ = e−t−e−s

and

z = ee
−t−1 +

∫ t

0
ee

−t−e−s ds = ee
−t(
e−1 +

∫ t

0
e−e

−s
ds
)

y = e−e−t

e−1 + ∫ t0 e−e−s ds
For all s ≥ 0 we have e−s ≤ 1, so −e−s ≥ −1 and e−e−s ≥ e−1. It follows that for t > 0 we have∫ t

0 e
−e−s ds ≥ e−1t , e−e−t ≤ e0 = 1 and y(t) ≤ 1/(e−1 + te−1)→ 0 as t∞.
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6.7.6 The equation ẋ = −x has the general solution x = Ae−t . The initial condition x(0) = 1 then implies
x(t) = e−t . The second equation becomes ẏ = −e−2t y. This is a separable equation and we get∫

dy

y
= −

∫
e−2t dt �⇒ ln |y| = 1

2
e−2t + C

The initial condition y(0) = 1 yields C = − 1
2 , and we get y(t) = e(e

−2t−1)/2. As t → ∞, the point
(x(t), y(t)) tends to (0, e−1/2).

6.8

6.8.5 Let f (Y,K) = α
(
I (Y,K) − S(Y,K)

)
and g(Y,K) = I (Y,K). The matrix A in Theorem 6.8.2 is

A(Y,K) =
(
f ′
Y f ′

K

g′Y g′K

)
=
(
α(I ′Y − S ′Y ) α(I ′K − S ′K)

I ′Y I ′K

)
. Now, tr

(
A(Y,K)

) = α(I ′Y − S ′Y )+ I ′K < 0

and |A(Y,K)| = α(I ′Y − S ′Y )I ′K − α(I ′K − S ′K)I ′Y = α(I ′Y S ′K − I ′KS ′Y ) > 0 by the assumptions in the
problem. Finally, f ′

Y g
′
K = α(I ′K − S ′K)I ′Y < 0 everywhere, so an equilibrium point for the system must

be globally asymptotically stable according to Olech’s theorem.

6.8.6 See the answer in the book for the stability question.
K must satisfy the Bernoulli equation K̇ = sKα− δK . This corresponds to the equation in Problem

5.6.4, with γ1b = s and γ2 = −δ. The general solution is therefore K(t) = [Ce−δ(1−α)t + s/δ]1/(1−α).
The initial condition K(0) = K0 yields C = K1−α

0 − s/δ. Since δ(1 − α) > 0, the solution K(t) =[
(K1−α

0 − s/δ)e−δ(1−α)t + s/δ]1/(1−α) tends to (s/δ)1/(1−α) = K∗ as t →∞.

6.9

6.9.2 Write the system as

k̇ = F(k, c) = f (k)− δk − c, ċ = G(k, c) = −c(r + δ − f ′(k))

The Jacobian matrix at (k, c) is

A(k, c) =
(
F ′
k F ′

c

G′
k G′

c

)
=
(
f ′(k)− δ −1
cf ′′(k) f ′(k)− r − δ

)
The origin (k, c) = (0, 0) is an equilibrium point, but not the one the authors had in mind. At an
equilibrium point (k∗, c∗) with c∗ > 0 we have c∗ = f (k∗)− δk∗ and f ′(k∗) = r + δ. Then

A(k∗, c∗) =
(
f ′(k∗)− δ −1
cf ′′(k∗) 0

)
=
(

r −1
cf ′′(k∗) 0

)
has determinant |A(k∗, c∗)| = cf ′′(k∗) < 0, so (k∗, c∗) is a saddle point.

6.9.3 (a) (x0, y0) = (4/3, 8/3). It is a saddle point because the Jacobian at (4/3, 8/3) is

A =
(
y − x − 2 x

y2/2x2 1 − y/x
)
=
(−2/3 4/3

2 −1

)
, with determinant |A| = −2.

(b) See Fig. A6.9.3 in the answer section of the book.
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6.9.4 (a) The equilibrium points are the solutions of the equation system

(i) y2 − x = 0, (ii) 25/4 − y2 − (x − 1/4)2 = 0

Substituting x for y2 in (ii) leads to the quadratic equation x2 + x/2 − 99/16 = 0, which has the
solutions x = (−1 ± 10)/4. Since x = y2 must be nonnegative, we get x = 9/4 and y = ±3/2.

The Jacobian at (x, y) is A(x, y) =
( −1 2y
−2x + 1/2, −2y

)
, so A(9/4, 3/2) = A1 =

(−1 3
−4 −3

)
and

A(9/4,−3/2) = A2 =
(−1 −3
−4 3

)
. The determinants and traces of these matrices are |A1| = 15,

tr(A1) = −4, |A2| = −15, and tr(A2) = 2. It follows that (9/4, 3/2) is locally asymptotically stable,
whereas (9/4,−3/2) is a saddle point. These conclusions are confirmed by the solution to part (b). See
Fig. A6.9.4 in the answer section of the book.

7 Differential Equations III: Higher-Order Equations

7.1
7.1.3 The homogeneous equation ẍ + x = 0 has the two linearly independent solutions u1 = sin t and

u2 = cos t . To find the solution of the equation ẍ+x = 1/t we use the method of variation of parameters.
Let x = C1(t) sin t + C2(t) cos t . The two equations to determine Ċ1(t) and Ċ2(t) are

Ċ1(t) sin t + Ċ2(t) cos t = 0

Ċ1(t) cos t − Ċ2(t) sin t = 1/t

This is a linear equation system in the unknowns Ċ1(t) and Ċ2(t), and the determinant of the system is∣∣∣∣ sin t cos t
cos t − sin t

∣∣∣∣ = − sin2 t − cos2 t = −1. (See Section B.1.) Cramer’s rule gives

Ċ1(t) = cos t

t
, Ċ2(t) = − sin t

t

It follows that u∗(t) = sin t
∫

cos t

t
dt − cos t

∫
cos t

t
dt is the general solution of the given equation

(provided we include an arbitrary constant of integration in each of the two integrals).

7.2
7.2.2 Integer roots of the characteristic equation r3−r2−r+1 = 0 must divide the constant term 1 (EMEA,

Note 4.7.2), so the only possibilities are ±1, and we see that both r = −1 and r = 1 are roots. Moreover,
(r3−r2−r+1)÷(r−1) = (r2−1), so r3−r2−r+1 = (r−1)(r2−1) = (r−1)2(r+1). According to the
general method for finding linearly independent solutions to linear homogeneous equations with constant
coefficients, the general solution of the associated homogeneous equation is xH = (A + Bt)et + Ce−t .
Looking at the right-hand side of the given nonhomogeneous equation, it might seem natural to try
u∗ = (D + Et)e−t as a particular solution. But that does not work because r = −1 is a root in
the characteristic equation. We must therefore increase the degree of the polynomial factor and try
with a quadratic polynomial instead. Let u∗ = (Et + F t2)e−t . A bit of tedious algebra gives u̇∗ =
(E+(2F−E)t−F t2)e−t , ü∗ = (2F−2E+(E−4F)t+F t2)e−t , ...

u∗ = (3E−6F+(6F−E)t−F t2)e−t ,
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and finally
...
u∗ − ü∗ − u̇∗ + u∗ = (4E − 8F + 8F t)e−t . This equals 8te−t if F = 1 and E = 2, so the

general solution of the given equation is x = xH + u∗ = (A+Bt)et + (C + 2t + t2)e−t . Requiring this
solution to satisfy the initial conditions givesA = −1, B = 1, C = 1, and so x = (t−1)et + (t+1)2e−t .

Why did we not include a term of the formDe−t in the tentative solution u∗? The answer is thatDe−t
is a solution of the homogeneous equation for every value ofD, soDwould not appear in

...
u∗−ü∗−u̇∗+u∗.

7.2.3 Differentiating the equation w.r.t. t gives (using the product rule and (4.1.5))

...
K = (γ1κ + γ2)K̈ + (γ1σ + γ3)μ0μe

μt

∫ t

0
e−μτ K̇(τ )dτ + (γ1σ + γ3)μ0e

μte−μt K̇(t) (∗)

From the given equation, (γ1σ + γ3)μ0e
μt
∫ t

0 e
−μτ K̇(τ )dτ = K̈ − (γ1κ + γ2)K̇ . Inserting this into (∗)

yields the equation
...
K − pK̈ + qK̇ = 0 given in the answer in the book. One root of the characteristic

equation r3 − pr2 + qr = 0 is r3 = 0. The other two are the roots r1 and r2 of r2 − pr + q = 0,
and they are real, nonzero, and different if p2 − 4q > 0 and q �= 0. If these conditions are satisfied, it
follows from the theory in this section that the general solution of the differential equation is of the form
K(t) = C1e

r1t + C2e
r2t + C3e

r3t .

7.3

7.3.2 The roots of the characteristic equation r3 + 4r2 + 5r + 2 = 0 are r1 = r2 = −1 and r3 = −2, which
are all negative, so global asymptotic stability also follows from Theorem 7.3.1.

7.4

7.4.1 (i) The system is: (a) ẋ1 = −x1+x2+x3, (b) ẋ2 = x1−x2+x3, (c) ẋ3 = x1+x2+x3. Differentiating
(a) w.r.t. t and inserting from (b) and (c) gives (d) ẍ1 + ẋ1 − 2x1 = 2x3. Differentiating once more w.r.t.
t and inserting from (c) gives

...
x 1 + ẍ1 − 2ẋ1 = 2ẋ3 = 2x1 + 2(x2 + x3) = 2x1 + 2(ẋ1 + x1), using

(a) again. Thus the differential equation for x1 is (e)
...
x 1 + ẍ1 − 4ẋ1 − 4x1 = 0. Since the characteristic

polynomial is (r + 1)(r + 2)(r − 2), the general solution is x1 = C1e
−t + C2e

−2t + C3e
2t . From (d)

we find x3 = 1
2 (ẍ1 + ẋ1 − 2x1) = −C1e

−t + 2C3e
2t . We then find x2 from (a): x2 = ẋ1 + x1 − x3 =

C1e
−t − C2e

−2t + C3e
2t .

(ii) We write the system as ẋ = Ax, where A =
⎛⎝−1 1 1

1 −1 1
1 1 1

⎞⎠ and x =
⎛⎝ x1

x2

x3

⎞⎠. The eigenvalues of

A are the solutions of the equation

∣∣∣∣∣∣
−1 − λ 1 1

1 −1 − λ 1
1 1 1 − λ

∣∣∣∣∣∣ = 0, and we find them to be λ1 = −1,

λ2 = −2, and λ3 = 2. (These are the same as the solutions of the characteristic equation of the differential
equation (e). This is no coincidence. See the remark above Theorem 6.6.1 concerning second-order
systems.) The eigenvectors associated with the eigenvalues are determined by the three systems

x2 + x3 = 0

x1 + x3 = 0

x1 + x2 + 2x3 = 0

,

x1 + x2 + x3 = 0

x1 + x2 + x3 = 0

x1 + x2 + 3x3 = 0

,

−3x1 + x2 + x3 = 0

x1 − 3x2 + x3 = 0

x1 + x2 − x3 = 0
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The following vectors are solutions of these systems:

v1 =
⎛⎝ 1

1
−1

⎞⎠ , v2 =
⎛⎝ 1
−1

0

⎞⎠ , v3 =
⎛⎝ 1

1
2

⎞⎠
The solution of the given system of differential equations is then⎛⎝ x1

x2

x3

⎞⎠ = C1e
−t
⎛⎝ 1

1
−1

⎞⎠+ C2e
−2t

⎛⎝ 1
−1

0

⎞⎠+ C3e
2t

⎛⎝ 1
1
2

⎞⎠
We see that we have arrived at the same solutions as above.

(iii) The resolvent, with t0 = 0, is

P(t, 0) =
⎛⎜⎝

1
3e

−t + 1
2e

−2t + 1
6e

2t 1
3e

−t − 1
2e

−2t + 1
6e

2t − 1
3e

−t + 1
3e

2t

1
3e

−t − 1
2e

−2t + 1
6e

2t 1
3e

−t + 1
2e

−2t + 1
6e

2t − 1
3e

−t + 1
3e

2t

− 1
3e

−t + 1
3e

2t − 1
3e

−t + 1
3e

2t 1
3e

−t + 2
3e

2t

⎞⎟⎠
The ith column of P(t, 0) is a vector (x1(t), x2(t), x3(t))

′ of particular solutions of the system such that
(x1(0), x2(0), x3(0))′ is the ith standard unit vector ei . In particular, P(0, 0) = I3. It is not hard to verify
that AP(t, 0) = (d/dt)P(t, 0).

7.5

7.5.4 (a) Equation (∗) is separable, so
∫
g1(x)

f1(x)
dx =

∫
f2(y)

g2(y)
dy + C for some constant C. Therefore,

the function H(x, y) is constant along each solution curve for the system.

(b) H(x, y) =
∫
bx − h
x

dx −
∫
k − ay
y

dy =
∫ (
b − h

x

)
dx −

∫ ( k
y
− a) dy =

bx − h ln x − (k ln y − ay)+ C = b(x − x0 ln x)+ a(y − y0 ln y)+ C,
where x0 = h/b and y0 = k/a.

7.5.5 We can write the system as

ẋ = x(k − ay − εx), ẏ = y(−h+ bx − δy)

It is clear that a point (x0, y0) with x0 �= 0 and y0 �= 0 is an equilibrium point if and only if

bx0 − δy0 = h

εx0 + ay0 = k
(∗)

The determinant of this system is ab + δε �= 0, so it has a unique solution, and Cramer’s rule gives the
solution as x0 = (ah+ kδ)/(ab + δε), y0 = (bk − hε)/(ab + δε), as given in the problem.

We claim that the function

L(x, y) = b(x − x0 ln x)+ a(y − y0 ln y)− b(x0 − x0 ln x0)+ a(y0 − y0 ln y0)
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is a strong Liapunov function for the system, with (x0, y0) as its minimum point. First note thatL(x0, y0) =
0. Moreover, L′

x(x, y) = b(1 − x0/x) and L′
y(x, y) = a(1 − y0/y) are both 0 at (x0, y0) and L′′

xx =
bx0/x

2 > 0, L′′
yy = ay0/y

2 > 0, and L′′
xy = 0, so L(x, y) is strictly convex and has a unique minimum

at (x0, y0). Finally,

L̇ = b
(
1 − x0/x

)
ẋ + a(1 − y0/y

)
ẏ = b(k − ay − εx)(x − x0)+ a(−h+ bx − δy)(y − y0)

= b(εx0 + ay0 − ay − εx)(x − x0)+ a(δy0 − bx0 + bx − δy)(y − y0)

= −εb(x − x0)
2 − aδ(y − y0)

2

which is negative for (x, y) �= (x0, y0). We used the equations k = εx0 + ay0 and h = −δy0 + bx0

from (∗). We have proved that L is a strong Liapunov function for the system, so (x0, y0) is locally
asymptotically stable.

7.7

7.7.1 (a) By integration, z = 1
4x

4 + 1
2x

2y2 − exy+ϕ(y), where ϕ(y) is an arbitrary function and plays the
role of a constant of integration when we integrate with respect to x.

(b) The recipe for solving equations of the form (7.7.2) leads to the solution z = 3x+ ϕ(y− 2x), where
ϕ is an arbitrary differentiable function. It looks as if x has a special role here, but that is an illusion.
If we use the recipe with y instead of x as the independent variable in equations (7.7.3), we are led to
z = 3y/2+ψ(x − y/2), where y seems to be singled out. Actually, these solutions are just two ways of
writing the same thing. The functions ϕ and ψ are related by the equation ψ(u) = ϕ(−2u)+ 3u.

(c) The equations in (7.7.3) are both separable, dy/dx = y2/x2 and dz/dx = z2/x2. The solutions are
−1/y = −1/x + C1, −1/z = −1/x + C2. The general solution is therefore �(1/x − 1/y, 1/x − 1/z)

= 0, or 1/z = 1/x − ϕ(1/x − 1/y), and hence z = x

1 − xϕ(1/x − 1/y)
, where ϕ is an arbitrary

differentiable function.

7.7.3 (a) The equations in (7.7.3) are dy/dx = −y/x and dz/dx = 1. The latter equation gives z = x+C1,
and so z− x = C1. The first equation is separable with solution xy = C2. The general solution of (∗) is
given by�(z− x, xy) = 0. Solving this equation for the first variable yields z = x + ϕ(xy), where ϕ is
an arbitrary differentiable function.

(b) The condition f (x, 1) = x2 implies that x + ϕ(x) = x2. Thus ϕ(x) = −x + x2 for all x, and hence
f (x, y) = x + ϕ(xy) = x − xy + x2y2.

7.7.7 The equations in (7.7.3) are dv2/dv1 = v2/v1 and dx/dv1 = xε(x)/v1, with the solutions v2/v1 = C1,
f (x)− ln v1 = C2, where f (x) = ∫ (1/xε(x)) dx. Since f ′(x) = 1/xε(x) > 0, f is strictly increasing,
and has an inverse f−1 that is also strictly increasing. The general solution is�(v2/v1, f (x)− ln v1) = 0,
or f (x) = ln v1 + ϕ(v2/v1). Hence, x = f−1(ln v1 + ϕ(v2/v1)). Define g(v1, v2) = eln v1+ϕ(v2/v1) =
v1e

ϕ(v2/v1). Then g is homogeneous of degree 1, and we see that x = f−1(ln(g(v1, v2)). The composition
F of the two increasing functions f−1 and ln is increasing. It follows that x = F(g(v1, v2)) is homothetic.
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8 Calculus of Variations

8.2
8.2.3 (a) With F(t, x, ẋ) = x2 + ẋ2 + 2xet we get F ′

x = 2x + 2et and F ′̇
x = 2ẋ, and the Euler equation

becomes

2x + 2et − d

dt
(2ẋ) = 0 ⇐⇒ 2x + 2et − 2ẍ = 0 ⇐⇒ ẍ − x = et

(b) With F(t, x, ẋ) = −eẋ−ax we get F ′
x = aeẋ−ax and F ′̇

x = −eẋ−ax . The Euler equation is

aeẋ−ax + d

dt
eẋ−ax = 0 ⇐⇒ aeẋ−ax + eẋ−ax(ẍ − aẋ) = 0 ⇐⇒ ẍ − aẋ + a = 0

(c) Here F(t, x, ẋ) = [(x− ẋ)2 + x2]e−at , so F ′
x = [2(x− ẋ)+ 2x]e−at and F ′̇

x = −2(x− ẋ)e−at . The
Euler equation becomes

[2(x − ẋ)+ 2x]e−at + d

dt
[2(x − ẋ)e−at ] = 0

⇐⇒ [2(x − ẋ)+ 2x]e−at + 2(ẋ − ẍ)e−at − 2a(x − ẋ)e−at = 0

⇐⇒ 2(x − ẋ)+ 2x + 2(ẋ − ẍ)− 2a(x − ẋ) = 0

⇐⇒ ẍ − aẋ + (a − 2)x = 0

(d) With F(t, x, ẋ) = 2tx+ 3xẋ+ t ẋ2 we get F ′
x = 2t + 3ẋ and F ′̇

x = 3x+ 2t ẋ, and the Euler equation
becomes

2t + 3ẋ − d

dt
(3x + 2t ẋ) = 0 ⇐⇒ 2t + 3ẋ − 3ẋ − 2ẋ − 2t ẍ = 0 ⇐⇒ t ẍ + ẋ = t

It is worth noting that this is an exact equation for ẋ because it says that (d/dt)(t ẋ) = t . Hence,
t ẋ = 1

2 t
2 +C, which implies ẋ = 1

2 t+C/t , and so x = 1
4 t

2 +C ln |t |+A, whereC andA are constants.

8.2.4 With F(t, x, ẋ) = x2 + 2txẋ + ẋ2 we get F ′
x = 2x + 2t ẋ and F ′̇

x = 2tx + 2ẋ, so the Euler equation
(8.2.2) is

2x + 2t ẋ − d

dt
(2tx + 2ẋ) = 0 ⇐⇒ 2x + 2t ẋ − (2x + 2t ẋ + 2ẍ) = 0 ⇐⇒ ẍ = 0

The general solution of ẍ = 0 is x = At +B, and the boundary conditions x(0) = 1 and x(1) = 2 yield
A = B = 1. Thus the only admissible function that satisfies the Euler equation is x = t + 1.

We have F ′′
xx = 2 > 0, F ′′

xẋ = 2t , and F ′′
ẋẋ = 2 > 0, and since F ′′

xxF
′′
ẋẋ − (F ′′

xẋ)
2 = 4 − 4t2 ≥ 0 for

all t in [0, 1], it follows that F(t, x, ẋ) is convex with respect to (x, ẋ) as long as t ∈ [0, 1]. Hence, by
Theorem 8.3.1, x = t + 1 is the optimal solution of the problem.

8.2.6 Let F(t, x, ẋ) = √
1 + ẋ2. Then F ′

x = 0 and F ′̇
x =

ẋ√
1 + ẋ2

. The Euler equation, F ′
x −

d

dt
F ′
ẋ = 0,

therefore reduces to

d

dt

(
ẋ√

1 + ẋ2

)
= 0, i.e.

ẋ√
1 + ẋ2

= C (constant)

This implies
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ẋ2

1 + ẋ2
= C2, so ẋ = C1 (= C√

1 − C2
)

Since ẋ is a constant, x is a linear function of t :

x = C1t + C2.

Thus the graph of x is a straight line, namely the straight line through the points (t0, x0) and (t1, x1). Of
course, this is precisely what we would expect: the shortest curve between two points is the straight line
segment between them. The function x is given by the equation

x(t) = x0 + x1 − x0

t1 − t0 (t − t0)

Note also that F ′′
ẋẋ = 1/(1 + ẋ2)3/2 > 0, so F is convex with respect to (x, ẋ), and Theorem 8.3.1 in

Section 8.3 shows that the function we have found really does give the minimum, at least among the
admissible C2 functions.

8.3
8.3.2 (a) The objective function is F(t, x, ẋ) = U(c̄ − ẋert ), and

∂F

∂x
= 0,

∂F

∂ẋ
= −U ′(c̄ − ẋert )ert .

As ∂F/∂x = 0, the Euler equation reduces to

d

dt

(−U ′(c̄ − ẋert )ert) = 0, so U ′(c̄ − ẋert )ert = K (a constant)

(Evaluating the derivative
d

dt

(−U ′(c̄ − ẋert )ert) above leads to the equation

−U ′′(c̄ − ẋert )(−ẍert − rẋert )ert − rU ′(c̄ − ẋert )ert = 0

This can be simplified to

ẍ + rẋ = rU ′(c̄ − ẋert )
U ′′(c̄ − ẋert ) e

−rt

which will most likely be harder to solve.)

(b) It follows from part (a) that
U ′(c̄ − ẋert ) = Ke−rt

If U(c) = −e−vc/v, then U ′(c) = e−vc, and we get

exp(−vc̄ + vẋert ) = Ke−rt

−vc̄ + vẋert = lnK − rt
ẋert = C − rt/v (C = c̄ + (lnK)/v)
ẋ = (C − rt/v)e−rt
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Integration by parts yields

x = x(t) =
∫
(C − rt/v)e−rt dt = A+ (B + t/v)e−rt

where B = (1 − vC)/rv. Finally, the constants A and B are determined by the equations

A+ B = x(0) = x0, A+ (B + T/v)e−rT = x(T ) = 0

U is concave because U ′′(c) = −ve−vc < 0. Hence, Theorem 8.3.1 shows that the solution we have
found is optimal.

8.3.4 (a) WithF(t, y, ẏ) = ln
[
y−σ ẏ−z̄l(t)]we getF ′

y = 1/[y−σ ẏ−z̄l(t)] andF ′̇
y = −σ/[y−σ ẏ−z̄l(t)].

The Euler equation is then

1

y − σ ẏ − z̄l(t) −
d

dt

[ −σ
y − σ ẏ − z̄l(t)

]
= 0 ⇐⇒ 1

y − σ ẏ − z̄l(t) −
σ(ẏ − σ ÿ − z̄l̇(t))
[y − σ ẏ − z̄l(t)]2

= 0

⇐⇒ y − σ ẏ − z̄l(t)− σ ẏ + σ 2ÿ + σ z̄l̇(t) = 0 ⇐⇒ ÿ − 2

σ
ẏ + 1

σ 2
y = z̄

σ 2

[
l(t)− σ l̇(t)]

(b) With l(t) = l0e
αt the Euler equation becomes

ÿ − 2

σ
ẏ + 1

σ 2
y = z̄(1 − ασ)l0

σ 2
eαt (∗)

The characteristic equation r2 − (2/σ)r + 1/σ 2 = 0 has the double root r1 = r2 = 1/σ , so the
corresponding homogeneous differential equation has the general solution yH = Aet/σ +Btet/σ . To find
a particular integral of (∗) we try with a function u∗ = Ceαt . We get

ü∗ − 2

σ
u̇∗ + 1

σ 2
u∗ = α2Ceαt − 2α

σ
Ceαt + 1

σ 2
Ceαt = C

(1 − ασ)2
σ 2

eαt

It follows that u∗ is a solution of (∗) if and only if C = z̄l0/(1 − ασ), and the general solution of (∗) is

y = yH + u∗ = Aet/σ + Btet/σ + z̄l0

1 − ασ e
αt

(If ασ = 1, then (∗) is homogeneous and the general solution is yH.)

8.4
8.4.1 With F(t,K, K̇) = e−t/4 ln(2K − K̇) we get F ′

K = 2e−t/4/(2K − K̇) and F ′̇
K
= −e−t/4/(2K − K̇).

The Euler equation is

e−t/4
2

2K − K̇ − d

dt

(
−e−t/4 1

2K − K̇
)
= 0 ⇐⇒ 2e−t/4

2K − K̇ − e−t/4

4(2K − K̇) −
e−t/4(2K̇ − K̈)
(2K − K̇)2 = 0

⇐⇒ e−t/4

4(2K − K̇)2
[
8(2K − K̇)− (2K − K̇)− 4(2K̇ − K̈)] = 0

⇐⇒ 4K̈ − 15K̇ + 14K = 0
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The characteristic equation of the Euler equation is 4r2 − 15r + 14 = 0, which has the roots r1 = 2
and r2 = 7/4. Hence the general solution of the Euler equation is K = Ae2t + Be7t/4. The boundary
conditions yield the equations

K(0) = A+ B = K0, K(T ) = Ae2T + Be7T/4 = KT

By means of Cramer’s rule or by other methods you will find that

A = KT − e7T/4K0

e2T − e7T/4
, B = e2T K0 −KT

e2T − e7T/4

8.4.2 (a) Let F(t, x, ẋ) = ( 1
100 tx − ẋ2

)
e−t/10. Then F ′

x = te−t/10/100 and F ′̇
x = −2ẋe−t/10, and the

Euler equation becomes

t

100
e−t/10 − d

dt

(−2ẋe−t/10) = 0 ⇐⇒ t

100
e−t/10 + 2ẍe−t/10 − 2

10
ẋe−t/10 = 0

⇐⇒ ẍ − 1

10
ẋ = − 1

200
t (∗)

The general solution of the corresponding homogeneous equation is

xH = A+ Bet/10

To find a particular solution u∗ of (∗) we try with u = P t2 +Qt . Then u̇ = 2P t +Q and ü = 2P , and
if we insert this into (∗) we get

2P − P

5
t − Q

10
= − 1

200
t

This yields P = 5/200 = 1/40 and Q = 20P = 1/2, so the general solution of the Euler equation is

x = A+ Bet/10 + 1

40
t2 + 1

2
t

The boundary conditions x(0) = 0 and x(T ) = S yield the equations

A+ B = 0, A+ BeT/10 + T 2/40 + T/2 = S

with the solution

A = −B = T 2/40 + T/2 − S
eT/10 − 1

Since F(t, x, ẋ) is concave with respect to (x, ẋ), this is indeed an optimal solution.

(b) With T = 10 and S = 20 we get B = −5/2 + 5 − 20/(e − 1) = 25/2(e − 1), and the optimal
solution is

x = 25(et/10 − 1)

2(e − 1)
+ 1

40
t2 + 1

2
t

8.4.3 With F(t,K, K̇) = U(C, t) we get F ′
K = U ′

CC
′
K = U ′

C(f
′
k − δ) and F ′̇

K
= U ′

C · (−1) = −U ′
C . The

Euler equation is

U ′
C(f

′
K − δ)+ d

dt
U ′
C = 0 ⇐⇒ U ′

C(f
′
K − δ)+ U ′′

CCĊ + U ′′
Ct = 0

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



64 8 C A L C U L U S O F V A R I A T I O N S

The Euler equation implies Ċ = −[U ′′
Ct + U ′

C(f
′
K − δ)]/U ′′

CC , and therefore

Ċ

C
= −U

′′
Ct + U ′

C(f
′
K − δ)

CU ′′
CC

= − 1

ω̌

(U ′′
Ct

U ′
C

+ f ′
K − δ

)
where ω̌ = CU ′′

CC/U
′
C is the elasticity of marginal utility with respect to consumption.

8.4.4 (a) F(t, p, ṗ) = pD(p, ṗ)− b(D(p, ṗ)) yields F ′
p = D+pD′

p − b′(D)D′
p = D+ [p− b′(D)]D′

p

and F ′̇
p = [p − b′(D)]D ′̇

p, so the Euler equation is

F ′
p −

d

dt
(F ′
ṗ) = 0 ⇐⇒ D + [p − b′(D)]D′

p −
d

dt

[
[p − b′(D)]D′

ṗ

] = 0

(b) With b(x) = αx2+βx+γ and x = D(p, ṗ) = Ap+Bṗ+C, we get b′(x) = 2αx+β, ∂D/∂p = A,
and ∂D/∂ṗ = B. Insertion into the Euler equation gives

Ap + Bṗ + C + [p − 2α(Ap + Bṗ + C)− β]A− d

dt

[(
p − 2α(Ap + Bṗ + C)− β)B] = 0

which yields Ap+Bṗ+C +Ap− 2αA2p− 2αABṗ− 2αAC − βA−Bṗ+ 2αABṗ+ 2αB2p̈ = 0.
Rearranging the terms we can write the Euler equation as

p̈ − A2 − A/α
B2

p = βA+ 2αAC − C
2αB2

and it is easy to see that we get the answer given in the book.

8.5

8.5.2 (a) The Euler equation is

(−2ẋ − 10x)e−t − d

dt
[(−2ẋ − 2x)e−t ] = 0 ⇐⇒ e−t (−2ẋ − 10x + 2ẍ + 2ẋ − 2ẋ − 2x) = 0

⇐⇒ ẍ + ẋ − 6x = 0

The general solution of this equation is x = Ae3t+Be−2t , and the boundary conditions yield the equations

x(0) = A+ B = 0, x(1) = Ae3 + Be−2 = 1

which have the solutionA = −B = 1/(e3−e−2). The integrand F(t, x, ẋ) = (10− ẋ2−2xẋ−5x2)e−t
is concave with respect to (x, ẋ) (look at the Hessian or note that −ẋ2 − 2xẋ− 5x2 = −(ẋ− x)2 − 4x2),
so the solution we have found is optimal (Theorem 8.5.1).

(b) (i) With x(1) free, we get the transversality condition
[
F ′̇
x

]
t=1 = 0, which implies

ẋ(1)+ x(1) = 0 ⇐⇒ 3Ae3 − 2Be−2 + Ae3 + Be−2 = 0 ⇐⇒ 4Ae3 − Be−2 = 0

Together with the equation A+B = x(0) = 0, this yields A = B = 0, so the optimal solution is x ≡ 0.
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(ii) With the terminal condition x(1) ≥ 2 the transversality condition is
[
F ′̇
x

]
t=1 ≤ 0, with

[
F ′̇
x

]
t=1 = 0

if x(1) > 2. In our case this reduces to

−ẋ(1)− x(1) ≤ 0, and −ẋ(1)− x(1) = 0 if x(1) > 2

Since x(t) = Ae3t − Ae−2t , we get

−A(4e3 + e−2) ≤ 0, and −A(4e3 + e−2) = 0 if x(1) = A(e3 − e−2) > 2

From the last condition it is clear that we cannot have A(e3 − e−2) > 2, for then we must have A = 0,

and that is impossible. Therefore A(e3 − e−2) = 2 and x = 2(e3t − e−2)

e3 − e−2
.

8.5.4 With U(C) = a− e−bC , we get U ′(C) = be−bC and U ′′(C) = −b2e−bC , so equation (∗) in Example
8.5.3 reduces to Ä − rȦ = (ρ − r)/b. Putting z = Ȧ, we get ż − rz = (ρ − r)/b. This is a linear
first-order differential equation with constant coefficients, and the solution is z = Pert − (ρ − r)/br .
Then A = ∫ z dt = Kert − (ρ − r)t/br +L, where K = P/r and L are constants. These constants are
determined by the boundary conditions A(0) = A0 and A(T ) = At .

8.5.5 (a) The conditions are −(d/dt)[C ′̇
x(t, ẋ)e

−rt ] = 0 and C ′̇
x(5, ẋ(5)) ≥ 0 (= 0 if x(5) > 1500). It

follows that C ′̇
x(t, ẋ) = Ke−rt , where K is a constant.

(b) It follows from part (a) that if r = 0 then C ′̇
x(t, ẋ) = K must be constant. With C(t, u) = g(u) it

means that g′(ẋ) must be constant. Since g′ is strictly increasing, ẋ must also be a constant, so x = At .
We must have 5A ≥ 1500. Since C ′̇

x(t, ẋ) = g′(ẋ) = g′(A) > 0, the transversality condition shows
that x(5) = 1500, so A = 300 and x = 300t . Thus planting will take place at the constant rate of 300
hectares per year.

9 Control Theory: Basic Techniques

9.2

9.2.3 We transform the problem to a maximization problem by maximizing
∫ 1

0
[−x(t) − u(t)2] dt . The

Hamiltonian H(t, x, u, p) = −x − u2 − pu is concave in (x, u), so according to Theorem 9.2.1, the
following conditions are sufficient for optimality (using (9.2.7)):

(i) H ′
u(t, x

∗(t), u∗(t), p(t)) = −2u∗(t)− p(t) = 0;
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = 1, p(1) = 0;

(iii) ẋ∗(t) = −u∗(t), x∗(0) = 0.

From (ii), p(t) = t +A for some constant A, and p(1) = 0 gives A = −1 and so p(t) = t − 1. From (i)
we have u∗(t) = − 1

2p(t) = 1
2 (1−t). It remains to determine x∗(t). From (iii), ẋ∗(t) = −u∗(t) = 1

2 t− 1
2 ,

and so x∗(t) = 1
4 t

2− 1
2 t+B. With x∗(0) = 0, we getB = 0. So the optimal solution is u∗(t) = 1

2 (1− t),
x∗(t) = 1

4 t
2 − 1

2 t , with p(t) = t − 1.

9.2.4 The HamiltonianH(t, x, u, p) = 1−4x−2u2+pu is concave in (x, u), so according to Theorem 9.2.1
(using (9.2.7), the following conditions are sufficient for optimality:

(i) H ′
u(t, x

∗(t), u∗(t), p(t)) = −4u∗(t)+ p(t) = 0;
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = 4, p(10) = 0;

(iii) ẋ∗(t) = u∗(t), x∗(0) = 0.

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



66 9 C O N T R O L T H E O R Y : B A S I C T E C H N I Q U E S

From (ii), p(t) = 4t+A for some constantA and p(10) = 40+A = 0, soA = −40 and p(t) = 4t−40.
From (i) we have u∗(t) = 1

4 (4t − 40) = t − 10. From (iii), ẋ∗(t) = u∗(t) = t − 10, and with x∗(0) = 0,
we get x∗(t) = 1

2 t
2 − 10t .

9.2.5 The HamiltonianH(t, x, u, p) = x−u2+p(x+u) is concave in (x, u), so according to Theorem 9.2.1
(using (9.2.7), the following conditions are sufficient for optimality:

(i) H ′
u(t, x

∗(t), u∗(t), p(t)) = −2u∗(t)+ p(t) = 0;
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = −1 − p(t), p(T ) = 0;

(iii) ẋ∗(t) = x∗(t)+ u∗(t), x∗(0) = 0.

From (ii) we get the linear differential equation ṗ(t)+p(t) = −1. The general solution isp(t) = Ae−t−1,
and p(T ) = 0 gives A = eT , so p(t) = eT−t − 1. From (i) we have u∗(t) = 1

2 (e
T−t − 1). Finally,

from (iii), ẋ∗(t) = x∗(t)+ 1
2 (e

T−t − 1), with general solution x∗(t) = Bet + 1
2e
t

∫
e−t (eT−t − 1) dt =

Bet− 1
4e
T−t+ 1

2 . The condition x∗(0) = 0 givesB = 1
4e
T − 1

2 . Thus, x∗(t) = 1
4e
T+t− 1

4e
T−t− 1

2e
t+ 1

2 .

9.2.6 (b) Conditions (7) and (5) reduce to

(i) I ∗(t) = 1
2p(t);

(ii) ṗ(t)− 0.1p(t) = −1 + 0.06K∗(t).
Moreover, K∗(t) = I ∗(t)− 0.1K∗(t) = 1

2p(t)− 0.1K∗(t). Thus (K∗(t), p(t)) must satisfy

(iii) K̇ = 1
2p − 0.1K , and

(iv) ṗ − 0.1p = −1 + 0.06K .

From (iii) we get p = 2K̇ + 0.2K , and then ṗ = 2K̈ + 0.2K̇ . Inserting these results into (iv) and
simplifying yields K̈ − 0.04K = −0.5.

9.4

9.4.2 The Hamiltonian H(t, x, p, u) = 1 − x2 − u2 + pu is concave in (x, u), so according to Theorem
9.4.2 (using (9.2.7), the following conditions are sufficient for optimality:

(i) H ′
u(t, x

∗(t), u∗(t), p(t)) = −2u∗(t)+ p(t) = 0;
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = 2x∗(t);

(iii) p(1) ≥ 0, and p(1) = 0 if x∗(1) > 1;
(iv) ẋ∗(t) = u∗(t), x∗(0) = 0, x∗(1) ≥ 1.

From ṗ(t) = 2x∗(t) we get p̈(t) = 2ẋ∗(t) = 2u∗(t) = p(t). It follows that p(t) = Aet + Be−t for
suitable constants A and B. Furthermore, x∗(t) = 1

2 ṗ = 1
2 (Ae

t − Be−t ), and since x∗(0) = 0 gives
B = A, we have x∗(t) = 1

2A(e
t − e−t ), u∗(t) = ẋ∗(t) = 1

2A(e
t + e−t ), and p(t) = A(et + e−t ). If

x∗(1) > 1, we must have p(1) = 0, and therefore A = 0, but that would give x∗(t) = 0 for all t , which
contradicts x∗(1) ≥ 1. Therefore we must have x∗(1) = 1, which givesA = 2/(e− e−1) = 2e/(e2 −1).
(The value of A here is twice the value of A given in the book.)

9.4.3 (a) As in Example 9.2.1, we have p(t) = − 1
2 (T

2 − t2), but this time u∗(t) is the value of u that
maximizesH(t, x∗(t), u, p(t)) = 1− tx∗(t)−u2 +p(t)u for u ∈ [0, 1].Note thatH ′

u = −2u+p(t) =
−2u− 1

2 (T
2−t2) < 0 for all t < T . Thus the optimal choice of umust be u∗(t) ≡ 0, and then x∗(t) ≡ x0.

(b) Also in this case H ′
u = −2u + p(t) = −2u − 1

2 (T
2 − t2) and H ′′

uu = −2. So for each t in [0, T ],
the optimal u∗(t) must maximize the concave function H(t, x∗(t), u, p(t)) for u ∈ [−1, 1]. Note that
H ′
u = 0 when u = − 1

4 (T
2 − t2), and this nonpositive number is an interior point of [−1, 1] provided
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− 1
4 (T

2 − t2) > −1, i.e. t >
√
T 2 − 4. If t ≤ √

T 2 − 4, then u = −1 is optimal. (Choosing u∗(t) = 1
cannot be optimal because H ′

u is negative for u = 1.) For the rest see the answer in the book.

9.4.4 (a) Since H(t, x, p, u) = x + pu is concave in (x, u), the following conditions are sufficient for
optimality:

(i) u = u∗(t) maximizes p(t)u for u ∈ [0, 1];
(ii) ṗ = −1;

(iii) ẋ∗(t) = u∗(t), x∗(0) = 0, x∗(10) = 2.

From (ii) we get p(t) = A − t for some constant A, and (i) implies that u∗(t) = 1 if p(t) > 0 and
u∗(t) = 0 if p(t) < 0. Now u∗(t) ≡ 0 and u∗(t) ≡ 1 are both impossible because ẋ∗(t) = u∗(t) and
x∗(0) = 0 contradict x∗(10) = 2. Since p(t) is strictly decreasing, we conclude that for some t∗ in
(0, 10) we have p(t) > 0, and thus u∗(t) = 1, for t in [0, t∗], and p(t) < 0 with u∗(t) = 0 for t in
(t∗, 10]. At t∗ we have p(t∗) = 0, so A = t∗ and p(t) = t∗ − t . We see that x∗(t) = t for t in [0, t∗] and
x∗(t) = t∗ for t in (t∗, 10]. Since x∗(10) = 2, we conclude that t∗ = 2, and the solution is as given in
the book.

(b) As in (a) we find that for some t∗ in (0, T ), u∗(t) = 1 in [0, t∗] and u∗(t) = 0 for t in (t∗, T ]. Then
x∗(t) = t + x0 for t in [0, t∗] and x∗(t) = t∗ + x0 for t in (t∗, T ]. Since x∗(T ) = x1, we conclude that
t∗ = x1 − x0, and the solution is as given in the book.

9.4.6 The Hamiltonian H(t, x, u, p) = [10u − u2 − 2]e−0.1t − pu is concave in (x, u), so according to
Theorem 9.4.2, the following conditions are sufficient for optimality:

(i) u∗(t) maximizes H(t, x∗(t), u, p(t)) = [10u− u2 − 2]e−0.1t − p(t)u for u ≥ 0;
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = 0;

(iii) p(5) ≥ 0, and p(5) = 0 if x∗(5) > 0;
(iv) ẋ∗(t) = −u∗(t), x∗(0) = 10, x∗(5) ≥ 0.

From (ii) we have p(t) ≡ p̄ for some constant p̄. Suppose u∗(t) > 0 for all t in [0, 5]. Then (i) is
equivalent to H ′

u(t, x
∗(t), u∗(t), p(t)) = 0, that is,

(v) [10 − 2u∗(t)]e−0.1t = p̄.

If p̄ = 0, then (v) implies that u∗(t) ≡ 5, and then ẋ∗(t) = −5. With x∗(0) = 10, we get x∗(t) = 10−5t ,
which gives x∗(5) = −15, a contradiction. Hence p̄ > 0 and from (iii) (and x∗(5) ≥ 0) we conclude
that x∗(5) = 0. From (v) we have u∗(t) = 5 − 1

2 p̄e
0.1t , and then ẋ∗(t) = −u∗(t) with x∗(0) = 10

gives x∗(t) = 5p̄(e0.1t − 1) − 5t + 10. The condition x∗(5) = 0 gives p̄ = 3/(e0.5 − 1). Since all the
conditions (i)–(iv) are satisfied by the pair (x∗(t), u∗(t)), we have found an optimal solution.

9.4.7 (b) The HamiltonianH(t, x, u, p) = −(ax+bu2)+pu is concave in (x, u). To check the maximum
condition (9.4.5) in Theorem 9.4.1, it suffices to check that, ifu∗(t) > 0, then (H ′

u)
∗ = −2bu∗(t)+p(t) =

0, and if u∗(t) = 0, then (H ′
u)

∗ = −2bu∗(t)+ p(t) ≤ 0. Also p(t) = at + A for some constant A.
Suppose u∗(t) > 0 for all t in [0, T ]. Then u∗(t) = p(t)/2b = (1/2b)(at + A). Moreover,

ẋ∗(t) = u∗(t) = (1/2b)(at + A), so x∗(t) = (1/2b)( 1
2at

2 + At) + C. Here x∗(0) = 0 yields C = 0,
and x∗(T ) = B gives A = 2bB/T − aT /2. Thus

u∗(t) = a(2t − T )/4b + B/T and x∗(t) = at (t − T )/4b + Bt/T

Note that u∗(t) is increasing in t , and u∗(0) = B/T − aT /4b ≥ 0 if and only if B ≥ aT 2/4b. So in this
case we have found an optimal solution, because it is easy to check that all the conditions in Theorem
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9.4.2 are satisfied. (This solution is valid if the required total production B is large relative to the time
period T available, and the storage cost a is sufficiently small relative to the unit production cost b. See
Kamien and Schwartz (1991) for further economic interpretations.)

Suppose B < aT 2/4b. Then we guess that production is postponed in an initial time period. We
cannot have u∗(t) ≡ 0 because then x∗(t) ≡ 0, which contradicts x∗(T ) = B > 0 (assumed implicitly).
Ifu∗(t∗+) > 0, then by continuity ofp(t), the unique maximizer ofH would be> 0 for some t < t∗, with t
close to t∗. So u∗(t∗+) = 0, and u∗(t) = x∗(t) ≡ 0 in [0, t∗]. In particular, x∗(t∗) = 0. In (t∗, T ] we have
as beforeu∗(t) = (1/2b)(at+A), and sinceu∗(t∗+) = 0, we haveA = −at∗, andu∗(t) = (a/2b)(t−t∗).
Then ẋ∗(t) = u∗(t) = (a/2b)(t−t∗), and withx∗(t∗) = 0, x∗(t) = (a/4b)(t−t∗)2. Now t∗ is determined
by the condition x∗(T ) = B, which gives (a/4b)(T − t∗)2 = B, or T − t∗ = ±√4bB/a. The minus
sign would make t∗ > T , so we must have t∗ = T − 2

√
bB/a. Note that t∗ > 0 ⇐⇒ B < aT 2/4b.

We end up with the following suggestion for an optimal solution:

u∗(t) =
⎧⎨⎩

0 if t ∈ [0, t∗]
a(t − t∗)

2b
if t ∈ (t∗, T ]

, x∗(t) =
⎧⎨⎩

0 if t ∈ [0, t∗]

a(t − t∗)2
4b

if t ∈ (t∗, T ]
, p(t) = a(t − t∗)

with t∗ = T − 2
√
bB/a.

It remains to check that the proposed solution satisfies all the conditions in Theorem 9.4.2. The
pair (x∗, u∗) is admissible and satisfies the terminal condition x∗(T ) = B, and ṗ = a = −(H ′

x)
∗. It

remains only to check the maximum condition. For t in (t∗, T ] we have u∗(t) > 0 and we see that
(H ′

u)
∗ = −2bu∗(t) + p(t) = 0. For t in [0, t∗], we have u∗(t) = 0 and (H ′

u)
∗ = −2bu∗(t) + p(t) =

a(t − t∗) ≤ 0, as it should be. So we have found an optimal solution.
Note: When we use sufficient conditions, we can use “wild” guesses about the optimal control and

the optimal path, as long as we really check that all the conditions in the sufficiency theorem are satisfied.

9.4.8 The Hamiltonian is H(t, x, p, u) = x2 − 2u + pu = x2 + (p − 2)u. (Since x(2) is free, we put
p0 = 1.) The maximum principle (Theorem 9.4.1) gives the following necessary conditions:

(i) u = u∗(t) maximizes (p(t)− 2)u for u ∈ [0, 1];
(ii) ṗ = −H ′

x(t, x
∗(t), u∗(t), p(t)) = −2x∗(t), p(2) = 0;

(iii) ẋ∗(t) = u∗(t), x∗(0) = 1.

From (i) we see that p(t) > 2 ⇒ u∗(t) = 1 and p(t) < 2 ⇒ u∗(t) = 0. The function x∗ must
be increasing, because ẋ∗(t) ≥ 0. Hence ṗ(t) = −2x∗(t) ≤ −2x∗(0) = −2 < 0. Consequently p is
strictly decreasing. Since p(2) = 0, we have p(t) > 0 for t in [0, 2). Because ṗ ≤ −2, we see that
p(2)− p(0) = ∫ 2

0 ṗ(t) dt ≤
∫ 2

0 (−2) dt = −4, so p(0) ≥ p(2)+ 4 = 4. There is therefore a unique t∗
in (0, 2) with p(t∗) = 2, and

p(t)

{
> 2 for t ∈ [0, t∗)
< 2 for t ∈ (t∗, 2]

�⇒ u∗(t) =
{

1 for t ∈ [0, t∗]
0 for t ∈ (t∗, 2]

For t ≤ t∗, we have ẋ∗(t) = u∗(t) = 1, so x∗(t) = x∗(0) + t = 1 + t . Moreover, ṗ(t) =
−2x(t) = −2−2t , which gives p(t) = −2t− t2+C0 for a suitable constantC0. Since x∗ is continuous,
x∗(t∗) = 1 + t∗ (the limit of x∗(t) as t approaches t∗ from the left).

For t ≥ t∗, we have ẋ∗(t) = u∗(t) = 0, so x∗(t) remains constant, x∗(t) = x∗(t∗) = 1 + t∗, and
ṗ(t) = −2x∗(t) = −2− 2t∗, so p(t) = −2(1+ t∗)t +C1, where C1 = p(2)+ 2(1+ t∗)2 = 4(1+ t∗).
Now, p(t∗)must equal 2, so −2(1+ t∗)t∗ +4(1+ t∗) = 2, or (t∗)2 − t∗ −1 = 0. This quadratic equation
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gives t∗ = (1±√
5 )/2, and since t∗ must be positive, t∗ = (1+√

5 )/2. We know that for t ≥ t∗ we have
p(t) = −2(1+ t∗)t +C1 = −2(1+ t∗)t + 4(1+ t∗) = 2(1+ t∗)(2 − t) = (3+ 2

√
5 )(2 − t).We also

know that there is a constantC0 such that p(t) = −2t− t2+C0 for t ≤ t∗. To determine the constantC0,
we use the equation p(t∗) = 2, which gives C0 − 2t∗ − (t∗)2 = 2, or C0 = 2+ 2t∗ + (t∗)2 = 9

2 + 3
2

√
5.

The only possible solution is spelled out in the answer in the book.

9.5
9.5.1 With F(t, x, ẋ) = 2xe−t −2xẋ− ẋ2 we get F ′

x = 2e−t −2ẋ and F ′̇
x = −2x−2ẋ. The Euler equation

is then 2e−t − 2ẋ − d
dt
(−2x − 2ẋ) = 0, or 2e−t − 2ẋ + 2ẋ + 2ẍ = 0, which reduces to ẍ = −e−t . It

follows that ẋ = e−t + A and x = −e−t + At + B for suitable constants A and B. From the boundary
conditions x(0) = 0 and x(1) = 1 we get A = e−1 and B = 1, so the only admissible solution of the
Euler equation is x∗(t) = −e−t + e−1t + 1.

The associated control problem is

max
∫ 1

0
(2xe−t − 2xu− u2) dt, ẋ = u, x(0) = 0, x(1) = 1, u ∈ (−∞,∞)

The Hamiltonian (with p0 = 1) is thenH(t, x, u, p) = 2xe−t −2xu−u2 +pu. (Incidentally, if p0 = 0,
then the Hamiltonian would simply be pu. If p(t)u has a maximum for some u in (−∞,∞), then
p(t) = 0, but p(t) = 0 is impossible when p0 = 0.) We haveH ′

u = −2x−2u+p andH ′
x = 2e−t −2u.

Since the control region is open, H ′
u(t, x

∗(t), u∗(t), p(t)) = 0, so (i) u∗(t) = 1
2p(t)− x∗(t). Moreover

(ii) ṗ(t) = −H ′
x(t, x

∗(t), u∗(t), p(t)) = −2e−t + 2u∗(t) = −2e−t + 2ẋ∗(t). From ẋ∗(t) = u∗(t) we
get ẍ∗(t) = u̇∗(t) = 1

2 ṗ − ẋ∗(t) = −e−t , using (i) and (ii). Hence x∗(t) must be a solution of the
Euler equation that we found in (a). As we found in (a), there is precisely one solution that also satisfies
the boundary conditions on x∗(t). Now that we know x∗(t), the control function u∗(t) and the adjoint
function p(t) are given by the equations above.

9.5.2 With F(t, x, ẋ) = 3−x2 −2ẋ2, F ′
x = −2x and F ′̇

x = −4ẋ, so the Euler equation F ′
x− (d/dt)F ′̇

x = 0
reduces to ẍ − 1

2x = 0. The characteristic equation r2 = 1
2 has solutions r1 = 1

2

√
2 and r2 = − 1

2

√
2.

So if x∗(t) solves the problem, then we must have x∗(t) = Ae
1
2

√
2 t + Be− 1

2

√
2 t .

Since x∗(0) = 1, we haveA+B = 1, orB = 1−A, and, moreover, x∗(2) = Ae
√

2+(1−A)e−
√

2 ≥ 4
requires

A ≥ (4 − e−
√

2)/(e
√

2 − e−
√

2) = (4e
√

2 − 1)/(e2
√

2 − 1) ≈ 0.97 (∗)
We now invoke the transversality condition (8.5.3):

(F ′
ẋ )

∗
t=2 = −4ẋ∗(2) ≤ 0, with −4ẋ∗(2) = 0 if x∗(2) > 4

Equivalently, ẋ∗(2) ≥ 0, with ẋ∗(2) = 0 if x∗(2) > 4. Since ẋ∗(t) = 1
2

√
2[Ae

1
2

√
2 t − (1 − A)e− 1

2

√
2 t ],

we have ẋ∗(2) = 1
2

√
2[Ae

√
2 − (1 − A)e−

√
2] = 0 provided A = e−

√
2/(e

√
2 + e−

√
2) ≈ 0.06, contra-

dicting (∗). We conclude that x∗(2) = 4 and thus A = (4e
√

2 − 1)/(e2
√

2 − 1). The function F is (for t
fixed) concave in (x, ẋ), so we have found the solution.

The control problem is

max
∫ 2

0
(3 − x2 − 2u2) dt, ẋ = u, x(0) = 1, x(2) ≥ 4
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The Hamiltonian is H = 3 − x2 − 2u2 + pu, so H ′
x = −2x and H ′

u = −4u + p. If (x∗(t), u∗(t)) is
optimal then (i) u∗(t) = 1

4p(t); (ii) ṗ(t) = 2x∗(t); (iii) ẋ∗(t) = u∗(t). Differentiating (iii) yields
ẍ∗(t) = u̇∗(t) = 1

4 ṗ(t) = 1
4 2x∗(t) = 1

2x
∗(t), which is the same differential equation as before. The rest

is easy.

9.5.3 With F(t, x, ẋ) = (−2ẋ − ẋ2)e−t/10, F ′
x = 0 and F ′̇

x = (−2 − ẋ)e−t/10, so the Euler equation is

− d

dt
(−2 − ẋ)e−t/10 = 0. See the answer in the book. The function F is (for t fixed) concave in (x, ẋ),

so we have found the solution.
The Hamiltonian for the control problem isH = (−2u−u2)e−t/10+pu. Here ṗ(t) = −(H ′

x)
∗ = 0,

so p(t) = p̄, a constant. Moreover, (H ′
u)

∗ = (−2 − 2u∗(t))e−t/10 + p(t) = 0, and thus u∗(t) =
1
2 p̄e

t/10 − 1. Since ẋ∗(t) = u∗(t), integration gives x∗(t) = 5p̄et/10 − t + A. The boundary conditions
yield p̄ = 0 and A = 1, so we get the same solution.

9.6

9.6.1 (a) The Hamiltonian H(t, x, u, p) = x − 1
2 u

2 + pu is concave in (x, u), so according to Theorem
9.2.2 (see (9.2.7)), the following conditions are sufficient for optimality:

(i) H ′
u(t, x

∗(t), u∗(t), p(t)) = −u∗(t)+ p(t) = 0;
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = −1 with p(T ) = 0;

(iii) ẋ∗(t) = u∗(t), x∗(0) = x0.

From (i) and (ii) we have u∗(t) = p(t) = T − t . Since ẋ∗(t) = u∗(t) = T − t and x∗(0) = x0, we get
x∗(t) = T t − 1

2 t
2 + x0.

(b) The optimal value function is

V (x0, T ) =
∫ T

0

(
x∗(t)− 1

2u
∗(t)2

)
dt =

∫ T

0

(
T t − 1

2 t
2 + x0 − 1

2 (T − t)2) dt (∗)

Integrating we find V (x0, T ) = t=T
t=0 (

1
2T t

2 − 1
6 t

3 + x0t + 1
6 (T − t)3) = 1

6T
3 + x0T , so ∂V/∂x0 = T =

p(0). (If we were asked only to find ∂V/∂x0, it would be easier to differentiate (∗) with respect to x0

under the integral sign: ∂V/∂x0 =
∫ T

0 dt = T .)
The value of the Hamiltonian “along the optimal path” is H ∗(t) = H(t, x∗(t), u∗(t), p(t)) =

x∗(t)− 1
2u

∗(t)2 + p(t)u∗(t) = T t − 1
2 t

2 + x0 − 1
2 (T − t)2 + (T − t)2, and so H ∗(T ) = 1

2T
2 + x0. We

see that ∂V/∂T = 1
2T

2 + x0 = H ∗(T ).

9.6.4 (a) The Hamiltonian is H(t, x, u, p) = 2x2e−2t − uet + puet = 2x2e−2t + (p − 1)uet . (Recall
that x(T ) is free.) Suppose that (x∗(t), u∗(t)) is an admissible pair with adjoint function p(t). Since
H ′
x = 4xe−2t , the differential equation for p(t) is ṗ(t) = −4e−2t x∗(t). For all t in [0, T ], we have

ẋ∗(t) = u∗(t)et ≥ 0, and hence x∗(t) ≥ x∗(0) = 1 for all t in [0, T ]. Therefore, ṗ(t) < 0, so p(t) is
strictly decreasing. From the maximum principle, for every t in [0, T ], u∗(t) is the value of u in [0, 1] that
maximizes H(t, x∗(t), u, p(t)) = 2(x∗(t))2e−2t + (p(t)− 1)uet . Since 2(x∗(t))2e−2t does not depend
on u, u∗(t) is the value of u in [0, 1] that maximizes (p(t)− 1)u. Thus, u∗(t) = 1 if p(t) > 1, u∗(t) = 0
if p(t) < 1. Since p(T ) = 0, we have p(t) < 1 for t close to T . There are two possibilities:

Case A: Suppose p(0) ≤ 1. Since p is strictly decreasing, we get p(t) < 1, and hence u∗(t) = 0 for all
t > 0. It follows that ẋ∗(t) = u∗(t) = 0 and x∗(t) ≡ x∗(0) = 1 for all t in [0, T ].

It remains to determine p(t). We have ṗ(t) = −4e−2t x∗(t) = −4e−2t , and so p(t) = 2e−2t + C,
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where the constant C is determined by p(T ) = 0, and hence C = −2e−2T . It follows that p(t) =
2(e−2t−e−2T ) = 2e−2t (1−e−2(T−t)). Since we have assumedp(0) ≤ 1, we must have 2(1−e−2T ) ≤ 1.
This gives e−2T ≥ 1/2, and so −2T ≥ ln(1/2) = − ln 2, or T ≤ 1

2 ln 2.

Case B: Suppose p(0) > 1. Then there exists a point t∗ ∈ (0, T ) with p(t∗) = 1. In this case p(t) > 1
for t < t∗ and p(t) < 1 for t > t∗. This gives

u∗(t) =
{

1 if 0 ≤ t ≤ t∗

0 if t∗ < t ≤ 1

Since ẋ∗(t) = u∗(t) and x∗(0) = 1, we get x∗(t) = et if 0 ≤ t ≤ t∗ and x∗(t) = et
∗

if t∗ ≤ t ≤ 1. Thus,
ṗ(t) = −4e−2t x∗(t) = −4e−t if 0 ≤ t < t∗, and ṗ(t) = −4et

∗−2t if t∗ < t ≤ 1. Integration gives

p(t) =
{

4e−t + C1 if 0 ≤ t < t∗

2et
∗−2t + C2 if t∗ < t ≤ 1

Since p is continuous, both expressions for p(t) are valid for t = t∗. Moreover, p(T ) = 0, so we get the
equations

(i) p(t∗) = 1 = 4e−t
∗ + C1 (ii) p(t∗) = 1 = 2e−t

∗ + C2 (iii) p(T ) = 0 = 2et
∗−2T + C2

From (i) and (iii) we get C1 = 1 − 4e−t∗ and C2 = −2et
∗−2T . Hence,

p(t) =
{

4(e−t − 4e−t∗)+ 1 if 0 ≤ t ≤ t∗

2et
∗
(e−2t − e−2T ) if t∗ ≤ t ≤ 1

It remains to determine t∗. From (ii) and (iii) we get 1 = 2e−t∗ − 2et
∗−2T . Multiplying this equation by

et
∗

yields
et

∗ = 2 − 2e2t∗−2T (iv)

Multiplying with 1
2e

2T and rearranging gives (et
∗
)2+ 1

2e
t∗e2T −e2T = 0. This is a second degree equation

for determining et
∗
, and we find

et
∗ = − 1

4e
2T +

√
1
16e

4T + e2T and so t∗ = ln

(√
1
16e

4T + e2T − 1
4e

2T
)

(Since et
∗

is positive, we must take the positive square root.) This solution makes sense if and only if

t∗ > 0, i.e. if and only if
√

1
16e

4T + e2T − 1
4e

2T > 1. This inequality is equivalent to 1
16e

4T + e2T >

( 1
4e

2T + 1)2 = 1
16e

4T + 1
2e

2T + 1, and so e2T > 2 ⇐⇒ T > 1
2 ln 2. For the summing up see the book.

(b) We have to consider two cases A and B. Note that in both cases u∗(T ) = 0 (and p(T ) = 0), and so
H ∗(T ) = H(T, x∗(T ), u∗(T ), p(T )) = 2x∗(T )2e−2T .

Case A: If T ≤ 1
2 ln 2, then x∗(T ) = 1, H ∗(T ) = 2e−2t , and

V (T ) =
∫ T

0

(
2(x∗(t))2e−2t − u∗(t)et) dt = ∫ T

0
2e−2t dt =

T

0
−e−2t = 1 − e−2T
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This implies V ′(T ) = 2e−2T = H ∗(T ).
Case B: For T > 1

2 ln 2, we have x∗(T ) = x∗(t∗) = et
∗
. This gives H ∗(T ) = 2e2t∗−2T . Furthermore,

V (T ) =
∫ T

0

(
2(x∗(t))2e−2t − u∗(t)et) dt

=
∫ t∗

0
(2 − et ) dt +

∫ T

t∗
2e2t∗−2t dt = 2t∗ − et∗ + 1 − e2t∗−2T + 1

Note that t∗ depends of T . Hence we get

V ′(T ) = 2
dt∗

dT
− et∗ dt

∗

dT
− e2t∗−2T (2

dt∗

dT
− 2) = (2 − et∗ − 2e2t∗−2T )

dt∗

dT
+ 2e2t∗−2T

Equation (iv) shows that 2 − et∗ − 2e2t∗−2T = 0, and therefore

V ′(T ) = 0 + 2e2t∗−2T = H ∗(T )

as expected. (Alternatively we could have inserted the expressions found for t∗ and et
∗

into the expression
for V (T ), and found V (T ) in terms of T . The algebra required is heavy.)

9.7
9.7.1 (a) The Hamiltonian H = 100 − x − 1

2u
2 + pu is concave in (x, u) and u ∈ (−∞,∞), so the

following conditions are sufficient for optimality:

(i) (H ′
u)

∗ = −u∗(t)+ p(t) = 0;
(ii) ṗ(t) = 1;

(iii) ẋ∗(t) = u∗(t), x∗(0) = x0, and x∗(1) = x1.

From (ii) we get p(t) = t + A, and (i) and (iii) give ẋ∗(t) = u∗(t) = p(t) = t + A. Integrating and
using the two boundary conditions gives B = x0, A = x1 − x0 − 1

2 , so the solution is as given in the book.

(b) V = V (x0, x1) =
∫ 1

0
(100 − x∗(t)− 1

2u
∗(t)2) dt

=
∫ 1

0

[
100 − 1

2 t
2 − (x1 − x0 − 1

2 )t − x0 − 1
2

(
t + x1 − x0 − 1

2

)2]
dt .

Differentiating w.r.t. x0 under the integral sign yields

∂V/∂x0 =
∫ 1

0
(t − 1 + t + x1 − x0 − 1

2 ) dt =
∫ 1

0
(2t − 3

2 + x1 − x0) dt =
1

0
(t2 − 3

2 t + (x1 − x0)t) =

x1 − x0 − 1
2 = p(0), as it should be. In the same way, ∂V/∂x1 =

∫ 1

0
[−t − (t + x1 − x0 − 1

2 )] dt =∫ 1

0
(−2t − x1 + x0 + 1

2 ) dt =
1

0
(−t2 − x1t + x0t + 1

2 t) = −x1 + x0 − 1
2 = −p(1), as it should be.

9.7.2 (a) The Hamiltonian is H = (1 − s)
√
k + ps

√
k = √

k + √
k(p − 1)s. (In (b) we use the Arrow

theorem, so we assume p0 = 1.) The maximum principle (Theorem 9.4.1) gives the conditions:

(i) s = s∗(t) maximizes
√
k∗(t)+√

k∗(t)(p(t)− 1)s for s ∈ [0, 1];

(ii) ṗ(t) = −H ′
k(t, k

∗(t), s∗(t), p(t)) = − 1

2
√
k∗(t)

[1 + s∗(t)(p(t)− 1)], p(10) = 0;
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(iii) k̇∗(t) = s∗(t)
√
k∗(t), k∗(0) = 1.

Since s∗(t) ≥ 0, it follows from (iii) that k∗(t) ≥ 1 for all t . Then we see from (i) that

s∗(t) =
{

1 if p(t) > 1

0 if p(t) < 1
(iv)

By studying (ii) and (iv) we see that ṗ(t) < 0 for all t . (If p(t) > 1, then s∗(t) = 1 and from (ii),
ṗ(t) = −p(t)/2√k∗(t) < 0. (What if p(t) < 1?) Thus p(t) is strictly decreasing.

Supposep(t) < 1 for all t in [0, 10]. Then s∗(t) ≡ 0 and k∗(t) ≡ 1. From (ii) this gives ṗ(t) = −1/2,
and withp(10) = 0 we getp(t) = 5−t/2. But thenp(t) > 1 for t < 8, a contradiction. We conclude that
there must exist a t∗ in (0, 10) such that p(t∗) = 1. Then s∗(t) = 1 on [0, t∗] and s∗(t) = 0 on (t∗, 10].
But then k̇∗(t) = √

k∗(t) on [0, t∗] and k̇∗(t) = 0 on [0, t∗]. By integrating the differential equation for
k∗(t) on [0, t∗], we find 2

√
k∗(t) = t + C. With k∗(0) = 1 we get C = 2, so k∗(t) = ( 1

2 t + 1)2. On
(t∗, 10] we have k∗(t) = ( 1

2 t
∗ + 1)2 since k∗(t) is continuous. Thus,

s∗(t) =
{

1 if [0, t∗]

0 if (t∗, 10]
, k∗(t) =

{
( 1

2 t + 1)2 if [0, t∗]

( 1
2 t

∗ + 1)2 if (t∗, 10]
(v)

On (t∗, 10] we get from (ii) that ṗ(t) = −1/2
√
k∗(t) = −1/(t∗+2), and sop(t) = −t/(t∗+2)+D. Since

p(10) = 0, this implies thatp(t) = (10− t)/(t∗+2) on (t∗, 10]. Butp(t∗) = 1, so (10− t)/(t∗+2) = 1,
from which it follows that t∗ = 4. It remains only to find p(t) on [0, t∗]. On this interval ṗ(t) =
−p(t)/2√k∗(t) = −p(t)/(t + 2). The solution of this separable equation is p(t) = E/(t + 2), for some
constant E. But p(4) = 1, so E = 6. We have found the only possible solution. See the answer in the
book.

(b) See the answer in the book.

9.7.3 (a) The Hamiltonian H(t, x, u, p) = e−βt
√
u + p(αx(t) − u) is concave in (x, u), so according to

Theorem 9.7.1, the following conditions are sufficient for optimality:

(i) u = u∗(t) maximizes H(t, x∗(t), u, p(t)) = e−βt
√
u+ p(t)(αx∗(t)− u) for u ≥ 0;

(ii) ṗ(t) = −H ′
x(t, x

∗(t), u∗(t), p(t)) = −αp(t);
(iii) ẋ∗(t) = αx∗(t)− u∗(t), x∗(0) = 1, x∗(T ) = 0.

From (ii) we get p(t) = Ae−αt . Define the function g by g(u) = e−βt
√
u − Ae−αtu. Then g′(u) =

e−βt (1/2
√
u) − Ae−αt , and we see that g′(u) > 0 when u is slightly larger than 0. This means that

u∗(t) = 0 cannot maximize g, or the Hamiltonian, for any t . Hence u∗(t) > 0 and g′(u∗(t)) = 0, so

e−βt

2
√
u∗(t)

= Ae−αt or u∗(t) = 1

4A2
e2(α−β)t

From (iii) we get the following linear differential equation for x∗(t):

ẋ∗(t) = αx∗(t)− 1

4A2
e2(α−β)t with solution x∗(t) = Ceαt − 1

4A2(α − 2β)
e2(α−β)t

The two constants A and C are determined by the boundary conditions in (iii). The explicit expressions
for x∗(t), u∗(t), and p(t) can be found in the answer in the book. (There is a misprint in the formula for
x∗(t): the first fraction must be multiplied by eαt .)
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(b) If x(T ) = 0 is replaced by x(T ) ≥ 0, the only change in the conditions (i)–(iii) is that (ii) is
augmented by p(T ) ≥ 0, with p(T ) = 0 if x∗(T ) > 0. Again p(t) = Ae−αt , so p(T ) = 0 would imply
Ae−αT = 0, so A = 0 and p(t) ≡ 0. The maximum condition (i) would then imply that u∗(t) for u ≥ 0
would maximize e−βt

√
u, which has no maximum. Hence x∗(T ) = 0, and the solution is as in (a).

9.8

9.8.1 (b) In this problem we use Theorem 9.8.1 and we try to find the only possible solution to the problem.
The Hamiltonian H = p0(−9 − 1

4u
2) + p(t)u is concave in (x, u), but this does not guarantee that a

solution to the necessary conditions is optimal. (See Note 9.8.1.)
Suppose (x∗(t), u∗(t)) is an optimal pair defined on [0, t∗]. Then there exists a continuous function

p(t) and a number p0, which is either 0 or 1, such that for all t in [0, t∗] we have (p0, p(t)) �= (0, 0) and

(i) u = u∗(t) maximizes H(t, x∗(t), u, p(t)) = p0(−9 − 1
4u

2)+ p(t)u for u ∈ �;
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = 0;

(iii) ẋ∗(t) = u∗(t), x∗(0) = 0, x∗(T ) = 16;
(iv) H(t∗, x∗(t∗), u∗(t∗), p(t∗)) = p0(−9 − 1

4u
∗(t∗)2)+ p(t)u∗(t∗) = 0.

SinceH is concave in (x, u), condition (i) is equivalent to (H ′
u)

∗ = −p0
1
2u

∗(t)+p(t) = 0. Thenp0 = 0
implies p(t) = 0, which contradicts (p0, p(t)) �= (0, 0). Hence p0 = 1, and u∗(t) = 2p(t). From (ii)
we have p(t) = p̄ for some constant p̄, and so u∗(t) = 2p̄. Moreover, ẋ∗(t) = u∗(t) = 2p̄. Integrating
and using x∗(0) = 0 this gives x∗(t) = 2p̄t , and x∗(t∗) = 16 yields p̄ = 8/t∗. Finally, (iv) implies
−9 − 1

4 (2p̄)
2 + p̄2p̄ = 0, or p̄2 = 9. Here p̄ = −3 gives t∗ = 8/p̄ < 0. So the only possible solution

is p̄ = 3, Then t∗ = 8/3, u∗(t) = 6, and x∗(t) = 6t .

9.8.2 Consider the caseB ≥ aT 2/4b. Then from Problem 9.4.7, u∗(t) = a(2t−T )/4b+B/T and x∗(t) =
at (t − T )/4b + Bt/T and p(t) = 2bu∗(t). To determine the optimal T ∗, the condition is H(T ∗) = 0,
or ax∗(T ∗) + b(u∗(T ∗))2 = p(T ∗)u∗(T ∗) = 2b(u∗(T ∗))2. This reduces to aB/b = (u∗(T ∗))2, or
u∗(T ∗) = √

aB/b, that is aT ∗/4b + B/T ∗ = √
aB/b. Solving this equation for T ∗ gives the unique

solution T ∗ = 2
√
bB/a. (Note that this is the positive solution T of B = aT 2/4b.)

If B < aT 2/4b, we find that the equation H ∗(T ∗) = 0 does not determine T ∗. (To save on storage
costs, the firm waits until t = T −2

√
Bb/a to start production, and then produces at an optimal rate until

delivery time T . Note that no discounting is assumed, so waiting costs nothing.)

9.9

9.9.2 The current value Hamiltonian Hc = 10u − u2 − 2 − λu is concave in (x, u), so the following
conditions are sufficient for optimality:

(i) u = u∗(t) maximizes Hc(t, x∗(t), u, λ(t)) = 10u− u2 − 2 − λ(t)u for u ≥ 0;
(ii) λ̇(t)− 0.1λ = −(Hc)′x(t, x∗(t), u∗(t), λ(t)) = 0;

(iii) λ(5) ≥ 0, with λ(5) = 0 if x∗(5) > 0;
(iv) ẋ∗(t) = −u∗(t), x∗(0) = 10, x∗(5) ≥ 0.

From (ii) we have λ(t) = Ae0.1t for some constant A. Suppose u∗(t) > 0 for all t in [0, 5]. Then (i) is
equivalent to (Hc)′u(t, x∗(t), u∗(t), λ(t)) = 10 − 2u∗(t)− Ae0.1t = 0, that is,

(v) u∗(t) = 5 − 1
2Ae

0.1t .

Then ẋ∗(t) = −5 + 1
2Ae

0.1t , and integration gives x∗(t) = −5t + 5Ae0.1t + B, where B is a new
constant. The initial condition x∗(0) = 10 yields B = 10 − 5A, so x∗(t) = 5A(e0.1t − 1) − 5t + 10.
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Next look at condition (iii) which reduces to A ≥ 0, with A = 0 if x∗(5) > 0. But A = 0 would imply
x∗(t) = −5t + 10, which for t = 5 yields the contradiction x∗(5) < 0. Thus A > 0 and x∗(5) = 0. But
then 0 = 5A(e0.5−1)−15, soA = 3/(e0.5−1), and the same solutions for x∗(t) and u∗(t) as in Problem
9.4.6 are found. Since all the conditions (i)–(iv) are satisfied by the admissible pair (x∗(t), u∗(t)), with
the given λ(t), we have found the solution.

9.9.3 The current value HamiltonianHc = −2u−u2+λu is concave in (x, u), and u ∈ �, so the following
conditions are sufficient for optimality:

(i) (Hc)′u = −2 − 2u∗(t)+ λ = 0;
(ii) λ̇(t)− 0.1λ = −(Hc)′x(t, x∗(t), u∗(t), λ(t)) = 0;

(iii) ẋ∗(t) = u∗(t), x∗(0) = 1, x∗(1) = 0.

From (ii) we have λ(t) = Ae0.1t for some constantA. From (ii) we have u∗(t) = 1
2λ(t)−1 = 1

2Ae
0.1t−1.

Then ẋ∗(t) = 1
2Ae

0.1t −1, with solution x∗(t) = 5Ae0.1t − t+B. The constantsA and B are determined
from the boundary conditions, and we get the same solution as in Problem 9.5.3.

9.10

9.10.2 WithA as the state variable, the Hamiltonian isH(t, A, u, p) = U(rA(t)+w−u(t))e−ρt+pu, and
the scrap value function is S(T ,A) = e−ρT ϕ(A). (We assume that λ0 = 1.) Moreover, w is a constant.
With the assumptions in Example 8.5.3, the utility function U has U ′ > 0 and U ′′ < 0. This implies
that H(t, A, u, p) is concave in (A, u). Since ϕ(A) is also concave, a set of sufficient conditions for
optimality is then (assuming interior solution in (i)):

(i) H ′
3(t, A

∗(t), u∗(t), p(t)) = 0, or p(t) = U ′(rA∗(t)+ w − u∗(t))e−ρt ;
(ii) ṗ = −H ′

2(t, A
∗(t), u∗(t), p(t)) = −rU ′(rA∗(t)+ w − u∗(t))e−ρt ;

(iii) p(T ) = S ′A(T ,A∗(T )) = e−ρT ϕ′(A∗(T ));
(iv) Ȧ∗(t) = u∗(t), A∗(0) = A0.

In the answer in the book we go a little further. We differentiate the expression for p(t) in (i) w.r.t. t and
equate it to the expression for ṗ(t) in (ii). Using u∗(t) = Ȧ∗(t), this gives

U ′′(rA∗ + w − Ȧ∗)(rȦ∗ − Ä∗)e−ρt − ρU ′(rA∗ + w − Ȧ∗)e−ρt = −rU ′(rA∗ + w − Ȧ∗)e−ρt

Multiplying by −eρt and rearranging gives Ä∗ − rȦ∗ + (ρ − r)U ′/U ′′ = 0. Combining (i) and (iii), we
also see that ϕ′(A∗(T )) = U ′(rA∗(T )+ w − u∗(T )).

9.10.3 Compared with Problem 9.7.2 the only difference is that instead of the condition “x(10) free”, we
have now included a scrap value in the objective function. The scrap value function is S(k) = 10

√
k, with

S ′(k) = 5/
√
k. Conditions (i)–(iv) in the answer to Problem 9.7.2 are still valid except that p(10) = 0

in (ii) is now replaced by

p(10) = 5√
k∗(10)

(ii)′

Again p(t) is strictly decreasing, and p(t) < 1 for all t in [0, 10] is again easily seen to be impossible.
Suppose p(t) > 1 for all t in [0, 10]. (This was not an option when we required p(10) = 0.) Then
s∗(t) ≡ 1 and k̇∗(t) = √

k∗(t), with k∗(0) = 1. It follows that 2
√
k∗(t) = t +2, or k∗(t) = ( 1

2 t +1)2. In
particular, k∗(10) = 36. Then (ii)′ gives p(10) = 5/6 < 1 a contradiction. We conclude that there must
exist a t∗ in (0, 10) such that p(t∗) = 1, and (v) in the answer to Problem 9.7.2 is still valid (although
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with a different t∗).
On (t∗, 10] we again get p(t) = −t/(t∗ + 2) + D and 1 = p(t∗) = −t∗/(t∗ + 2), which implies

that D = (2t∗ + 2)/(t∗ + 2), and thus p(t) = −t/(t∗ + 2)+ (2t∗ + 2)/(t∗ + 2). In particular, p(10) =
(2t∗ − 8)/(t∗ + 2). We now use (ii)′ to determine t∗:

2t∗ − 8

t∗ + 2
= 5

1
2 t

∗ + 1
= 10

t∗ + 2

from which it follows that t∗ = 9. The rest is routine, see the answer in the book. (Again the Arrow
condition is satisfied, and it is valid also in this case.)

9.10.4 (a) This is a problem with scrap value functionS(x) = 1
2x. We useTheorem 9.10.1. Let (x∗(t), u∗(t))

be an admissible pair. Withp0 = 1, the Hamiltonian isH(t, x, u, p) = x−u+pu = x+(p−1)u. (Note
that the scrap value function is not to be included in the Hamiltonian.) If (x∗(t), u∗(t)) is an optimal pair
in the problem, and p(t) is the adjoint function, then according to (B) in Theorem 9.10.1,

ṗ(t) = −∂H
∗

∂x
= −1 and p(1) = S ′(x∗(1)) = 1

2
(i)

Moreover, u∗(t) = 1 if p(t) > 1 and u∗(t) = 0 if p(t) < 1. From (i) we get

p(t) = 3
2 − t

We see that the strictly decreasing function p(t) is equal to 1 at t = 1/2. Hence

u∗(t) =
{

1 if t ∈ [0, 1/2]

0 if t ∈ (1/2, 1]

Since ẋ∗(t) = u∗(t) and x(0) = 1/2, we get

x∗(t) =
{
t + 1/2 if t ∈ [0, 1/2]

1 if t ∈ (1/2, 1]

We have found the optimal solution becauseH(t, x, u, p(t)) and S(x) = x/2 are concave (in fact linear)
functions of (x, u).

(b) The scrap value function is now S̄(x) = − 1
4 (x − 2)2, but the Hamiltonian is as in (a). Condition (i)

is replaced by

ṗ(t) = −1 and p(1) = S̄ ′(x∗(1)) = − 1
2 (x

∗(1)− 2) = 1 − 1
2x

∗(1) (ii)

From (ii) we see that p(t) = −t + C and since p(1) = 1 − 1
2x

∗(1), we have

p(t) = −t + 2 − 1
2x

∗(1) (iii)

Since x∗(0) = 1/2 and 0 ≤ ẋ∗ ≤ 1, it is clear that 1/2 ≤ x∗(1) ≤ 3/2. Condition (iii) therefore gives

1/4 ≤ p(1) ≤ 3/4

Since ṗ(t) = −1 for all t , we have p(t) = p(0)− t . Hence, p(0) = p(1)+ 1 and

5/4 ≤ p(0) ≤ 7/4
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Condition (ii) is still valid, so there exists a unique number t∗ between 0 and 1 such that p(t∗) = 1, and

u∗(t) =
{

1 if t ∈ [0, t∗],

0 if t ∈ (t∗, 1],
x∗(t) =

{
1/2 + t if t ∈ [0, t∗]

1/2 + t∗ if t ∈ (t∗, 1]

To determine t∗ we use the transversality condition. We know that p(t) = p(0) − t = p(1) + 1 − t ,
so p(1) = p(t) + t − 1 for all t . Since p(t∗) = 1, we get p(1) = t∗. The transversality condition then
gives t∗ = p(1) = 1 − 1

2x
∗(1) = 1 − 1

2

( 1
2 + t∗

) = 3
4 − 1

2 t
∗, which means that t∗ = 1

2 . The optimal pair
(x∗(t), u∗(t)) is therefore exactly as in (a), but this is accidental. A different scrap value function would
usually have given another solution.

9.10.5 (a) The Hamiltonian H(t, x, u, p) = −u2 − px + pu is concave in (x, u) and the scrap value
function S(x) = −x2 is concave in x. The following conditions are therefore sufficient for optimality:

(i) H ′
3(t, x

∗(t), u∗(t), p) = −2u∗(t)+ p(t) = 0, so u∗(t) = 1
2p(t);

(ii) ṗ(t) = −∂H ∗/∂x = p(t) and p(T ) = −S ′(x∗(T )) = −2x∗(T );
(iii) ẋ∗(t) = −x∗(t)+ u∗(t), x∗(0) = x0.

From (ii) we get p(t) = Cet for an appropriate constant C, and since p(T ) = −2x∗(T ), we get
p(t) = −2x∗(T )et−T and also u∗(t) = 1

2p(t) = −x∗(T )et−T . The differential equation

ẋ∗(t) = −x∗(t)+ u∗(t) = −x∗(t)− x∗(T )et−T
has the general solution

x∗(t) = De−t − 1
2x

∗(T )et−T

From x∗(T ) = De−T − 1
2x

∗(T ) we get D = 3
2x

∗(T )eT . The initial condition x∗(0) = x0 gives

D − 1
2x

∗(T )e−T = 3
2x

∗(T )eT − 1
2x

∗(T )e−T = 1
2x

∗(T )(3eT − e−T ) = x0

so

x∗(T ) = 2x0

3eT − e−T = 2x0e
T

3e2T − 1
and D = 3

2
x∗(T )eT = 3x0e

2T

3e2T − 1
Thus the optimal solution is

u∗(t) = − 2x0e
t

3e2T − 1
, x∗(t) = x0(3e2T−t − et )

3e2T − 1
, p(t) = − 4x0e

t

3e2T − 1

(b) We have

V (x0, T ) = −
∫ T

0
(u∗(t))2 dt − (x∗(T ))2 = − 4x2

0

(3e2T − 1)2

[∫ T

0
e2t dt + e2T

]
= − 4x2

0

(3e2T − 1)2

[ T

0

1

2
e2t + e2T

]
= − 4x2

0

(3e2T − 1)2

[
3

2
e2T − 1

2

]
= − 2x2

0

3e2T − 1

It follows that
∂V

∂x0
= − 4x0

3e2T − 1
= p(0) and

∂V

∂T
= 12x2

0e
2T

(3e2T − 1)2

We see from the solutions in (a) that p(T ) = −2x∗(T ) and u∗(t) = −x∗(T ), so H ∗(T ) = −u∗(T )2 +
p(T )(−x∗(T )+ u∗(T )) = 3x∗(T )2 = ∂V/∂T .
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9.10.6 The current value HamiltonianHc(t, x, u, λ) = −(x−u)2 +λ(u− x+ a) is concave in (x, u). The
scrap value function S(x) = −x2 is concave in x. The following conditions are therefore sufficient for
an admissible pair (x∗, u∗) to solve the problem:

(i) ∂(Hc)∗/∂u = 0 , i.e. λ(t) = −2(x∗(t)− u∗(t));
(ii) λ̇(t)− rλ = −∂(Hc)∗/∂x = 2(x∗(t)− u∗(t))+ λ(t), and λ(T ) = −2x∗(T );

(iii) ẋ∗(t) = u∗(t)− x∗(t)+ a, x∗(0) = 0.

From (i) and (ii) it follows that λ̇(t) = rλ, so λ(t) = Aert , where A is a constant. Then (i) yields
x∗(t)−u∗(t) = − 1

2Ae
rt . But then ẋ∗(t) = u∗(t)−x∗(t)+a = 1

2Ae
rt+a, so x∗(t) = (A/2r)ert+at+B.

The initial condition x∗(0) = 0 gives B = −A/2r , so

x∗(t) = A

2r
(ert − 1)+ at (iv)

From (ii), x∗(T ) = − 1
2λ(T ) = − 1

2Ae
rT , and so (iv) with t = T yields− 1

2Ae
rT = (A/2r)(erT−1)+aT .

Solving for A yields

A = − 2arT

erT (1 + r)− 1

The expressions for λ(t), x∗(t), and u∗(t) follow easily. See the answer in the book.

9.11

9.11.1 The current value Hamiltonian Hc = ln u − λ(0.1x − u) is concave in (x, u), and u > 0, so the
following conditions are sufficient for optimality:

(i) (Hc)′u(t, x∗, u∗, λ(t)) = 1/u∗(t)+ λ = 0;
(ii) λ̇(t)− 0.2λ = −(Hc)′x(t, x∗, u∗, λ(t)) = −0.1λ;

(iii) (a) limt→∞ λ(t)e−0.2t (−x∗(t)) ≥ 0;
(b) There exists a number M such that |λ(t)e−0.2t | ≤ M for all t ≥ 0;
(c) There exists a number t ′ such that λ(t) ≥ 0 for all t ≥ t ′;

(iv) ẋ∗(t) = 0.1x∗(t)− u∗(t), x∗(0) = 10, limt→∞ x∗(t) ≥ 0.

From (ii) we get λ̇(t) = 0.1λ(t), and thus λ(t) = Ae0.1t , for some constant A. Condition (i) yields
u∗(t) = 1/λ(t) = e−0.1t /A. Then from (iv), ẋ∗(t) = 0.1x∗(t) − e−0.1t /A. The solution of this linear
differential equation, with x∗(0) = 10, is easily seen to be x∗(t) = (10 − 5/A)e0.1t + 5e−0.1t /A.
Condition (iv) requires limt→∞ x∗(t) = limt→∞[(10 − 5/A)e0.1t + 5e−0.1t /A] ≥ 0. This obviously
requires 10 − 5/A ≥ 0. From (iii)(c) we see that we must have A ≥ 0, and so A ≥ 1/2. However,
referring to (iii)(a),

λ(t)e−0.2t (−x∗(t)) = Ae0.1t e−0.2t (−(10 − 5/A)e0.1t − 5e−0.1t /A) = −(10A− 5)− 5e−0.2t

The limit of this expression can be ≥ 0 only if 10A− 5 ≤ 0, i.e. A ≤ 1/2. Thus we must have A = 1/2.
Then u∗(t) = 2e−0.1t , x∗(t) = 10e−0.1t , with λ(t) = 1

2e
0.1t .

It remains to check that the conditions in (iii) are satisfied. First, (iii)(a) is satisfied because we
have limt→∞ 1

2e
0.1t e−0.2t (−10e−0.1t ) = −5 limt→∞ e−0.2t = 0. Since |λ(t)e−0.2t | = | 1

2e
0.1t e−0.2t | =

1
2e

−0.1t ≤ 1
2 for all t ≥ 0, (iii)(b) is also satisfied. Finally, λ(t) = 1

2e
0.1t ≥ 0 for all t ≥ 0. We have

therefore found the solution.
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9.11.2 The current value Hamiltonian (with λ0 = 1) is Hc = x(2 − u) + λuxe−t , and the following
conditions must be satisfied for (x∗(t), u∗(t)) to be optimal:

(i) u = u∗(t) maximizes Hc(t, x∗(t), u, λ(t)) = 2x∗(t)+ x∗(t)(e−t λ(t)− 1)u for u ∈ [0, 1];
(ii) λ̇(t)− λ(t) = −∂(Hc)∗/∂x = −(2 − u∗(t))− λ(t)u∗(t)e−t ;

(iii) ẋ∗(t) = u∗(t)x∗(t)e−t , x∗(0) = 1.

Since ẋ∗(t) ≥ 0 and x∗(0) = 1, x∗(t) ≥ 1 for all t . Looking at (i) we see that

u∗(t) =
{

1 if λ(t)e−t > 1

0 if λ(t)e−t < 1

We guess that p(t) = λ(t)e−t → 0 as t → ∞. Then λ(t)e−t < 1 on some maximal interval (t∗,∞).
On this interval u∗(t) = 0 and λ̇(t)− λ(t) = −2, and so λ(t) = Cet + 2, or λ(t)e−t = C + 2e−t , which
tends to 0 as t → ∞ only if C = 0. Then λ(t) = 2. Note that λ(t)e−t∗ = 2e−t∗ = 1 when t∗ = ln 2,
and we propose that u∗(t) = 1 on [0, ln 2], u∗(t) = 0 on (ln 2,∞). Then ẋ∗(t) = x∗(t)e−t on [0, ln 2],
ẋ∗(t) = 0 on (ln 2,∞). On [0, ln 2],

∫
dx∗(t)/x∗(t) = ∫

e−t dt , so ln x∗(t) = −e−t + A, and with
x∗(0) = 1 this gives x∗(t) = e1−e−t . On (t∗,∞) we have x∗(t) = e1−e− ln 2 = e1−1/2 = e1/2.

On [0, ln 2] we have λ̇(t) + (e−t − 1)λ(t) = −1. We use formula (5.4.6) with a(t) = e−t − 1 and
b(t) = −1. Then

∫
a(t) dt = ∫ (e−t − 1) dt = −e−t − t and

λ(t) = Cee
−t+t + ee−t+t

∫
e−e

−t−t (−1) dt = Cee
−t+t − ee−t+t

∫
e−e

−t
e−t dt = Cee

−t+t − et

because the last integral is obviously equal to e−e−t . Since λ(ln 2) = 2 we find that C = 2e−1/2. We have
obtained the same answers as in the book, keeping in mind that p(t) = λ(t)e−t .

It does not change the problem if x(∞) ≥ 0 is added as a restriction in the problem. Then (B) and
(C) in Note 9.11.3 are trivially satisfied, and the expression in (A) reduces to limt→∞ 2e−t (0 − e1/2),
which is clearly 0. The Arrow concavity condition holds in this problem and this yields optimality also
in the infinite horizon case.

9.11.4 The current value Hamiltonian Hc = (x − u) + λue−t is concave in (x, u). The problem is not
affected by introducing the requirement that limt→∞ x∗(t) ≥ 0. So the following conditions are sufficient
for optimality:

(i) u = u∗(t) maximizes x∗(t)+ e−t (λ(t)− et )u for u ∈ [0, 1];
(ii) λ̇(t)− λ(t) = −(Hc)′x(t, x∗, u∗, λ(t)) = −1;

(iii) (a) limt→∞ λ(t)e−t (−x∗(t)) ≥ 0;
(b) There exists a number M s.t. |λ(t)e−t | ≤ M for all t ≥ 0;
(c) There exists a number t ′ s.t. λ(t) ≥ 0 for all t ≥ t ′;

(iv) ẋ∗(t) = u∗(t)e−t , x∗(−1) = 0.

From (ii) it follows that λ(t) = Aet + 1. We guess that p(t) = e−t λ(t) = e−t (Aet + 1) = A+ e−t → 0
as t → ∞, so A = 0. From (i) we see that u∗(t) = 1 if et < 1, and u∗(t) = 0 if et > 1. It follows that
u∗(t) = 1 in [−1, 0] and u∗(t) = 0 in (0,∞). Then from (iv), we get x∗(t) = e − e−t in [−1, 0] and
x∗(t) = e − 1 in (0,∞). The conditions in (iii) are obviously satisfied, so we have found the optimal
solution. (The answer in the book is wrong.)

9.12
9.12.1 (a) The current value Hamiltonian Hc = ax − 1

2u
2 + λ(−bx + u) is concave in (x, u), so the

following conditions are sufficient for optimality:
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(i) (Hc)′u(t, x∗(t), u∗(t), λ(t)) = −u∗(t)+ λ(t) = 0;
(ii) λ̇(t)− rλ(t) = −(Hc)′x(t, x∗(t), u∗(t), λ(t)) = −a + bλ(t);

(iii) limt→∞ λ(t)e−rt (x(t)− x∗(t)) ≥ 0 for all admissible x(t);
(iv) ẋ∗(t) = −bx∗(t)+ u∗(t), x∗(0) = 10.

From (i) we get u∗(t) = λ(t), and thus ẋ∗(t) = −bx∗(t)+ λ(t), and x = x∗ and λ must satisfy

ẋ = −bx + λ = F(x, λ), λ̇ = (b + r)λ− a = G(x, λ) (∗)
The equilibrium point is (x̄, λ̄) = (a/b(b + r), a/(b + r).
(b) The Jacobian matrix of (∗) is

(
F ′
x F ′

λ

G′
x G′

λ

)
=
(−b 1

0 b + r
)

, with eigenvalues −b and b+ r . Since

they are real and of opposite signs, the equilibrium point is a saddle point. To prove sufficiency, we can
restrict attention to admissible x(t) satisfying limt→∞ x(t)e−rt ≥ 0, because if the limit is < 0, then the
value of the criterion is −∞. For such x(t), condition (iii) is evidently satisfied.

(c) V =
∫ ∞

0
[ax∗(t)− 1

2 (u
∗(t))2]e−rt dt =

∫ ∞

0
ax0e

−(b+r)t dt + terms that do not depend on x0. But

then ∂V/∂x0 =
∫ ∞

0
ae−(b+r)t dt = a/(b + r) = λ(0).

9.12.2 From the answer to Problem 9.9.1 with x(0) = 1, we find x∗ = Ae(1+
√

2 )t + (1 − A)e(1−
√

2 )t . and
λ = A

√
2 e(

√
2+1)t − (1 − A)

√
2 e(1−

√
2 )t . The adjoint variable p(t) = λ(t)e−2t tends to 0 as t → ∞

if and only if A = 0. Then x∗ = e(1−
√

2 )t and λ(t) = −√2 e(1−
√

2 )t (with p(t) = −√2 e(−1−√2 )t ). To
prove sufficiency, note that if limt→∞ x2(t)e−2t = limt→∞(x(t)e−t )2 �= 0, then the objective function
is −∞. We can therefore restrict attention to admissible solutions for which limt→∞ x(t)e−t = 0. Then
condition (iii) is satisfied and we have found the optimal solution.

9.12.3 (a) With Hc = lnC + λ(AKα − C), ∂(Hc)∗/∂C = 0 implies 1/C∗ − λ = 0, or C∗λ = 1. Taking
ln of each side and differentiating w.r.t. t yields Ċ∗/C∗ + λ̇/λ = 0. Also, λ̇ − rλ = −∂(Hc)∗/∂K =
−λαA(K∗)α−1 or, equivalently, λ̇/λ = r − αA(K∗)α−1. It follows that if K = K∗(t) > 0 and C =
C∗(t) > 0 solve the problem, then the second equation in (∗) holds. (The first equation is part of the
problem.)

(b) The Jacobian matrix evaluated at (400, 40) is J =
(

1/20 −1
−1/400 0

)
and |J | = −1/400 < 0, so the

equilibrium point is a saddle point.

(c) If K0 = 100 and T = ∞ the solution curve converges towards the equilibrium point. For sufficient
conditions, see Note 9.11.3.

9.12.4 (a) The current value HamiltonianHc = −(x−1)2− 1
2u

2+λ(x−u) is concave in (x, u). Sinceu ∈ �,
the maximum condition reduces to (i) (Hc)′u(t, x∗, u∗, λ(t)) = −u∗(t)−λ = 0. The differential equation
for λ is (ii) λ̇(t)− λ(t) = −(Hc)′x(t, x∗, u∗, λ(t)) = 2x∗(t)− 2− λ. Of course, ẋ∗(t) = x∗(t)− u∗(t).
It follows that the optimal pair x∗(t), u∗(t)) must satisfy

ẋ = F(x, λ) = x − u = x + λ
λ̇ = G(x, λ) = 2x − 2

(∗)

The Jacobian matrix of (∗) is

(
F ′
x F ′

λ

G′
x G′

λ

)
=
(

1 1
2 0

)
. The determinant is −2, so the equilibrium point

(1,−1) is a saddle point. The eigenvalues are −1 and 2.
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(b) Solving the first equation in (∗) for λ yields λ = ẋ− x, and then λ̇ = ẍ− ẋ. Inserted into the second
equation in (∗) yields ẍ− ẋ−2x = −2. The general solution of this equation is x(t) = Ae−t +Be2t +1,
and x(0) = 1/2 yields B = −A− 1/2, so

x(t) = Ae−t − (A+ 1/2)e2t + 1

Using λ = ẋ − x, we find the corresponding solution for λ,

λ(t) = −2Ae−t − (A+ 1/2)e2t − 1

If A �= −1/2 we see that x(t) and λ(t) both diverge as t → ∞. For A = −1/2, it follows that
x(t) = −(1/2)e−t +1 → 1 and λ(t) = e−t −1 →−1 as t →∞.Note that from x(t) = −(1/2)e−t +1
and λ(t) = e−t − 1 we find that (x, λ) = (x(t), λ(t)) satisfies λ = −2x + 1.

It remains to prove that condition (d) in Theorem 9.11.1 is satisfied. Note that the integrand in the
objective function can be written (−x2 + 2x − 1 − 1

2u
2)e−t , so we need only consider admissible x(t)

for which limt→∞ x(t)e−t ≥ 0, because if limt→∞ x(t)e−t < 0 the objective function is −∞.

10 Control Theory with Many Variables

10.1

10.1.3 To prove that g is concave, let x1, x2, λ ∈ (0, 1) and choose u1, u2 inUx such that g(x1) = F(x1,u1),
g(x2) = F(x2,u2). Then g(λx1 + (1 − λ)x2) ≥ F(λx1 + (1 − λ)x2, λu1 + (1 − λ)u2) ≥ λF(x1,u1)+
(1 − λ)F (x2,u2) = λg(x1)+ (1 − λ)g(x2). Note that λu1 + (1 − λ)u2 ∈ Uλx1+(1−λ)x2 .

10.2

10.2.2 Suppose T < 2/a. If t ∈ [0, T − 2/a], then u∗(t) = 1 and then ẋ∗1 (t) = ax∗1 (t) with x∗1 (0) = x0
1 .

If follows that x∗1 (t) = x0
1e
at . In particular, x∗1 (T − 2/a) = x0

1e
aT−2. Moreover, we have ẋ∗2 (t) =

a(1 − u∗(t))x∗1 (t) = 0, and so x∗2 (t) = x0
2 .

If t ∈ (T −2/a, T ], thenu∗(t) = 0 and ẋ∗1 (t) = 0 with x∗1 (T −2/a) = x0
1e
aT−2, so x∗1 (t) = x0

1e
aT−2.

Moreover, ẋ∗2 (t) = ax0
1e
aT−2, so integration gives x∗2 (t) = ax0

1e
aT−2t +B, with the boundary condition

x∗2 (T − 2/a) = x0
2 determining B. In fact, we get x∗2 (t) = x0

2 + ax0
1e
aT−2(t − (T − 2/a)).

10.2.3 (a) There are two state variables x1 and x2, so we introduce two adjoint variablesp1 andp2. There are
also two control variables u1 and u2. The HamiltonianH = 1

2x1+ 1
5x2 −u1−u2 +p1u1+p2u2 is linear

and hence concave. The following conditions are sufficient for the admissible quadruple (x∗1 , x∗2 , u∗1, u∗2)
to be optimal:

(i) (u1, u2) = (u∗1(t), u∗2(t))maximizes (p1(t)− 1)u1 + (p2(t)− 1)u2 for u1 ∈ [0, 1], u2 ∈ [0, 1];
(ii) ṗ1(t) = −(H ′

x1
)∗ = −1/2, p1(T ) = 0, ṗ2(t) = −(H ′

x2
)∗ = −1/5, p2(T ) = 0;

We see immediately from (ii) that p1(t) = 1
2 (T − t) and p2(t) = 1

5 (T − t). Note that p1(0) = 1
2T > 1

since T > 5. Thus p1(t) strictly decreases from a level higher than 1 at t = 0 to 0 at t = T . Looking
at (i) we see that u∗1(t) = 1 for p1(t) > 1 and 0 for p1(t) < 1. Since p1(t

∗) = 1 when 1
2 (T − t∗) = 1,

we get t∗ = T − 2. In the same way, p2(0) = 1
5T > 1 since T > 5. Thus p2(t) strictly decreases from
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a level higher than 1 at t = 0 to 0 at t = T . Looking at (i) we see that u∗2(t) = 1 for p(t) > 1 and 0 for
p(t) < 1. Since p2(t

∗∗) = 1 when 1
5 (T − t∗∗) = 1, we get t∗∗ = T − 5. We conclude that

u∗1(t) =
{

1 if t ∈ [0, T − 2]

0 if t ∈ (T − 2, T ]
u∗2(t) =

{
1 if t ∈ [0, T − 5]

0 if t ∈ (T − 5, T ]

The corresponding values for (x∗1 (t), x∗2 (t)) are easily worked out. See the answer in the book.

(b) The scrap value function is S(x1, x2) = 3x1 + 2x2. The Hamiltonian and the differential equations
for p1 and p2 are the same as in (a). The transversality conditions are changed. In fact, according to
Theorem 10.1.5 (C)(c’), we have p1(T ) = S ′1(x∗1 (t), x2(t)) = 3 and p2(T ) = S ′2(x∗1 (t), x2(t)) = 2.
Then p1(t) = 3 + 1

2 (T − t) and p2(t) = 2 + 1
5 (T − t). For t ∈ [0, T ] we see that p1(t) and p2(t) are

both greater than 1, and condition (i) in (a) implies that u∗1(t) = u∗2(t) = 1 for all t ∈ [0, T ], and thus
x∗1 (t) = x∗2 (t) = t .

10.2.4 The Hamiltonian H = x2 + c(1 − u1 − u2)+ p1au1 + p2(au2 + bx1) is linear and hence concave.
The control region is U = {(u1, u2) : 0 ≤ u1, 0 ≤ u2, u1 + u2 ≤ 1}. The following conditions are
sufficient for a quadruple (x∗1 , x∗2 , u∗1, u∗2) to be admissible and optimal:

(i) (u1, u2) = (u∗1(t), u∗2(t)) maximizes (ap1(t)− c)u1 + (ap2(t)− c) for (u1, u2) ∈ U ;
(ii) ṗ1(t) = −(H ′

x1
)∗ = −bp2(t), p1(T ) = 0, ṗ2(t) = −(H ′

x2
)∗ = −1, p2(T ) = 0;

(iii) ẋ∗1 (t) = au∗1(t), x∗1 (0) = x0
1 , ẋ∗2 (t) = au∗2(t)+ bx∗1 (t), x∗2 (0) = x0

2 .

From (ii) we see that p2(t) = T − t . Therefore ṗ1(t) = −b(T − t). Integrating and using p1(T ) = 0,
we get p1(t) = 1

2b(T − t)2. To find the optimal controls we must for each t in [0, T ] solve the problem

max ϕ(u1, u2) = max
{[ 1

2ab(T − t)2 − c]u1 +
[
a(T − t)− c]u2 s.t. (u1, u2) ∈ U

}
(∗)

The control region U is the closed triangular region with corners at (0, 0), (1, 0), and (0, 1). Since ϕ is
a linear function it will attain its maximum over U at one of those corners. (In some cases there may be
more than one maximum point, but even then at least one corner will be a maximum point.) Note that
ϕ(0, 0) = 0, ϕ(1, 0) = 1

2ab(T − t)2 − c, and ϕ(0, 1) = a(T − t) − c. In the chains of equivalences
below it is understood that either the top inequality holds all the way or the bottom inequality holds all
the way. We see that (with t < T )

ϕ(1, 0) ≷ ϕ(0, 1) ⇐⇒ 1
2ab(T − t)2 − c ≷ a(T − t)− c ⇐⇒ t ≶ T − 2/b

ϕ(0, 1) ≷ ϕ(0, 0) ⇐⇒ a(T − t)− c ≷ 0 ⇐⇒ t ≶ T − c/a
ϕ(1, 0) ≷ ϕ(0, 0) ⇐⇒ T − t ≷

√
2c/ab ⇐⇒ t ≶ T −√2c/ab

Putting all this together (note that the assumption T − c/a > T −2/b in the problem implies c/a < 2/b,
and then c/a <

√
2c/ab < 2/b), we find that a set of optimal controls are

(u∗1(t), u
∗
2(t)) =

⎧⎪⎨⎪⎩
(1, 0) if t ∈ [0, T − 2/b]

(0, 1) if t ∈ (T − 2/b, T − c/a]

(0, 0) if t ∈ (T − c/a, T ]

(∗∗)

(For values of t in the corresponding open intervals, the optimal values of u1 and u2 are uniquely
determined; for t = T − 2/b, t = T − c/a, and t = T we choose the values so that the control functions
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become left-continuous.) The corresponding values of x∗1 (t) and x∗2 (t) follow from (iii) and (∗), but the
expressions on the interval (T − c/a, T − 2/b) get very messy.

10.2.5 There are two state variables x1 and x2, so we introduce two adjoint variables p1 and p2. The
Hamiltonian is H(t, x1, x2, u, p1, p2) = x1 − cx2 + u0 − u + p1u + p2bx1. (We have p0 = 1, since
p1(T ) = p2(T ) = 0.) The Hamiltonian is concave in (x1, x2, u), so according to Theorem 10.1.2 the
admissible triple (x∗1 , x∗2 , u∗) is optimal provided for each t in [0, T ],

(i) u = u∗(t)maximizesH(t, x∗1 (t), x∗2 (t), u, p1(t), p2(t)) = x∗1 (t)− cx∗2 (t)+u0 −u+p1(t)u+
p2(t)bx

∗
1 (t) = �+p2(t)bx

∗
1 (t)+ (p1(t)− 1)u for u in [0, u0] (where � does not depend on u).

(ii) ṗ1(t) = −∂H ∗/∂x1 = −1 − bp2(t), p1(T ) = 0 and ṗ2(t) = −∂H ∗/∂x2 = c, p2(T ) = 0

From (i) we see that p1(t) > 1 ⇒ u∗(t) = u0, p1(t) < 1 ⇒ u∗(t) = 0. Moreover, from (ii),
p2(t) = c(t−T ), and ṗ1(t) = −1−bp2(t) = −1−bc(t−T ), which givesp1(t) = T −t− 1

2bc(t−T )2 =
− 1

2bct
2 + (bcT − 1)t + T − 1

2bcT
2, since p1(T ) = 0. Note that p1(t) is a quadratic polynomial in t ,

with p1(0) = T (1− 1
2bcT ) and maximum at t1 = T − 1/bc (since ṗ1(t1) = 0). The maximum value of

p1 is p1(t1) = 1/2bc.
We restrict our attention to the main case bcT > 2 and 2bc < 1. (The other cases are much simpler.)

We then get p1(0) = T (1 − 1
2bcT ) < 0, p1(t1) = 1/2bc > 1, p1(T ) = 0. The graph of p is shown in

Figure 10.2.5.

t

p

1

t∗ t∗∗ T

Figure 10.2.5

There will be two points t∗ and t∗∗, such that 0 < t∗ < t∗∗ < T and p1(t∗) = p1(t∗∗) = 1. Now,

p1(t) = 1
2bct

2 − (bcT − 1)t − T + 1
2bcT

2 + 1 = 0 ⇐⇒ t = T − 1

bc
± 1

bc

√
1 − 2bc

This gives

t∗ = T − 1

bc
− 1

bc

√
1 − 2bc , t∗∗ = T − 1

bc
+ 1

bc

√
1 − 2bc

The optimal control u∗ and the corresponding x∗1 (t) are given by

u∗(t) =
⎧⎨⎩

0 for t in [0, t∗],
1 for t in (t∗, t∗∗]
0 for t in (t∗∗, T ]

, x∗1 (t) =
⎧⎨⎩
x0

1 for t in [0, t∗],
t − t∗ + x0

1 for t in (t∗, t∗∗]
t∗∗ − t∗ + x0

1 for t in (t∗∗, T ]

The expression for x∗2 (t) is somewhat messy:

x∗2 (t) =
⎧⎨⎩
bx0

1 t + x0
2 for t in [0, t∗],

1
2bt

2 + b(x0
1 − t∗)t + x0

2 + 1
2b(t∗)

2 for t in (t∗, t∗∗]
b(t∗∗ − t∗)t + bx0

1 t + 1
2b[(t∗)2 − (t∗∗)2] + x0

2 for t in (t∗∗, T ]
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10.2.7 There are two state variables and one control variable. We shall use Theorem 10.1.2. The Hamiltonian
isH(t, x, y, u, p1, p2) = x+ (p1 +p2 − 1

2 )u. Suppose (x∗, y∗, u∗) is an admissible triple which solves
the problem. Then:

(i) For each t in [0, 2], u = u∗(t) maximizes
H(t, x∗(t), y∗(t), u, p1(t), p2(t)) = x∗(t)+ (p1(t)+ p2(t)− 1

2 )u for u in [0, 1];
(ii) ṗ1(t) = −∂H ∗/∂x = −1, ṗ2(t) = −∂H ∗/∂y = 0;

(iii) (a) p1(2) = 0,
(b) p2(2) ≤ 0, and p2(2) = 0 if y∗(2) < 1;

(iv) ẋ∗(t) = u∗(t), x∗(0) = 1, ẏ∗(t) = u∗(t), y∗(0) = 0.

From (ii), ṗ1 = −1, and since p1(2) = 0, we have p1(t) = 2 − t . Because ṗ2 = 0, p2(t) = p̄2, where
p̄2 is a constant. Hence, p1(t)+p2(t)− 1

2 = 2− t+ p̄2 − 1
2 = t∗ − t,where t∗ = 3/2+ p̄2 is a constant.

Condition (i) gives

u∗(t) =
{

1 if t < t∗

0 if t > t∗

If t∗ = 2, then u∗(t) ≡ 1 and y∗(t) ≡ t , and then y∗(2) > 1, which is impossible.

If t∗ = 0, then u∗(t) ≡ 0 and y∗(t) ≡ 0, which gives y∗(2) = 0 < 1. In this case p̄2 = p2(2) = 0
because of (iii). Hence, t∗ = 3/2, contradicting t∗ = 0.

Thus we must have 0 < t∗ < 2, and then x∗(t)− 1 = y∗(t) = t for t ≤ t∗ and x∗(t)− 1 = y∗(t) = t∗
for t > t∗. In particular, y∗(2) = t∗ = 3/2 + p̄2. It remains to determine p̄2 and t∗. Since y∗(2) ≤ 1,
we must have 3/2 + p̄2 ≤ 1, i.e. p̄2 ≤ −1/2 < 0. From (iii), y∗(2) = 1, and so p̄2 = −1/2 and t∗ = 1.
The Hamiltonian is concave in (x, y, u) (in fact linear), so we have found a solution:

u∗(t) =
{ 1 if t ≤ 1

0 if t > 1
, x∗(t)− 1 = y∗(t) =

{
t if t ≤ 1
1 if t > 1

, p1(t) = 2 − t, p2(t) = − 1
2

10.3

10.3.1 The HamiltonianH = (x−u)e−rt +p(t)ue−t is concave in (x, u). If (x∗(t), u∗(t)) is optimal, then

(i) u = u∗(t) maximizes (e−tp(t)− e−rt )u for u ∈ [0, 1];
(ii) ṗ(t) = −H ′

x(t, x
∗(t), u∗(t), p(t)) = −e−rt ;

(iii) ẋ∗(t) = u∗(t)e−t , x∗(0) = x0 ≥ 0.

From (ii) we get p(t) = (1/r)e−rt + C. There is no restriction on x(t) as t → ∞, so we guess that
p(t)→ 0 as t →∞. Then we must have C = 0, so p(t) = (1/r)e−rt . With this choice of p(t), we see
that u = u∗(t) maximizes (1/r)e−rt (e−t − r)u for u ∈ [0, 1]. Thus, u∗(t) = 1 if e−t > r and u∗(t) = 0
if e−t < r . We have e−t∗ = r when t∗ = − ln r , and then we see that (draw a picture!)

u∗(t) =
{

1 if t ∈ [0,− ln r]

0 if t ∈ (− ln r,∞)

From (iii) we find that x∗(t) = x0 + 1− e−t in [0,− ln r], while x∗(t) = x0 + 1− r in (− ln r,∞). Note
that since ẋ ≥ 0 for all t ≥ 0 and x(0) ≥ 0, we have x(t) ≥ x0 for all t ≥ 0.

We have p(t) = e−rt /r ≥ 0, so according to Note 10.3.2 it remains only to verify (10.3.10a). In
fact, we see that limt→∞ p(t)(x0 − x∗(t)) = limt→∞(e−rt /r)(x0 − x0 − 1 + r) = 0.
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10.3.2 (a) The model is closely related to the model in Example 10.2.2. The Hamiltonian isH = x2e
−rt +

p1aux1 + p2a(1 − u)x1. If (x∗1 (t), x∗2 (t), u∗(t)) is optimal, then

(i) u = u∗(t) maximizes ax∗1 (t)(p1(t)− p2(t))u for u ∈ [0, 1];
(ii) ṗ1(t) = −ap1(t)u

∗(t)− ap2(t)(1 − u∗(t)), ṗ2(t) = −e−rt ;
(iii) ẋ∗1 (t) = au∗(t)x∗1 (t), x∗1 (0) = x0

1 > 0, ẋ∗2 (t) = a(1 − u∗(t))x∗1 (t), x∗2 (0) = 0.

From (ii) we get p2(t) = e−rt /r + C. There is no restriction on x2(t) as t → ∞, so we guess that
p2(t)→ 0 as t →∞. Then we must have C = 0, so p2(t) = e−rt /r .

From (i) we see that

u∗(t) =
{

1 if p1(t) > e−rt /r
0 if p1(t) < e−rt /r

Suppose p1(0) > p2(0) = 1/r . Then u∗(t) = 1 to the immediate right of t = 0 and ṗ1(t) = −ap1(t), so
p1(t) = p1(0)e−at > (1/r)e−at > (1/r)e−rt , since r > a, and we see that we must have p1(t) > p2(t)

for all t ≥ 0. Then u∗(t) ≡ 1 and from (iii) we have x∗2 (t) ≡ 0, and the objective function is 0. This is
not the optimal solution. (In the terminology of Example 10.2.2 the total discounted consumption is 0.)
If p1(0) = p2(0), then ṗ1(0) = −ap2(0) = −a/r > −1 = ṗ2(0), and again we see that p1(t) > p2(t)

for all t ≥ 0. Suppose p1(0) < 1/r . Then u∗(t) = 0 for t close to 0. Let us see if we can have u∗(t) = 0
for all t . Then ṗ1(t) = −ap2(t) = −(a/r)e−rt and so p1(t) = (a/r2)e−rt + D. Again we must
have D = 0 and then p1(t) = (a/r2)e−rt < (1/r)e−rt = p2(t). Finally, using (10.3.10(a)), we have
p1(t)(x

0
1 − x∗1 (t)) = 0 and p2(t)(0− x∗2 (t)) = (1/r)e−rt (−ax0

1 )→ 0 as t →∞. As in Example 10.2.2
the Arrow condition is satisfied, so we have found the optimal solution. Note that using the interpretation
in Example 10.2.2, in this case the discount factor r is so high that it is optimal with no further investment
in the investment sector, which leads to consumption increasing at a constant rate.

(b) Choose the control u(t) = b/a, with 0 < r < b < a. Then u(t) ∈ [0, 1] and we seek corresponding
admissible state variables. From ẋ1(t) = a(b/a)x1(t) = bx1(t), with x1(0) = x0

1 , we find x1(t) = x0
1e
bt .

Then ẋ2(t) = (a − b)x0
1e
bt , so x2(t) = (a − b)x0

1 (1/b)e
bt + C. With x2(0) = 0, we find that C =

−(a−b)(1/b)x0
1 , so x2(t) = (a−b)(1/b)x0

1 (e
bt −1). Then the objective function is

∫∞
0 x2(t)e

−rt dt =∫∞
0 [(a − b)(1/b)x0

1e
(b−r)t − e−rt ] dt = ∞

0 [(a − b)(1/b)x0
1 [(1/(b − r)]e(b−r)t + e−rt /r]. By using

0 < r < b < a we see that the integral diverges.

10.4

10.4.2 First we apply Theorem 10.4.1. The control region U = [0, 1] is convex and the condition in Note
10.4.2 is satisfied because |ux| ≤ |x| since |u| ≤ 1. The setN(t, x) = {((1−u)x2 +γ, ux) : γ ≤ 0, u ∈
[0.1]} is convex (a rectangle) by the same argument as in Example 10.4.1. Thus there exists an optimal
control.

The Hamiltonian is H = (1− u)x2 + pux = x2 + ux(p− x), and if (x∗(t), u∗(t)) is optimal then:

(i) u = u∗(t) maximizes x∗(t)(p(t)− x∗(t))u for u ∈ [0, 1];
(ii) ṗ(t) = −(H ′

x)
∗ = −2(1 − u∗(t))x∗(t)− p(t)u∗(t), p(1) = 0;

(iii) ẋ∗(t) = u∗(t)x∗(t), x∗(0) = x0 > 0.

From (iii) we see that ẋ∗(t) ≥ 0 so x∗(t) ≥ x0 > 0. Thus (i) implies that

u∗(t) =
{

1 if p(t) > x∗(t)
0 if p(t) < x∗(t)
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We claim that p(t) is strictly decreasing. In fact, for those t where p(t) > x∗(t) we have u∗(t) = 1 and
ṗ(t) = −p(t) < 0. For those t where p(t) < x∗(t) we have u∗(t) = 0 and ṗ(t) = −2x∗(t) < 0. Since
x∗(t) is increasing from the level x0 > 0 and p(t) is strictly decreasing and is 0 at t = 1, we have to have
p(t) < x∗(t) in some interval (t∗, 1]. Then u∗(t) = 0 in this interval.

If t∗ = 0, then u∗(t) ≡ 0, x∗(t) ≡ x0, and ṗ(t) ≡ −2x0. Since p(1) = 0 we get p(t) = 2x0(1− t).
But then p(0) = 2x0, contradicting p(0) ≤ x(0) = x0. With t∗ > 0,

u∗(t) =
{

1 if t < t∗

0 if t > t∗
and x∗(t) =

{
x0e

t if t < t∗

x0e
t∗ if t > t∗

In (t∗, 1] we have ṗ(t) = −2x∗(t) = −2x0e
t∗ and p(1) = 0, so p(t) = 2x0e

t∗(1 − t). But at t∗ we
have p(t∗) = x∗(t∗), so 2x0e

t∗(1 − t∗) = x0e
t∗ , from which it follows that t∗ = 1/2. We find that

p(t) = x0e
1−t in [0, 1/2]. We have found the optimal solution.

10.4.3 The Hamiltonian is H = p0x
2 + p(1 − u2). According to the maximum principle, if (x∗(t), u∗(t))

is an optimal pair, there exist a continuous and piecewise differentiable function p(t) and a constant p0,
either 0 or 1, such that (p0, p(t)) �= (0, 0) and

(i) u = u∗(t) maximizes p0(x
∗)2 + p(t)(1 − u2) for u ∈ [−1, 2];

(ii) ṗ(t) = −H ′
x(t, x

∗(t), u∗(t), p(t)) = −2p0x
∗(t);

(iii) ẋ∗(t) = 1 − (u∗(t))2, x∗(0) = x∗(1) = 4.

Suppose p0 = 0. Then from (ii), p(t) = p̄ �= 0, and u∗(t) maximizes −p̄u2 for u ∈ [−1, 2]. If p̄ > 0,
then u∗(t) ≡ 0 and ẋ∗(t) ≡ 1, so with x∗(0) = 4, x∗(t) = t + 4, and then x∗(1) �= 4. On the other hand,
if p̄ < 0, then u∗(t) ≡ 2 and ẋ∗(t) ≡ −3, so with x∗(0) = 4, x∗(t) = −3t + 4, and then x∗(1) �= 4.
Thus, assuming p0 = 0 leads to contradictions, so p0 = 1.

An optimal control u∗(t)must maximize p(t)(1−u2) for u ∈ [−1, 2]. Then we see that if p(t) > 0,
one should use u∗(t) = 0, and if p(t) < 0, then one should use u∗(t) = 2. (In neither case should one
use u∗(t) = −1!) From (iii) and u ∈ [−1, 2] we see that ẋ∗(t) is never less than −3. Since x∗(0) = 4,
it means that x∗(t) is always ≥ 1. (Formally, x∗(t) − x∗(0) = ∫ t

0 ẋ
∗(τ ) dτ ≥ ∫ t0 (−3) dτ = −3t , so

x∗(t) ≥ x∗(0)− 3t = 4 − 3t , which is ≥ 1 in [0, 1].) From (ii) it follows that ṗ(t) = −2x∗(t) < 0, so
p(t) is strictly decreasing.

Suppose p(t) < 0 for all t ∈ [0, 1]. Then u∗(t) ≡ 2 and we get a contradiction to x∗(1) = 4. If
p(t) > 0 for all t ∈ [0, 1], then u∗(t) ≡ 0 and again we get a contradiction to x∗(1) = 4. We conclude
that the strictly decreasing function p(t) is > 0 in some interval [0, t∗] and < 0 in (t∗, 1]. Then

u∗(t) =
{

0 if t ∈ [0, t∗]

2 if t ∈ (t∗, 1]

In [0, t∗] we have ẋ∗(t) = 1 and since x∗(0) = 4, x∗(t) = t + 4. In (t∗, 1] we have ẋ∗(t) = −3, and
since x∗(1) = 4, we have x∗(t) = −3t + 7. Now p(t) is continuous at t∗, so t∗ + 4 = −3t∗ + 7, so
t∗ = 3/4.

It remains to findp(t). On [0, 3/4] we have ṗ(t) = −2x∗(t) = −2t−8, and sop(t) = −t2−8t+C.
Since p(3/4) = 0, C = 105/16. In (3/4, 1] we have ṗ(t) = −2x∗(t) = 6t − 14, and so p(t) =
3t2 − 14t +D. Since p(3/4) = 0, D = 141/16. The answer is summed up in the answer in the book.
(Note the misprint in line 3 of the answer to Problem 10.4.3 in the book: . . .When u = 2, ẋ = −3 . . . )
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10.6
10.6.1 (a) H = − 1

2u
2 − x − pu and L = H + q(x − u). H is concave in (x, u) and h(t, x, u) = x − u is

linear and therefore quasiconcave. The conditions in Theorem 10.6.1 are

(i) ∂L∗/∂u = −u∗(t)− p(t)− q(t) = 0;
(ii) q(t) ≥ 0 (= 0 if x∗(t) > u∗(t));

(iii) ṗ(t) = 1 − q(t), with p(2) = 0.

(b) In [0, t∗] we have x∗(t) = u∗(t), so ẋ∗(t) = −u∗(t) = −x∗(t), and with x∗(0) = 1 we get x∗(t) =
u∗(t) = e−t . From (i) we have q(t) = −u∗(t)− p(t) = −e−t − p(t), so (iii) gives ṗ(t) = 1 − q(t) =
1+e−t+p(t). This linear differential equation has the solutionp(t) = Aet−1− 1

2e
−t . From the argument

in the problem, q(t∗−) = 0. Thus q(t∗−) = −e−t∗ −p(t∗) = 0, so p(t∗) = −e−t∗ = Aet
∗ − 1− 1

2e
−t∗ ,

or Aet
∗ = 1 − 1

2e
−t∗ .

In (t∗, 1] we have q(t) = 0 and ṗ(t) = 1, and since p(2) = 0, we get p(t) = t − 2. Then from (i),
u∗(t) = −p(t) = 2 − t , and so ẋ∗(t) = t − 2 and then x∗(t) = 1

2 t
2 − 2t + B. In particular, since x∗(t)

is continuous at t∗, x∗(t∗) = 1
2 (t

∗)2 − 2t∗ + B = e−t∗ . This gives B = e−t∗ − 1
2 (t

∗)2 + 2t∗. Finally,
since p(t) is continuous at t∗, we have t∗ − 2 = Aet

∗ − 1 − 1
2e

−t∗ = 1 − 1
2e

−t∗ − 1 − 1
2e

−t∗ = −e−t∗ ,
so e−t∗ = 2 − t∗. By using this relationship you will see that the values of A and B are the same as in
the answer in the book.

10.6.2 This is a problem of the form (10.6.1)–(10.6.4). The Lagrangian (10.6.5) is here L = H+q(x−u) =
x − 1

2u
2 + pu + q(x − u). Note that the Hamiltonian H = x − 1

2x
2 + pu is concave (in fact linear)

in (x, u) and that h = x − u is quasiconcave (in fact linear) in (x, u). According to Theorem 10.6.1,
the following conditions are sufficient for (x∗(t), u∗(t)) to be optimal: There exist a continuous function
p(t) and a piecewise continuous function q(t) such that

(i) ∂L∗/∂u = −u∗(t)+ p(t)− q(t) = 0;
(ii) q(t) ≥ 0, with q(t) = 0 if x∗(t) > u∗(t);

(iii) ṗ(t) = −∂L∗/∂x = −1 − q(t), p(2) = 0;
(iv) ẋ∗(t) = u∗(t), x∗(0) = 1.

We guess that u∗(t) = x∗(t) on some interval [0, t∗], and then (iv) gives ẋ∗(t) = x∗(t), with x∗(0) = 1,
so x∗(t) = et = u∗(t). Then from (i) we have q(t) = p(t) − et , and (iii) gives ṗ(t) = −1 − q(t) =
−1 − p(t) + et , or ṗ(t) + p(t) = −1 + et . The solution of this linear differential equation is p(t) =
Be−t + 1

2e
t − 1, and then q(t) = Be−t + 1

2e
t − 1 − et = Be−t − 1

2e
t − 1.

On (t∗, 2] we guess that x∗(t) > u∗(t). Then from (ii) we have q(t) = 0, and so (iii) gives p(t) =
2− t . Then from (i) u∗(t) = p(t)−q(t) = 2− t , and (iv) gives ẋ∗(t) = 2− t , so x∗(t) = − 1

2 t
2+2t+A.

Since x∗(t) is continuous at t∗, we have − 1
2 (t

∗)2 + 2t∗ + A = et
∗
, so A = et

∗ + 1
2 (t

∗)2 − 2t∗. Since
p(t) is also continuous at t∗, we get Be−t∗ + 1

2e
t∗ − 1 = 2 − t∗, so Be−t∗ = − 1

2e
t∗ + 3 − t∗. Finally,

since q(t∗−) = 0 (see the argument in the previous problem), we get Be−t∗ = 1
2e
t∗ + 1. From the last

two equalities we get et
∗ = 2− t∗, i.e. t∗ ≈ 0.44. To confirm that all the conditions (i)–(iv) are satisfied,

we should verify that q(t) = ( 1
2e

2t∗ + et∗)e−t − 1
2e
t −1 is nonnegative in [0, t∗]. This is the case because

we find that q̇(t) < 0 and q(t∗) = 0. The solution is summed up in the answer in the book.

10.6.3 Note that there are two constraints, h1 = u − c ≥ 0 and h2 = ax − u ≥ 0. The Lagrangian is
L = H + q1(u − c) + q2(ax − u) = u + p(ax − u) + q1(u − c) + q2(ax − u). The Hamiltonian is
concave (in fact linear) in (x, u) and h1 and h2 are quasiconcave (in fact linear) in (x, u). According to
Theorem 10.6.1, the following conditions are sufficient for an admissible pair (x∗(t), u∗(t)) to be optimal:
There exist a continuous function p(t) and piecewise continuous functions q1(t) and q2(t) such that
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(i) ∂L∗/∂u = 1 − p(t)+ q1(t)− q2(t) = 0;
(ii) q1(t) ≥ 0, with q1(t) = 0 if u∗(t) > c;

(iii) q2(t) ≥ 0, with q2(t) = 0 if ax∗(t) > u∗(t);
(iv) ṗ(t) = −∂L∗/∂x = −ap(t)− aq2(t);
(v) p(T ) ≥ 0 with p(T ) = 0 if x∗(T ) > xT ;

(vi) ẋ∗(t) = ax∗(t)− u∗(t), x∗(0) = x0, x∗(T ) ≥ xT ;
(vii) c ≤ u∗(t) ≤ ax∗(t)

In the similar model in Example 10.6.2 it was optimal to start out with u∗(t) = c in an initial interval,
and then keep x∗(t) constant, so let us try the same here:

u∗(t) =
{
c if t ∈ [0, t ′]
ax∗(t) if t ∈ (t ′, T ]

, then x∗(t) =
{
(x0 − c/a)eat + c/a if t ∈ [0, t ′]
(x0 − c/a)eat ′ + c/a if t ∈ (t ′, T ]

(viii)

In the interval [0, t ′] we have u∗(t) < ax∗(t) because c < (ax0−c)eat+c, and then (iii) gives q2(t) = 0,
so we have ṗ(t) = −ap(t). In the interval (t ′, T ] we have u∗(t) = ax∗(t) = (ax0 − c)eat ′ + c > c, so
according to (ii), q1(t) = 0. Then (i) gives q2(t) = 1 − p(t), which inserted into (iv) gives ṗ(t) = −a.
We claim moreover that p(t ′) must be 1. In fact from (i), since q2(t

′−) = 0, we have 1 − p(t ′−) =
−q1(t

′−) ≤ 0 and since q1(t
′+) = 0, we have 1 − p(t ′+) = q2(t

′+) ≥ 0. Because p(t) is continuous,
p(t ′) = 1. Then we get

ṗ(t) =
{−ap if t ∈ [0, t ′]
−a if t ∈ (t ′, T ]

and p(t ′) = 1 ⇒ p(t) =
{
e−a(t−t ′) if t ∈ [0, t ′]
a(t ′ − t)+ 1 if t ∈ (t ′, T ]

(ix)

The corresponding values of q1(t) and q2(t) are

q1(t) =
{
e−a(t−t ′) − 1 if t ∈ [0, t ′]
0 if t ∈ (t ′, T ]

, q2(t) =
{

0 if t ∈ [0, t ′]
a(t − t ′) if t ∈ (t ′, T ]

(x)

Case A: x∗(T ) > xT . Then p(T ) = 0 and thus a(t ′ − T ) + 1 = 0, so t ′ = tA, where tA = T − 1/a.
The optimal solution is given by (viii), p(t) by (ix), and q1(t) and q2(t) by (x), all with t ′ replaced by
T − 1/a. It is a useful exercise to check that all the conditions in (i)–(vii) are satisfied. In particular,
check that q1(t) and q2(t) are both ≥ 0. We must also check that x∗(T ) > xT . We see from (viii) that
this is equivalent to (x0 − c/a)ea(T−1/a) + c/a > xT , or tA > tB , with tB defined in (xi) below.

Case B: x∗(T ) = xT . Then from (viii) we get (x0 − c/a)eat
′ + c/a = xT , which solved for t ′ gives

t ′ = tB , where

tB = 1

a
ln

(
xT − c/a
x0 − c/a

)
(xi)

Note that from (v) we need to have p(T ) ≥ 0. The formula for p(t) in (ix) gives a(tb − T )+ 1 ≥ 0, or
tB ≥ tA. The solution with t ′ = tB is valid if the last inequality is satisfied.

The final conclusion is given in the answer in the book. (In line 2 of the answer to Problem 10.6.3,
replace x∗ by x∗ and t∗ by t ′.)
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10.6.4 The Lagrangian is L = H + q1(1 − u) + q2(1 + u) + q3(2 − x − u) = x + p(x + u) + q1(1 −
u)+ q2(1+ u)+ q3(2− x− u). The HamiltonianH = x+p(x+ u) is concave (in fact linear) in (x, u)
and h1 = 1 − u, h2 = 1 + u, and h3 = 2 − x − u are quasiconcave (in fact linear) in (x, u). According
to Theorem 10.6.1, the following conditions are sufficient for (x∗(t), u∗(t)) to be an optimal pair: there
exist a continuous function p(t) and piecewise continuous functions q1(t), q2(t), and q3(t), such that

(i) ∂L∗/∂u = p(t)− q1(t)+ q2(t)− q3(t) = 0;
(ii) q1(t) ≥ 0, with q1(t) = 0 if u∗(t) < 1;

(iii) q2(t) ≥ 0, with q2(t) = 0 if u∗(t) > −1;
(iv) q3(t) ≥ 0, with q3(t) = 0 if u∗(t)+ x∗(t) < 2;
(v) ṗ(t) = −∂L∗/∂x = −1 − p(t)+ q3(t), p(1) = 0;

(vi) ẋ∗(t) = x∗(t)+ u∗(t), x∗(0) = 0, i.e. (x∗, u∗) is admissible.

If we disregard the constraint x+u ≤ 2, this is the problem solved in Example 9.4.1, whose solution was
(x(t), u(t)) = (et − 1, 1). Note that in this case x(t)+ u(t) = et ≤ 2 as long as t ≤ ln 2. We guess that
this is the optimal solution on the interval [0, ln 2] in the present problem too. In fact, we will try to guess
the optimal solution and then verify its optimality by checking that all the conditions (i)–(vi) are satisfied.
So we start out with (x∗(t), u∗(t)) = (et−1, 1) on [0, ln 2]. At t = ln 2 we have x∗(ln 2) = eln 2−1 = 1,
and, looking at the objective function, for t > ln 2 it seems optimal to increase x(t) as fast as the constraint
x + u ≤ 2 allows, i.e. putting ẋ∗(t) = u∗(t) + x∗(t) = 2, as long as the h1 and h2 constraints are not
violated. Now, with ẋ∗(t) = 2 on [ln 2, 1], and x∗(ln 2) = 1, we get x∗(t) = 2t + 1 − 2 ln 2. Then
u∗(t) = 2 − x∗(t) = 1 + 2 ln 2 − 2t , and it is easy to verify that u∗(t) = 1 + 2 ln 2 − 2t takes values
in (−1, 1) when t ∈ (ln 2, 1]. The suggestion we have for an optimal solution is therefore: In [0, ln 2],
(x∗(t), u∗(t)) = (et − 1, 1), in (ln 2, 1], (x∗(t), u∗(t)) = (2t + 1 − 2 ln 2, 1 + 2 ln 2 − 2t).

We know that the suggested solution is admissible. It remains to find appropriate multipliers satisfying
(i)–(v).

In the interval (ln 2, 1], u∗(t) ∈ (−1, 1), so from (ii) and (iii), q1(t) = q2(t) = 0. Then (i) gives
p(t) = q3(t) and from (v), ṗ(t) = −1 with p(1) = 0, so p(t) = 1− t . In particular, p(ln 2) = 1− ln 2.

In the interval [0, ln 2), u∗(t) = 1 > −1 and x∗(t) + u∗(t) = et < 2. Then from (iii) and (iv),
q2(t) = q3(t) = 0. Then (v) gives ṗ(t) = −1−p(t). Solving the linear differential equation on [0, ln 2]
with p(ln 2) = 1 − ln 2 gives p(t) = (4 − 2 ln 2)e−t − 1. Then from (i), q1(t) = p(t). The complete
suggestion for an optimal solution is therefore:

u∗(t) x∗(t) p(t) q1(t) q2(t) q3(t)

t ∈ [0, ln 2] et − 1 1 (4 − 2 ln 2)e−t − 1 (4 − 2 ln 2)e−t − 1 0 0

t ∈ (ln 2, 1] 2t + 1 − 2 ln 2 1 + 2 ln 2 − 2t 1 − t 0 0 1 − t

Having checked that (x∗(t), u∗(t)) satisfies all the conditions (i)–(vi), we conclude that (x∗(t), u∗(t)) is
optimal. Note that q1(t) and q3(t) have jump discontinuities at t = ln 2.

10.7

10.7.1 We maximize
∫ 5

0 (−u− x) dt , so the Lagrangian is L = H + qx = −u− x + p(u− t)+ qx. Here
H is concave in (x, u) and h(t, x) = x is quasiconcave, so by Theorem 10.7.1, the conditions (i)–(vi)
below are sufficient for (x∗(t), u∗(t)) to be optimal:
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(i) u = u∗(t) maximizes −u− x∗(t)+ p(t)(u− t) = −x∗(t)− tp(t)+ u(p(t)− 1) for u ≥ 0;
(ii) q(t) ≥ 0, with q(t) = 0 if x∗(t) > 0;

(iii) ṗ(t) = −∂L∗/∂x = 1 − q(t), p(5) = 0;
(iv) p(5−)− p(5) = β;
(v) β ≥ 0, with β = 0 if x∗(5) > 0;

(vi) ẋ∗(t) = u∗(t)− t , x∗(0) = 1.

Since we want to keep x∗(t) down, we put u∗(t) = 0 in some interval [0, t∗]. Then ẋ∗(t) = −t with
x∗(0) = 1, so x∗(t) = − 1

2 t
2 + 1. We see that x∗(t) is decreasing and is 0 at t∗ = √

2. In [0,
√

2) we
have by (ii), q(t) = 0. Then (iii) gives ṗ(t) = 1, and thus p(t) = t + A, for some constant A.

In order still to keep x∗(t) down, we try u∗(t) = t in (
√

2, 5]. Then ẋ∗(t) = 0 and thus x∗(t) =
x∗(

√
2) = 0. For u∗(t) = t to be the maximizer in (i) one has to have p(t) = 1, in particular p(5−) = 1.

Since p(t) is continuous at t = √
2, we have

√
2 + A = 1, so A = 1 −√

2. From (iii) we get q(t) = 1.
Finally, since p(5) = 0, (iv) gives β = 1. Now all the conditions (i)–(vi) are satisfied, so (x∗(t), u∗(t))
is optimal.

10.7.2 The Lagrangian is L = H + qx = 1− x+pu+ qx. HereH is concave in (x, u) and h(t, x) = x is
quasiconcave, and the conditions (i)–(vi) below are therefore sufficient for (x∗(t), u∗(t)) to be optimal:

(i) u = u∗(t) maximizes 1 − x∗(t)+ p(t)u for u ∈ [−1, 1];
(ii) q(t) ≥ 0, with q(t) = 0 if x∗(t) > 0;

(iii) ṗ(t) = −∂L∗/∂x = 1 − q(t), p(2) = 0;
(iv) p(2−)− p(2) = β;
(v) β ≥ 0, with β = 0 if x∗(2) > 0;

(vi) ẋ∗(t) = u∗(t), x∗(0) = 1.

We start by putting u∗(t) = −1. Then x∗(t) = 1 − t is decreasing and is 0 at t∗ = 1. In [0, 1) we have
by (ii), q(t) = 0. Then (iii) gives ṗ(t) = 1, and thus p(t) = t + A, for some constant A.

In order still to keep x∗(t) down put u∗(t) = 0 in (1, 2]. Then with x∗(1) = 0 we get x∗(t) = 0. For
u∗(t) = 0 to be the maximizer in (i) for t ∈ (1, 2), one has to have p(t) = 0, in particular p(2−) = 0.
Then since p(2) = 0, we get from (iv) that β = 0. Since p(t) is continuous at t = 1, p(1) = 1+A = 0,
so A = −1. Finally, from (iii) we get q(t) = 1. Now all the conditions (i)–(vi) are satisfied, so the
optimal solution is:

(x∗(t), u∗(t), p(t)) =
{
(1 − t,−1, t − 1) if t ∈ [0, 1]

(0, 0, 0) if t ∈ (1, 2]
, q(t) =

{
0 if t ∈ [0, 1]

1 if t ∈ (1, 2]

with β = 0.

10.7.3 The Lagrangian is L = H +qx = −u2 −x+pu+qx. HereH is concave in (x, u) and h(t, x) = x

is quasiconcave, so the conditions (i)–(vi) below are therefore sufficient for (x∗(t), u∗(t)) to be optimal:

(i) u = u∗(t) maximizes −x∗(t)+ p(t)u− u2 for u ∈ �;
(ii) q(t) ≥ 0, with q(t) = 0 if x∗(t) > 0;

(iii) ṗ(t) = −∂L∗/∂x = 1 − q(t), p(10) = 0;
(iv) p(10−)− p(10) = β;
(v) β ≥ 0, with β = 0 if x∗(10) > 0;

(vi) ẋ∗(t) = u∗(t), x∗(0) = 1.

Since H is concave in u and u ∈ �, (i) is equivalent to (H ′
u)

∗ = p(t) − 2u∗(t) = 0, so u∗(t) = 1
2p(t).

We have x∗(0) = 1. Let [0, t∗] be the maximal interval where x∗(t) > 0. Then from (ii), q(t) = 0,
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and (iii) gives ṗ(t) = 1, and thus p(t) = t + A. Then u∗(t) = 1
2 (t + A) and ẋ∗(t) = 1

2 (t + A), so
x∗(t) = 1

4 (t + A)2 + B. Since x∗(0) = 1, B = − 1
4A

2 + 1. If t∗ = 10, then p(t) = t − 10 since
p(10) = 0, and u∗(t) = 1

2 (t − 10) < 0 for t < 10, contradicting u∗(t) ≥ 0. Thus t∗ < 10 and
x∗(t∗) = 0, and so x∗(t∗) = 1

4 (t
∗ + A)2 − 1

4A
2 + 1 = 0. The function x∗(t) must have a minimum at

t∗ so ẋ∗(t∗) = 1
2 (t

∗ + A) = 0, and so A = −t∗ < 0. Hence x∗(t∗) = 1 − 1
4A

2 = 0, so A = −2. With
p(t) = t − 2 we have u∗(t) = 1

2 (t − 2), and x∗(t) = 1
4 (t − 2)2 in [0, 2].

Looking at the objective function, when x∗(t) has become 0, it is obvious that we need to keep
u∗(t) = 0 on (2, 10]. So u∗(t) = x∗(t) = 0, and then p(t) = 0. Then from (iii), q(t) = 1 and (iv) gives
β = p(10−) = 0 since p(10) = 0. Now all the conditions (i)–(vi) are satisfied, so the optimal solution is

(x∗(t), u∗(t), p(t)) =
{
( 1

4 (t − 2)2, 1
2 (t − 2), t − 2) if t ∈ [0, 2]

(0, 0, 0) if t ∈ (2, 10]
, q(t) =

{
0 if t ∈ [0, 2]

1 if t ∈ (2, 10]

with β = 0.

10.7.4 (a) The Hamiltonian H = (4 − t)u + pu is concave in (x, u), so the following conditions are
sufficient for (x∗(t), u∗(t)) to be optimal:

(i) u = u∗(t) maximizes
(
p(t)− (t − 4)

)
u for u ∈ [0, 2];

(ii) ṗ(t) = −∂H ∗/∂x = 0;
(iii) ẋ∗(t) = u∗(t), x∗(0) = 1, x∗(3) = 3.

From (ii) we get p(t) = p̄ for some constant p̄. Condition (i) implies that we must have u∗(t) = 2 if
p̄ > t − 4 and u∗(t) = 0 if p̄ < t − 4. If p̄ < t − 4 for all t in [0, 3], then u∗(t) ≡ 0, and from (iii)
we have x∗(t) ≡ 1, contradicting x∗(3) = 3. In the same way we see that p̄ > t − 4 for all t in [0, 3]
is impossible. Hence we have to choose u∗(t) = 2 in some interval [0, t∗] and u∗(t) = 0 in (t∗, 3], with
t∗ − 4 = p̄. Now from (iii) we have x∗(t) = 2t + 1 in [0, t∗], and x∗(t) = 2t∗ + 1 in (t∗, 3]. Since
x∗(3) = 2t∗ + 1 = 3, we see that t∗ = 1, and then p(t) = p̄ = t∗ − 4 = −3. It is clear that we have
found the optimal solution, since all the conditions (i)–(iii) are satisfied.

(b) The Lagrangian is L = H + q(t + 1 − x) = (4 − t)u+ pu+ q(t + 1 − x). Here H is concave in
(x, u) and h(t, x) = t + 1 − x is quasiconcave, so the conditions (i) and (iii) in (a) in addition to

(ii)′ q(t) ≥ 0, with q(t) = 0 if t + 1 > x∗(t),
(iii)′ ṗ(t) = −∂L∗/∂x = q(t),
(iv) p(3−)− p(3) = −β,
(v) β ≥ 0, with β = 0 if 4 − x∗(3) > 0,

are sufficient for (x∗(t), u∗(t)) to be optimal.
The objective function indicates that we should keep u∗(t) as large as possible, especially at the

beginning. But having u∗(t) larger than 1 will cause x∗(t) to violate the constraint x ≤ t + 1, so we
suggest u∗(t) = 1, and then x∗(t) = t + 1 in some interval [0, t∗]. Note that according to (i), u∗(t) = 1
can only maximize the Hamiltonian in [0, t∗] provided p(t) = t − 4. From (iii)′ we further get q(t) = 1
in [0, t∗]. With x∗(t) = t+1 we get x∗(2) = 3, and since x∗(3) = 3 and ẋ∗(t) ≥ 0, we must have t∗ ≤ 2.
In fact, we suggest t∗ = 2 and then u∗(t) = 0 in (2, 3]. From ẋ∗(t) ≥ 0, we get x∗(t) ≤ x∗(3) = 3 and
then h(t, x∗(t)) = t+1−x∗(t) ≥ t−2. It follows that h(t, x∗(t)) > 0 for t in (2, 3]. But by (ii)′ we have
q(t) = 0 in (2, 3]. Then (iii)′ yields p(t) = p̄ for some constant p̄. Since p(t) is continuous at t = 2,
p(2−) = 2− 4 = −2 = p̄. It remains to determine β. We see that h(3, x∗(3)) = 3+ 1− 3 = 1 > 0, so
from (v) we get β = 0, and (iv) gives p(3−) = p(3) = −2.
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The optimal solution is spelled out the answer in the book. It is a useful exercise to check carefully
that all the conditions (i), (ii)′, (iii)′, (iv), and (v) are now satisfied. Note in particular that for t in (2, 3]
the expression (p(t)− (t − 4))u = (−2 − (t − 4))u = (2 − t)u is maximized by u = u∗(t) = 0, since
2 − t is negative in (2, 3].

11 Difference Equations

11.1
11.1.2 In parts (a)–(f) the solution is given by xt = at (x0 − x∗) + x∗, cf. formula (11.1.5). In (g)–(i) the

solution is xt = x0 + tb.

(a) Since 0 < a < 1, the power at decreases monotonically towards 0 as a limit as t → ∞. Because
x0 − x∗ < 0 it follows that xt will increase monotonically towards the limit x∗.

(b) at alternates between negative and positive values and tends to 0. We get damped oscillations around
the limit x∗.

(c) xt increases monotonically and faster and faster towards ∞.

(d) Since a < −1, the powers at alternate between negative and positive values, while |at | tends to ∞
as t →∞. Thus we get explosive oscillations about x∗.

(e) The solution is constant, xt = x∗ for all t .

(f) Oscillations around x∗ with constant amplitude.

(g) xt = x0 + tb increases (linearly) towards ∞.

(h) The solution is monotonically (linearly) decreasing towards −∞.

(i) xt = x0 for all t .

11.2
11.2.3 (a) Let the remaining debt on 1 January in year n be Ln. Then L0 = L. Since the payment on the

principal in year n is Ln−1 −Ln and the interest is rLn−1, we have Ln−1 −Ln = 1
2 rLn−1, n = 1, 2, . . . .

The solution is Ln = (1 − 1
2 r)

nL.

(b) (1 − 1
2 r)

10L = 1
2L implies that r = 2 − 2 · 2−1/10 ≈ 0.133934

(c) The payment in year n will be Ln−1 − Ln + rLn−1 = 3
2 rLn−1 = 3

2 r(1 − 1
2 r)

n−1L. The loan will
never be completely paid since Ln > 0 for all n (but it does tend to 0 in the limit as n→∞).

11.2.4 Let rt be the interest rate in period t , at the repayment, and bt the outstanding balance. Then bt+1 =
(1 + rt )bt − at+1, where b0 = K . We get

b1 = (1 + r0)b0 − a1 = (1 + r0)K − a1

b2 = (1 + r1)b1 − a2 = (1 + r1)(1 + r0)K − (1 + r1)a1 − a2

b3 = (1 + r2)b2 − a3 = (1 + r2)(1 + r1)(1 + r0)K − (1 + r2)(1 + r1)a1 − (1 + r2)a2 − a3

· · · · · · · · ·
The pattern is clear, and it can be shown by induction that

bt =
t−1∏
s=0

(1 + rs)K −
t−1∑
s=1

[ t−1∏
k=s
(1 + rk)as

]
− at
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It is reasonable to suppose that if the interest rate changes, then the repayments also change to ensure
that bt+1 < bt , i.e. at+1 > rtbt . If the repayment in period t + 1 is less than the interest accrued during
period t , i.e. if at+1 < rtbt , then the outstanding debt will increase, and if this situation continues, the
loan will never be paid off.

11.3
11.3.1 (a) xt+1 = A+B 2t+1 = A+ 2B 2t and xt+2 = A+B 2t+2 = A+ 4B 2t , so xt+2 − 3xt+1 + 2xt =

A+ 4B 2t − 3A− 6B 2t + 2A+ 2B 2t = 0 for all t .
(Section 11.4 shows how to find this solution, in the form xt = A1t + B 2t .)

(b) With xt = A3t+B4t we get xt+1 = 3A3t+4B4t , xt+2 = 9A3t+16B4t , and xt+2−7xt+1+12xt =
9A3t + 16B4t − 21A3t − 28B4t + 12A3t + 12B4t = 0.

11.3.5 We shall prove that

u
(1)
t and u

(2)
t are linearly dependent ⇐⇒

∣∣∣∣∣ u
(1)
0 u

(2)
0

u
(1)
1 u

(2)
1

∣∣∣∣∣ = 0

Proof of ⇒: If the solutions u(1)t and u(2)t are linearly dependent, then there exist constants c1 and c2, not
both equal to 0, such that c1u

(1)
t + c2u

(2)
t = 0 for all t . This holds, in particular, for t = 0 and t = 1, and

so the columns of the determinant above are linearly dependent, and the determinant must be 0.

Proof of ⇐: If the determinant is zero, the columns are linearly dependent, so there exist constants c1

and c2, not both 0, such that
c1u

(1)
t + c2u

(1)
t = 0 (∗)

for t = 0 and for t = 1. Now suppose that (∗) holds for t = 0, 1, . . . , T − 1, where T is some integer
greater than 1. Then

c1u
(1)
T + c2u

(2)
T = −at

[
c1u

(1)
T−1 + c2u

(2)
T−1

]− bt[c1u
(1)
T−2 + c2u

(2)
T−2

] = 0

so (∗) holds for t = T also. It follows by induction that (∗) holds for all t ≥ 0. Hence, u(1)t and u(2)t are
linearly dependent.

11.3.6 (a) From Problem 2 we can find the linearly independent solution u(1)t = 1 and u(2)t = t of the
homogeneous equation xt+2 − 2xt+2 + xt = 0. Then Dt = u

(1)
t u

(2)
t+1 − u(1)t+1u

(2)
t = (t + 1) − t = 1 for

all t , and we get

u∗t = −u(1)t
t∑

k=1

ck−1u
(2)
k + u(2)t

t∑
k=1

ck−1u
(1)
k = −

t∑
k=1

kck−1 + t
t∑

k=1

ck−1

as a particular solution of xt+2 − 2xt+1 + xt = ct . The general solution is then xt = A+ Bt + u∗t .
(b) With ct = t , the particular solution u∗t in part (a) becomes

u∗t = −
t∑

k=1

k(k − 1)+ t
t∑

k=1

(k − 1) = − 1
3 (t − 1)t (t + 1)+ 1

2 t
2(t − 1) = 1

6 t (t − 1)(t − 2)

The necessary summation formulas
∑t

k=1 k(k−1) = 1
3 (t −1)t (t +1) and

∑t
k=1(k−1) = 1

2 t (t −1) are
easily proved by induction. It is also easy to check that u∗t really is a solution of the difference equation.
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11.4

11.4.2 (a) The characteristic equation m2 + 2m+ 1 = (m+ 1)2 = 0 has the double root m = −1, so the
general solution of the associated homogeneous equation is xH

t = (A + Bt)(−1)t . We find a particular
solution of the nonhomogeneous equation by inserting u∗t = P2t . This yields P = 1, and so the general
solution of the given equation is xt = (A+ Bt)(−1)t + 2t .

(b) By using the method of undetermined coefficients to determine the constants P , Q, and R in the
particular solution u∗t = P5t +Q cos π2 t + R sin π

2 t , we obtain P = 1
4 , Q = 3

10 , and R = 1
10 . So the

general solution to the given equation is xt = A+ B2t + 1
4 5t + 3

10 cos π2 t + 1
10 sin π

2 t .

11.4.4 Since 1+a+b = 0, we have b = −1−a, so we are looking for a particular solution of the equation
xt+2 + axt+1 − (a+ 1)xt = c. A constant function will be a solution of the corresponding homogeneous
function, so that will not work (unless c = 0). Let us try a function of the form u∗t = Dt . We get

u∗t+2 + au∗t+1 − (a + 1)u∗t = D(t + 2)+ aD(t + 1)− (a + 1)Dt = D(a + 2)

Thus,D = c/(a+2) can be used unless a = −2. If a = −2, the difference equation is xt+2−2xt+1+xt =
c, and we look for a particular solution of the form u∗t = Dt2. In this case we get

u∗t+2 − 2u∗t+2 + u∗t = D(t + 2)2 − 2D(t + 1)2 +Dt2 = 2D

and the desired value of D is D = c/2.

11.4.6 If b = 1
4a

2 and xt = ut (−a/2)t , then the left-hand side of equation (11.4.1) becomes

xt+2 + axt+1 + 1
4a

2xt = ut+2(−a/2)t+2 + aut+1(−a/2)t+1 + 1
4a

2ut (−a/2)t
= 1

4a
2(−a/2)t (ut+2 − 2ut+1 + ut )

which is 0 if ut+2 − 2ut+1 + ut = 0. The general solution of this equation is ut = A + B t , so
xt = ut (−a/2)t = (A+ B t)(−a/2)t , which is the result claimed for case II in Theorem 11.4.1.

11.4.9 (a) It seems natural to try a function of the form Y ∗
t = C(1 + g)t . We get

Y ∗
t+2−(b+k)Yt+1+kY ∗

t = C(1+g)t [(1+g)2−(b+k)(1+g)+k] = C(1+g)t [(1+g)2−b(1+g)−kg]

This shows that Y ∗
t = a(1 + g)t

(1 + g)2 − (b + k)(1 + g)+ k (if the denominator of this fraction is nonzero).

(b) The equation m2 − (b + k)m+ k = 0 has two complex roots if and only if (b + k)2 − 4k < 0.

(c) Part (III) of Theorem 11.4.1 shows that the growth factor of the oscillations is r = √
k. The oscillations

are damped if and only if r < 1, i.e. if and only if k < 1.

11.4.11 Claim: If 1
4a

2 ≥ b, then both roots of the equation f (m) = m2 + am + b = 0 lie in the interval
(−1, 1) if and only if |a| < 1 + b and b < 1.

Proof: Both roots belong to (−1, 1) if and only if f (−1) > 0, f (1) > 0, f ′(−1) < 0, and f ′(1) > 0.
(Draw a picture!) These four inequalities are equivalent to 1 − a + b > 0, 1 + a + b > 0, −2 + a < 0,
and a + 2 > 0, which in turn are equivalent to |a| < 1 + b and |a| < 2.

If |a| < 2, then b ≤ 1
4a

2 < 1. On the other hand, if |a| < 1 + b and b < 1, then |a| < 2.
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11.5

11.5.3 The points (a1, a2) that satisfy the three inequalities in (∗∗) are the points that lie above each of the
lines given by a2 = −1 − a1 and a2 = −1 + a1 and below the line a2 = 1. These points are precisely
the points lying in the interior of the triangle formed by those three lines, i.e. the triangle with corners at
(−2, 1), (0,−1), and (2, 1).

11.5.5 The characteristic equation is m2 + (σβ/α − 2)m + (1 − σβ) = 0. A necessary and sufficient
condition for the roots of this equation to be complex (more precisely: not real) is

(
σβ

α
− 2

)2

< 4(1 − σβ) ⇐⇒ σ 2β2

α2
− 4σβ

α
+ 4 < 4 − 4σβ ⇐⇒ σ 2β2 < 4ασβ − 4α2σβ

⇐⇒ σβ < 4α − 4α2 = 4α(1 − α)

The difference equation is globally asymptotically stable if and only if the inequalities (∗∗) in Section
11.5 are satisfied when a1 = σβ/α − 2 and a2 = 1 − σβ. This gives the conditions

1 +
(
σβ

α
− 2

)
+ 1 − σβ > 0 and 1 −

(
σβ

α
− 2

)
+ 1 − σβ > 0 and σβ > 0

⇐⇒ σβ

α
− σβ > 0 and 4 >

σβ

α
+ σβ

⇐⇒ α < 1 and (1 + α)σβ < 4α

(Remember that α, β, and σ are all positive.)

11.6

11.6.1 (a) From the given equations we get xt+2 = 2yt+1 = xt , and the initial conditions give x0 = 1,
x1 = 2y0 = 2. The characteristic equation of xt+2 − xt = 0 is m2 − 1 = 0, which has the roots m1 = 1,
m2 = −1.

The general solution of xt+2−xt = 0 is xt = A+B(−1)t , and the initial conditions implyA+B = 1,
A−B = 2, soA = 3

2 andB = − 1
2 . Thus, xt = 3

2− 1
2 (−1)t . This, in turn, gives yt = 1

2xt+1 = 3
4+ 1

4 (−1)t .

(b) We first eliminate z. The first equation yields zt = −xt+1 −yt +1. Using this in the second and third
equations, we get

(i) yt+1 = −xt + xt+1 + yt − 1 + t and (ii) − xt+2 − yt+1 + 1 = −xt − yt + 2t

Equation (ii) implies (iii) yt+1 = −xt+2 + 1 + xt + yt − 2t , and then (i) and (iii) imply

−xt + xt+1 + yt − 1 + t = −xt+2 + 1 + xt + yt − 2t, and so (iv) xt+2 + xt+1 − 2xt = 2 − 3t

By a stroke of good luck y does not appear in (iv). The characteristic equation of (iv) is m2 + m − 2
with the roots m1 = 1 and m2 = −2, and so the homogeneous equation corresponding to (iv) has the
general solution xH

t = A + B(−2)t . For a particular solution u∗t of (iv) itself we try with a quadratic
polynomial u∗ = Dt + Et2. We get u∗t = 3

2 t − 1
2 t

2, so the general solution of (iv) is xt = xH
t + u∗t =

A+ B(−2)t + 3
2 t − 1

2 t
2.
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The initial conditions yield x0 = 0 and x1 = −y0 − z0 + 1 = 0, so we must have A + B =
0, A− 2B + 3

2 − 1
2 = 0, which implies, A = − 1

3 , B = 1
3 . Hence,

xt = − 1
3 + 1

3 (−2)t + 3
2 t − 1

2 t
2

From equation (i) we getyt+1−yt = xt+1−xt+t−1 = −(−2)t with the general solutionyt = A+ 1
3 (−2)t .

The initial condition y0 = 0 yields A = − 1
3 , so

yt = − 1
3 + 1

3 (−2)t

Finally,

zt = −xt+1 − yt + 1 = 2
3 + 1

3 (−2)t − 1
2 t + 1

2 t
2

11.7
11.7.2 (a) Let f (x) = ex − 3. Then f (x) − x is convex, and it is easy to see from the intermediate

value theorem that the equation f (x) = x has two solutions, one in (−∞, 0) and one in (0,∞). Since
|f ′(x)| = ex < 1 for all x < 0, the negative solution is a stable equilibrium of the difference equation
xt+1 = f (xt ). The solution of the difference equation starting at x0 = −1 gives the values (rounded to
5 decimal places) x1 = −2.63212, x2 = −2.92807, x3 = −2.94650, x4 = −2.94748, x5 = −2.94753,
x6 = −2.94753, . . . , converging to the equilibrium value x∗ ≈ −2.94753.

(b) See the answer in the book.

12 Discrete Time Optimization

12.1
12.1.1 (a) To solve the problem by dynamical programming we first find

J2(x) = max
u
(1 − (x2 + 2u2)) = 1 − x2, u∗2(x) = 0

The fundamental equation (Theorem 12.1.1) then gives

J1(x) = max
u
(1 − (x2 + 2u2)+ J2(x − u))

= max
u
(1 − x2 − 2u2 + 1 − (x − u)2)

= max
u
(2 − 2x2 + 2xu− 3u2︸ ︷︷ ︸

g(u)

)

Let g(u) be the expression in the last parenthesis. Then g′(u) = 2x − 6u, so g attains its maximum for
u = u∗1(x) = x/3. That gives J1(x) = g(x/3) = 2 − 5

3x
2. We continue with

J0(x) = max
u
(1 − (x2 + 2u2)+ J1(x − u))

= · · · = max
u
(3 − 8

3
x2 + 10

3
xu− 11

3
u2︸ ︷︷ ︸

h(u)

)
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Here h′(u) = 10x/3 − 22u/3, which implies that u∗0(x) = 5x/11, and therefore J0(x) = h(5x/11) =
3 − 21x2/11.

Thus the desired maximum value is J0(x0) = J0(5) = −492/11 and, further,

u∗0 = u0(5) = 25/11,

u∗1 = u∗1(x
∗
1 ) = x∗1/3 = 10/11,

x∗1 = x0 − u∗0 = 30/11

x∗2 = x∗1 − u∗1 = 20/11

(b) We have x1 = x0 − u0 = 5 − u0 and x2 = x1 − u1 = 5 − u0 − u1. This gives

S(u0, u1, u2) = 1 − (x2
0 + 2u2

0)+ 1 − (x2
1 + 2u2

1)+ 1 − (x2
2 + 2u2

2)

= 3 − 52 − 2u2
0 − (5 − u0)

2 − 2u2
1 − (5 − u0 − u1)

2 − 2u2
2

= · · · = −72 + 20u0 + 10u1 − 4u2
0 − 2u0u1 − 3u2

1 − 2u2
2

It is clear from the second expression for S that S is a concave function. The first-order partial derivatives
of S are

∂S/∂u0 = 20 − 8u0 − 2u1

∂S/∂u1 = 10 − 2u0 − 6u1

∂S/∂u0 = −4u2

and it is easily seen that the only stationary point is

(u0, u1, u2) = (25/11, 10/11, 0)

Since S is concave, this is a global maximum point for S. The maximum value is Smax = −492/11,
which fortunately agrees with the result from part (a).

12.1.4 (a) JT (x) = 3x2 with u∗T (x) = 0, JT−1(x) = 5x2 with u∗T−1(x) = 1, JT−2(x) = 7x2 with
u∗T−2(x) = 1.

(b) We claim that JT−n(x) = (2n + 3)x2 with u∗T (x) = 0 and u∗T−n(x) = 1 for n = 1, . . . , T . The
formula is valid for n = 1. Suppose it is valid for n = k. Then JT−(k+1)(x) = maxu∈[0,1][(3 − u)x2 +
JT−k(ux)] = maxu∈[0,1][(3−u)x2 + (2k+ 3)(ux)2] = x2 maxu∈[0,1][3−u+ (2k+ 3)u2]. The function
g(u) = 3−u+(2k+3)u2 is convex inu and has its maximum atu = 1, and thenJT−(k+1)(x) = x2(5+2k),
which is the proposed formula for n = k + 1, so the formula follows by induction.

12.1.6 (a) JT (x) = maxu∈�(x − u2) = x for u∗T (x) = 0. Js(x) = maxu∈�[x − u2 + Js+1(2(x + u))] for
s = 0, 1, . . . , T − 1. In particular, JT−1(x) = maxu∈�[x − u2 + JT (2(x + u))] = maxu∈�[x − u2 +
2(x + u)] = 3x + 1 for u∗T−1(x) = 1.

(b) The formula is valid for n = 1. Suppose it is valid for n = k. Then JT−(k+1)(x) = maxu∈�[x−u2 +
(2k+1 − 1)(2x + 2u)+∑k

j=0(2
j − 1)2]. We see that the maximizer is u = u∗T−(k+1)(x) = 2k+1 − 1, and

then JT−(k+1)(x) = x − (2k+1 − 1)2 + 2(2k+1 − 1)x + 2(2k+1 − 1)2 +∑k
j=0(2

j − 1)2 = (1 + 2k+2 −
2)x + (2k+1 − 1)2 +∑k

j=0(2
j − 1)2 = (2(k+1)+1 − 1)x +∑k+1

j=0(2
j − 1)2. This is the given formula for

n = k+1, so the formula follows by induction. Since u∗T−(k+1)(x) = 2k+1 −1, we get u∗t (x) = 2T−t −1

for t = 0, 1, . . . , T , and V = J0(x0) = J0(0) =∑T
j=0(2

j − 1)2.

12.1.7 (a) It is immediately clear that JT (x) = −αe−γ xT . The result in part (b) shows immediately that
JT−1(x) = −2

√
αe−γ x and JT−2(x) = −2

√
2
√
αe−γ x = −23/2α1/4e−γ x .
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(b) We know from part (a) that the formula Jt (x) = −αt = −αte−γ x holds for t = T with αt = α.
Suppose that it holds for a positive integer t ≤ T . The fundamental equation then gives Jt−1(x) =
maxu∈� ϕ(u), where

ϕ(u) = −e−γ u + Jt (2x − u) = −e−γ u − αte−γ (2x−u)

The function ϕ is concave and

ϕ′(u) = 0 ⇐⇒ γ e−γ u − αtγ e−γ (2x−u) = 0 ⇐⇒ −γ u = ln αt − 2γ x + γ u
⇐⇒ γ u = γ x − ln

√
αt

This shows that ϕ has a unique stationary point u∗ = x − (ln√αt )/γ , which is a maximum point for ϕ.
It follows that

Jt−1(x) = ϕ(u∗) = −e−γ u∗ − αte−2γ x+γ u∗ = −eln
√
αt−γ x − αte−γ x−ln

√
αt = −αt−1e

−γ x

where αt−1 = √
αt + (αt/

√
αt ) = 2

√
αt . It follows by induction that the formula Jt (x) = −αte−γ x

holds for t = T , T − 1, . . . , 1, 0, with αt determined by the difference equation above and αT = α.

12.3
12.3.1 The equation α = 2

√
αβ + 1

2 can be written as (
√
α )2 − 2

√
β
√
α − 1

2 = 0. This is a quadratic
equation for

√
α with the solution

√
α = √

β +√
β + 1/2. (We cannot have

√
α = √

β −√
β + 1/2,

because
√
α cannot be negative.) Hence, α = (

√
β +√

β + 1/2 )2.
To show optimality, we can use Case B in Note 12.7.3. We first solve the corresponding finite horizon

problem

sup
ut

T∑
t=0

βt (−e−ut − 1
2e

−xt ), xt+1 = 2xt − ut , t = 0, 1, . . . , T − 1, x0 given

With the optimal value function J (t, x, T ) = sup
∑T

s=t βs−t (−e−us − 1
2e

−xs ) we get J (t, x, T ) =
−αte−x , with αT = 1

2 and αt = 2
√
βαt + 1

2 for t < T . For a fixed T , αt → α as t → −∞. Hence,
J (0, x, T )→−αe−x as T →∞.

12.3.2 (a) The Bellman equation is J (x) = maxu∈�

[− 2
3x

2 − u2 + βJ (x + u)
]
. If J (x) = −αx2 is a

solution, then
−αx2 = max

u∈�

[− 2
3x

2 − u2 + βJ (x + u)] = max
u∈�

ϕ(u) (∗)

where ϕ(u) = − 2
3x

2 − u2 − βα(x + u)2. The function ϕ is strictly concave, and has a unique maximum
point given by ϕ′(u) = −2u − 2βα(x + u) = 0. Hence, u∗(x) = −βαx/(1 + βα) and x + u∗(x) =
x/(1 + βα). Equation (∗) now gives

−αx2 = ϕ(u∗(x)) = −2

3
x2 − β2α2

(1 + βα)2 x
2 − βα

(1 + βα)2 x
2 = −2

3
x2 − β2α2 + βα

(1 + βα)2 x
2

⇐⇒ α = 2

3
+ βα(βα + 1)

(1 + βα)2 = 2

3
+ βα

1 + βα
⇐⇒ 3α(1 + βα) = 2(1 + βα)+ 3βα ⇐⇒ 3βα2 + (3 − 5β)α − 2 = 0
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The last equation has a exactly one positive solution, α = 5β − 3 +√(5β − 3)2 + 24β

6β
, and the optimal

control is

u∗(x) = − βα

1 + βα x = −5β − 3 +√(5β − 3)2 + 24β

5β + 3 +√(5β − 3)2 + 24β
x = · · · = −β − 3 +√(5β − 3)2 + 24β

6β
x

(b) It is clear that the value function J0(x) is finite: for any x0, let u0 = −x0 and ut = 0 for all t > 0.
Then

∑∞
t=0 β

t (− 2
3x

2
t − u2

t ) = − 5
3x

2
0 is finite. Also, for any sequence of controls u0, u1, . . . , the sum is

bounded above by 0. Hence, the value function exists, if not in the “max sense”, then at least in the “sup
sense”. It is also clear that J0(x) ≤ 0 for all x.

Further, let V0(x, π) be the sum that results from x = x0 and the control sequence π = (u0, u1, . . . ).
Then for any number λ we get V0(λx, λπ) = λ2V0(x, π), and it follows that J0(λx) = λ2J0(x)—that is,
J = J0 is homogeneous of degree 2, so we really do have J (x) = −αx2 for a suitable α ≥ 0. It is also
clear that α �= 0, and from the arguments above it follows that α < 5

3 .
Now let x be fixed, and consider the problem of finding a u that maximizes

ϕ(u) = − 2
3x

2 − u2 + J (x + u)
If |x + u| > |x|, then J (x + u) < J(x) and

ϕ(u) = − 2
3x

2 − u2 + βJ (x + u) < − 2
3x

2 − u2 + βJ (x) < − 2
3x

2 + βJ (x) = ϕ(0)

Hence, such a u cannot be optimal. Also, if |u| > |x|, then J (x + u) < 0 and

ϕ(u) = − 2
3x

2 − u2 + βJ (x + u) < − 2
3x

2 − u2 < − 5
3x

2 = ϕ(−x)
so this u cannot be optimal either. It follows that an optimal u must be such that |x + u| ≤ |x| and
|u| ≤ |x|. Then Note 12.3.2 applies with X(x0) = [−|x0|, |x0|].

12.4
12.4.2 (a) I =∑T

t=0(u
2
t − 2x2

t ) =
∑T−1

t=0 u
2
t + u2

T − 2x2
0 − 2

∑T
t=1 x

2
t = u2

T +
∑T−1

t=0 u
2
t − 2

∑T−1
t=0 u

2
t =

u2
T −∑T−1

t=0 u
2
t . (Remember, x0 = 0.) Hence, I is maximized when u∗0 = u∗1 = · · · = u∗T−1 = 0 and

u∗T = ±1.

(b) (The reference in the problem should be to Theorem 12.4.1, not 12.4.2.) The Hamiltonian is

H(t, x, u, p) =
{
u2 − 2x2 + pu for t < T

u2 − 2x2 for t = T

and
H ′
u(t, x, u, p) =

{ 2u+ p for t < T

2u for t = T
, H ′

x(t, x, u, p) = −4x for all t

Since x∗0 = x∗1 = · · · = x∗T = 0 and u∗0 = u∗1 = · · · = u∗T−1 = 0, the difference equation (4) in
Theorem 12.4.1 implies pt = 0 for t = 0, 1, . . . , T − 1, and we already know that pT = 0. It follows
that H(t, x∗t , u, pt ) = u2 − 2(x∗t )2 = u2. Hence, for t < T , u = u∗t = 0 is not a maximum point of
H(t, x∗t , u, pt ) for u in [−1, 1], but actually a minimum point.

12.5
12.5.1 (c) H(t, x, u, p) = 1 + x − y − 2u2 − v2 + p1(x − u)+ p2(y + v) for t = 0, 1, H(t, x, u, p) =

1 + x − y − 2u2 − v2 for t = 2. Condition (3) yields for t = 0, 1: −4ut − p1
t = 0 and −2vt + p2

t = 0.
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For t = 2 it yields −4u2 = 0 and −2v2 = 0. Hence, u0 = − 1
4p

1
0, u1 = − 1

4p
1
1, u2 = 0, v0 = 1

2p
2
0,

v1 = 1
2p

2
1, v2 = 0. From (4) and (6)(c′), p1

0 = 1 + p1
1, p1

2 = 0, p2
0 = −1 + p2

1, p2
2 = 0. Moreover,

from (5), p1
1 = 1 + p1

2, p2
1 = −1 + p2

2. Finally, x1 = x0 − u0 = 5 − u0, x2 = x1 − u1, y1 = y0 + v0,
y2 = y1 + v1. From these equations we find the same solution as before.

12.6
12.6.6 There are two misprints in the objective function: the expression inside the square brackets should

be
T−1∑
t=0

u
1/2
t + aX1/2

T . There is also a misprint in the answer in the book.

The optimality equation (12.6.5) boils down to

JT (x) = ax1/2 and Jt (x) = max
u

[
u1/2 + 1

2Jt+1(0)+ 1
2Jt+1(x − u)

]
for t < T

With Jt (x) = 2atx1/2 this gives aT = a/2 and

2atx
1/2 = max

u
ϕ(u), where ϕ(u) = u1/2 + at+1(x − u)1/2

for t < T . The function ϕ is concave and

ϕ′(u) = 0 ⇐⇒ 1

2u1/2
= at+1

2(x − u)1/2 ⇐⇒ u = ut (x) = x

1 + a2
t+1

Hence, maxu ϕ(u) = ϕ
(
x/(1 + a2

t+1)
) = · · · = (1 + a2

t+1)
1/2x1/2, and so at = 1

2 (1 + a2
t+1)

1/2. This
implies 1 + a2

t+1 = 4a2
t , and therefore ut (x) = x/4a2

t .

12.6.8 The first printing of the book contains a couple of embarrassing misprints in connection with this
problem and with the stochastic Euler equation. Formula (12.6.10) on page 454 should be

E
[
F ′

2(t, xt , xt+1(xt , Vt ), Vt ) | vt−1
]+ F ′

3(t − 1, xt−1, xt , vt−1) = 0 (∗)

and the objective function in the current problem should be

max E
[ 2∑
t=0

[
1 − (Vt +Xt+1 −Xt)2

]+ (1 + V2 +X3)
]

Now define F by
F(2, x2, x3, v2) = 1 − (v2 + x3 − x2)

2 + 1 + v2 + x3

F(t, xt , xt+1, vt ) = 1 − (vt + xt+1 − xt )2, t = 0, 1

For t = 1, 2, equation (∗) becomes

E
[
2(Vt + xt+1(xt , Vt )− xt ) | vt−1

]− 2(vt−1 + xt − xt−1) = 0

i.e.
1 + 2E[xt+1(xt , Vt )] − 2xt = 2vt−1 + 2xt − 2xt−1 (∗∗)

Equation (12.6.9) becomes

F ′
3(2, x2, x3, v2) = −2(v2 + x3 − x2)+ 1 = 0
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which gives x3 as a function of x2 and v2:

x3 = x3(x2, v2) = x2 − v2 + 1
2

Now use (∗∗) for t = 2:

1 + 2E[x2 − V2 + 1
2 ] − 2x2 = 2v1 + 2x2 − 2x1 ⇐⇒ 1 + 2(x2 − 1

2 + 1
2 )− 2x2 = 2v1 + 2x2 − 2x1

⇐⇒ x2 = x2(x1, v1) = x1 − v1 + 1
2

Then for t = 1:

1 + 2E[x1 − V1 + 1
2 ] − 2x1 = 2v0 + 2x1 − 2x0 ⇐⇒ 1 + 2(x1 − 1

2 + 1
2 )− 2x1 = 2v0 + 2x1 − 2x0

⇐⇒ x1 = x0 − v0 + 1
2

Since x0 = 0 is given, the final answer is

x1 = 1
2 − v0, x2 = 1 − v0 − v1, x3 = 3

2 − v0 − v1 − v2

12.7
12.7.1 (a) J (x) = ax2 + b, a = −[1 − 2β −√1 + 4β2 ]/2β, b = aβd/(1 − β). (With J (x) = ax2 + b,

the Bellman equation is

ax2 + b = max
u

{−u2 − x2 + βE[a(x + u+ V )2 + b]
} = max

u

{−u2 − x2 + βa(x + u)2 + βad + βb}
Maximizing this concave function yieldsu = βax/(1−βa). Thus, ax2+b = −β2a2x2/(1 − βa)2−x2+
βax2/(1 − βa)2+βad+βb = x2(2βa−1)/(1−βa)+βad+βb for allx. Hence, a = (2βa−1)/(1−βa)
and b = βad + βb. This quadratic equation gives a = [1 − 2β − √1 + 4β2 ]/2β, and then b =
aβd/(1−β). We have to choose the negative solution for a, becauseJ (x) = ax2+b = a[x2+βd/(1−β)]
must be negative.)

(b) J (t, x) = βt (atx
2 + bt ), at−1 = −1 − β2a2

t /(1 − βat )2 + βat/(1 − βat )2 = −1 + βat/(1 − βat ),
aT = −1, bt−1 = βbt + βatd, bT = 0. To find limT→∞ J (0, x0, T ) we need to find limT→∞ a0

and limT→∞ b0 (for any t , at and bt depend on T ), write in particular a0 = aT0 , b0 = bT0 . Finding
these limits is the same as finding the limits limt→−∞ at , limt→−∞ bt when T is fixed. The function
ϕ(x) = −1 + βx/(1 − βx) is increasing (calculate its derivative), and, since aT−1 < aT and this
continues backwards, we get at−1 < at for all t . Letting t → −∞ in the difference equation for at , we
find that a = limt→−∞ at satisfies a = −1+ βa/(1− βa) = (2βa− 1)/(1− βa) (so a > −∞), in fact
a has the same value as in part (a). In a similar way, bt decreases when t decreases, and taking limits in
the equation for bt−1, we find that b = limt→−∞ bt satisfies b = βb + βad, i.e. b is also as in part (a).
Then, evidently, J (0, x, T ) = aT0 x

2 + bT0 → ax2 + b = J (x) as T →∞.

12.7.2 The optimal control is ut (x) = x/(1 + αa), and the value function is J (x) = a ln x + b, where
a = 2/(1 − α), b = [αd + αa ln(αa)− (1 + αa) ln(1 + αa)](1 − α)−1, and d = E[lnV ].

We can show optimality at least in a restricted problem: AssumeV ∈ [0, δ] for some (perhaps large) δ,
and restrict u to belong to [ε, xt ] for some small positive ε. Note thatXt ≥ x0. Then |f | = |(x−u)V | ≤
δx. Choose b > 0 so small that αδb < 1. For x ≥ x0, g = ln u + lnX ∈ [ln ε + ln x0, 2 ln x] ⊆
[ln ε + ln x0, ln a + xb], where a is chosen so large that ln x/xb ≤ 1 when x ≥ a (by l’Hôpital’s rule
limx→∞ ln x/xb = 0). Now apply Note 12.7.2.
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13 Topology and Separation

13.1

13.1.9 (a) If x ∈ int(S), then there is an open ball B around x such that B ⊆ S. But then B ⊆ T as well, so
x is an interior point of T . If y ∈ cl(S), then every open ball around y has a nonempty intersection with
S. Obviously any such ball also meets T , and so y belongs to the closure of T .
(b) Let y be a point in the closure of cl(S). We want to show that y ∈ cl(S). In order to show this, it is
sufficient to show that every open ball around y intersects S. Thus, let B be an open ball around y. Since
y is in the closure of cl(S), the intersection B ∩ cl(S) is nonempty. Let z be any point in this intersection.
Since z ∈ B and B is open, there is an open ball B ′ around z such that B ′ ⊆ B. And since z ∈ cl(S),
there is at least one point w in B ′ ∩ S. Then w ∈ B ∩ S, and so B ∩ S �= ∅. Hence, cl(S) is closed.

13.1.15 (a) False. Since S ⊆ S, it is clear that int(S) ⊆ int(S ). But we do not always have equality, as
we can see from the following example: Let S = {x ∈ �n : 0 < ‖x‖ < 1}. This set (a “punctured”
open ball) is obviously open, so int(S) = S. But its closure is S = {x ∈ �n : ‖x‖ ≤ 1} whose interior,
int(S ) = {‖x‖ ∈ �n : ‖x‖ < 1}, also contains the centre of the ball, so int(S) �= int(S). (Draw a picture
for the case n = 2!)

(b) True. Every set is contained in its closure, so S ⊆ S and T ⊆ T . Therefore, S ∪ T ⊆ S ∪ T . By
Theorem 13.1.2(c), the set S ∪ T is closed. Therefore, S ∪ T ⊆ S ∪ T (cf. Problem 10(b)). On the other
hand, S ⊆ S ∪ T , so by Problem 9(a), S ⊆ S ∪ T . Similarly, T ⊆ S ∪ T , and so S ∪ T ⊆ S ∪ T . Since
each of the sets S ∪ T and S ∪ T is a subset of the other, they must be equal.

(c) False. Consider, for example, the punctured open ball S in part (a). The boundary, ∂S, of that set
consists of the origin and all the points on the sphere ‖x‖ = 1, so ∂S is not a subset of S. In fact, for any
set T , we have ∂T ⊆ T if and only if T is closed.

(d) True. Let x ∈ S∩T . We shall show that x ∈ S ∩ T . LetU be an arbitrary open ball centred at x. It is
enough to show thatU intersects S∩T . Since x ∈ S and S is open, there exists an open ball V centred at x
such that V ⊆ S. ThenW = U ∩V is also an open ball centred at x andW ⊆ S. (In fact,W is the smaller
of the two balls U and V .) Now,W ∩T �= ∅ since x ∈ T . Moreover,W ∩T = U ∩V ∩T ⊆ U ∩S ∩T ,
so it follows that U ∩ (S ∩ T ) is indeed nonempty.

13.2

13.2.5 Suppose for a contradiction that the sequence {xk} does not converge to x0. Then there exists an open
ball B = Br(x0) around x0 such that xk /∈ Br(x0) for infinitely many k. These xk form a subsequence
{xkj } of the original sequence, and they all belong to the setA = X \B = X∩ (�n \B). SinceX is closed
and B is open, A is closed. Because A is contained in the bounded set X, A is also bounded. Hence A is
compact. Therefore {xkj } has a convergent subsequence, converging to a point y inA. But this convergent
subsequence is also a subsequence of the original sequence, and so it should converge to x0. But that is
impossible because y �= x0. This contradiction shows that {xk} must converge to x0 after all.

13.2.6 There is an obvious way to identify �m × �n with �m+n: we let the point (x, y) = ((x1, . . . , xm),

(y1, . . . , yn)) in �m×�n correspond to the point (x1, . . . , xm, y1, . . . , yn) in �m+n. Now let A and B be
compact subsets of �m and �n, respectively. We shall use the Bolzano–Weierstrass theorem (Theorem
13.2.5) to show that A× B is compact.

© Arne Strøm, Knut Sydsæter, Atle Seierstad, and Peter Hammond 2008



1 3 T O P O L O G Y A N D S E P A R A T I O N 103

Let {(ak,bk)}k be a sequence in A × B. Since A is compact, the sequence {ak}k has a convergent
subsequence {akj }j , and since B is compact, {bkj }j has a convergent subsequence {bkji }i . Let a′i = akji
and b′i = bkji . Then {(a′i ,b′i )}i is a subsequence of {(ak,bk}k , and the sequences {a′i}i and {b′i}i are
both convergent. Since a sequence in �p converges if and only if it converges componentwise (Theorem
13.2.1), it follows that {(a′i ,b′i )}i is convergent. Hence, A× B is compact.

13.3
13.3.7 Let A ⊆ S ⊆ �n, and consider the following two statements:

(a) A is relatively closed in S.

(b) Whever a sequence {xk} in A converges to a limit x0 ∈ S, then x0 ∈ A.

Claim: (a) ⇐⇒ (b).

Proof of ⇒: Since A is relatively closed in S we have A = S ∩ F , where F is closed in �n. Let {xk} be
a sequence in A that converges to x0 ∈ S. Since all xk belong to A, they also belong to F , and because
F is closed, Theorem 3.2.3 tells us that x0 ∈ F . Hence, x0 ∈ S ∩ F = A.

Proof of ⇐ : Suppose that (b) is satisfied. We want to show that A = S ∩F for some closed set F in �n.
In fact, we shall show that A = S ∩ Ā, where Ā is the closure of A in �n. It is clear that A ⊆ S ∩ Ā, so
what we need to show is that S ∩ Ā ⊆ A. Let x0 ∈ S ∩ Ā. Since x0 ∈ Ā there exists a sequence {xk} of
points in A converging to x0. Since x0 ∈ S, we have x0 ∈ A by assumption. It follows that S ∩ Ā ⊆ A.

Now that we have proved the equivalence of (a) and (b) above, let us use it to prove part (b) of Theorem
13.3.5: Let S ⊆ �n and let f be a function from S to �m. Then

f : S ⊆ �n → �m is continuous ⇐⇒ f−1(F ) is relatively closed in S for each closed set F in �m

Proof of ⇒: Suppose that f is continuous and let F be a closed set in �m. We want to prove that f−1(F )

is relatively closed in S. By the equivalence (a) ⇐⇒ (b) above it suffices to show that, if a point x0 in
S is the limit of a sequence {xk}k in f−1(F ) then x0 ∈ f−1(F ). If we have such a point x0 and such a
sequence {xk}, then all f(xk) ∈ F , and because f is continuous, (x0) = limk (xk). Thus, f(x0) the limit
of a sequence in F , and since F is closed, f(x0) ∈ F . Therefore x0 ∈ f−1(F ).

Proof of ⇐ : Suppose that f−1(F ) is relatively closed in S for every closed F in �m, and let x0 be a point
in S. We want to show that f is continuous at x0. In other words, we want to show that f(xk) → f(x0)

for every sequence {xk} in S that converges to x0.
Suppose (∗) xk → x0 but xk �→ f(x0). Then there is an ε > 0 such that ‖f(xk) − f(x0)‖ ≥ ε for

infinitely many k. Let F = {y ∈ �m : ‖y − f(x0)‖ ≥ ε} be the complement in �m of the open ε-ball
around f(x0), and let {x′j } = {xkj } be the subsequence of {xk} where k1 < k2 · · · run through all those k
for which ‖f(xk)− f(x0)‖ ≥ ε. The set F is closed in �m, and {x′j } is a sequence in f−1(F ), the inverse
image of F , with limj→∞ x′j = x0 ∈ S. By assumption, f−1(F ) is relatively closed in S, and by the
equivalence (a) ⇐⇒ (b) above we must have x0 ∈ f−1(F ). But then f(x0) ∈ F , and by the definition
of F we must have ‖f(x0)− f(x0)‖ ≥ ε > 0, which is absurd. This shows that the assumption (∗) must
be false, and so f is indeed continuous.

13.3.8 Assume first that f is continuous at x0. We shall prove that the defender can always win in this case.
Let the challenger choose ε > 0. Since f is continuous at x0 the defender is able to choose a δ > 0 such
that ‖f(x) − x0)‖ < ε whenever ‖x − x0‖ < δ, and then the challenger will be unable to find an x that
lets him win. Thus the defender wins.
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Now assume that f is discontinuous at x0. Then there will exist at least one ε > 0 that cannot be
matched by any δ. So let the challenger choose such an ε. Then no matter what δ > 0 the defender
chooses, the challenger will be able to find an x with ‖x− x0‖ < δ and ‖f(x)− f(x0)‖ ≥ ε. Thus, in this
case, the challenger wins.

13.4

13.4.3 For a fixed x, the maximum of f (x, y) with respect to y for y in [−3, 3] must be attained at a point
wheref ′

2(x, y) = 0 or y = ±3. Sincef ′
2(x, y) = −12xy3−12(x−1)y2+12y = −12xy(y−1/x)(y+1),

f (x, y) is strictly increasing with respect to y when y ∈ (−∞,−1], strictly decreasing in [−1, 0], strictly
increasing again in [0, 1/x], and strictly decreasing in [1/x,∞). Hence the only possible maximum
points are y = −1 and y = 1/x if x > 1/3 and y = −1 and y = 3 if 0 < x ≤ 1/3. Simple
calculations give f (x,−1) = x + 2, f (x, 1/x) = (2x + 1)/x3, and f (x, 3) = 162 − 351x. It follows
that f (x, 1/x) − f (x,−1) = (x − 1)(x + 1)3/x3, so for x > 1 the maximum occurs for y = −1, if
x = 1 the maximum occurs for y = ±1, and if 1/3 < x ≤ 1 the maximum occurs for y = 1/x. Finally,
if 0 < x ≤ 1/3, the maximum occurs for y = 3. The value function V is given by

V (x) =
⎧⎨⎩

162 − 351x if 0 < x ≤ 1/3
(2x + 1)/x3 if 1/3 < x ≤ 1
x + 2 if x > 1

It is clear that V is continuous, because the one-sided limits of V (x) at x = 1/3 are equal, and so are
the one-sided limits at x = 1. Figures M13.4.3(a)–(c) shows the graph of the function y �→ f (x, y) for
three different values of x, Fig. M13.4.3(d) shows the setM(x) of maximizers as a function of x. Except
at x = 1, the graph is the graph of a continuous function, as it should be because the maximizer is unique
for each x �= 1.
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M13.4.3

13.5

13.5.7 Let S be a compact set in �n. Carathéodory’s theorem (Theorem 13.5.1) tells us that every point in
co(S) can be written as a convex combination of at most n+ 1 points in S. We claim that every point in
co(S) can be written as a linear combination of exactly n+ 1 points in S. Indeed, if x = λ1x1 +· · · λmxm
with m < n+ 1, we just add n+ 1 −m terms that are all equal to 0x1.
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Now let T = �n× Sn+1, where�n = {(λ1, . . . , λn+1) ∈ �n+1 : λi ≥ 0 for i = 1, . . . , n+ 1; λ1 +
· · · + λn+1 = 1} and Sn+1 = S× · · · × S is the Cartesian product of n+ 1 copies of S. Define a function
f : T → �n by f (λ1, . . . , λn+1, x1, . . . , xn+1) = λ1x1 + · · · + λn+1xn+1. Then f maps every point in
T to a point in co(S). On the other hand, the argument above shows that every point in co(S) belongs to
the image f (T ) of T under f , so in fact co(S) = f (T ). The set �n is obviously a compact (i.e. closed
and bounded) subset of �n+1, so if S is also compact, then so is T . (It follows from Problem 13.2.6 that,
if A and B are compact subsets of �m and �p, respectively, then A × B is a compact subset of �m+p.
This immediately extends to the Cartesian product of a finite number of sets.) Since f is continuous,
Theorem 13.3.3 shows that co(S) = f (T ) is compact.

What we have shown here is that, if S is closed and bounded, then so is co(S). If S is closed but
unbounded, then co(S) need not even be closed. Consider, for example, the closed set S = {(x, y) ∈ �2 :
x > 0, y > 0, xy ≥ 1} ∪ {(0, 0)}. The convex hull of S is co(S) = {(x, y) : x > 0, y > 0} ∪ {(0, 0)},
i.e. the open first quadrant together with the origin. This set is not closed. (Draw a picture!)

13.6
13.6.3 If x is not an interior point of the convex set S (⊆ �n), then by Theorem 13.6.2 there exists a nonzero

vector a in �n such that a · z ≤ a · x for every z in S. Then S ⊆ H− = {z : a · z ≤ a · x}. Since the half
space H− is closed, we also have S̄ ⊆ H−. Every open ball around x contains points that do not belong
toH−, for instance points of the form x+ ta for small positive numbers t . Hence, no open ball around x
is contained in S̄, and so S is not an interior point of S̄.

14 Correspondences and Fixed Points

Proof of Theorem 14.1.5(c): We will use the result in (14.1.8) to prove that H = G ! F is lower
hemicontinuous. Let z0 ∈ H(x0) and let U be a neighbourhood of z0. Then z0 ∈ G(y0) for some y0 in
F(x0). Since G is l.h.c. at y0, there exists a neighbourhood V of y0 such that U ∩G(y) �= ∅ for all y in
V . Moreover, since y0 ∈ F(x0), there is a neighbourhoodN of x0 such that V ∩F(x) �= ∅ for all x ∈ N .
Let x ∈ N and y ∈ V ∩ F(x). Then U ∩G(y) �= ∅, and if z ∈ U ∩G(y), then z ∈ G(y), y ∈ F(x), so
z ∈ H(x).

14.1
14.1.4 We shall use the characterization of lower hemicontinuity in (14.1.8) on page 506 to show that if F

and G are l.h.c. at x0, then so is H . Let U be an open neighbourhood of a point (y0, z0) in H(x0). Then
there are open neighbourhoodsU1 andU2 of y0 and z0 in �l and �m, respectively, such thatU1×U2 ⊆ U .
Since F is l.h.c., there are neighbourhoods N1 and N2 of x0 such that F(x)∩U1 �= ∅ for all x in N1 ∩X
and G(x) ∩ U2 �= ∅ for all x in N2 ∩ X. Let N = N1 ∩ N2. Then H(x) ∩ U ⊇ H(x) ∩ (U1 × U2) =
(F (x) ∩ U1)× (G(x) ∩ U2) �= ∅ for all x in N ∩X. It follows that H is l.h.c.

For the result about upper hemicontinuity we need to assume that F(x0) and G(x0) are compact.
Then H(x0) = F(x0) × G(x0) is also compact. Suppose that F and G are u.h.c. at x0. Since F(x0)

is compact, it is closed, and Note 14.1.1 then says that F has the closed graph property at x0. Because
F(x0) is bounded there exists a bounded and open set U in �l that contains F(x0), and since F is upper
hemicontinuous at x0 there is a neighbourhoodNF of x0 such that F(x) ⊆ U for all x inNF . Similarly,G
has the closed graph property at x0 and there exists a bounded and open set V in �m and a neighbourhood
NG of x0 such that G(x) ⊆ V for all x in NG.
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Since F and G have the closed graph property at x0, so has H . This is an easy consequence of
the definition (14.1.4). We are now all set to use Theorem 14.1.2 to prove that H is u.h.c at x0. Let
W = U × V ⊆ �l+m and let N = NF ∩NG. Then W is bounded in �l+m, N is a neighbourhood of x0,
and H(x) = F(x)×G(x) ⊆ W for all x in N , so H is locally bounded near x0. The desired conclusion
follows.

14.1.6 We shall use the characterization of lower hemicontinuity that is given in (14.1.8) to prove that G
is l.h.c. Let y0 ∈ G(x0). Then y0 is a convex combination y0 = ∑k

i=1 λiy
0
i of points y0

i in F(x0). If
U is a neighbourhood of y0, then U contains an open ball B = B(y0; ε) for some ε > 0. For each
i = 1, . . . , k, there is a neighbourhood Ni of x such that F(x) ∩ B(y0

i ; ε) �= ∅ for all x in Ni ∩ X. Let
N = N1 ∩ · · · ∩Nk be the intersection of these neighbourhoods. Then for any x inN and every i there is
at least one point yi in F(x) ∩ B(y0

i ; ε). If we let y = ∑i λiyi , then y ∈ co(F (x)) = G(x). Moreover,
d(y, y0) = ‖y − y0‖ = ‖∑i (λiyi − λiy0

i )‖ ≤
∑

i λi‖yi − y0
i ‖ <

∑
i λiε = ε, so y ∈ B(y0; ε) ⊆ U . It

follows that G(x) ∩ U �= ∅. Hence G is l.h.c.

14.1.10 Every constant correspondence is both l.h.c. and u.h.c. But even if a(x) and b(x) are constant
functions, complications may arise if one or both of the endpoints of the interval (a((x), b(x)) sometimes,
but not always, belong to F(x). Consider for example the correspondences C1 and C2 given by

C1(x) =
{

[0, 1] if x ≤ 0,
[0, 1) if x > 0,

C2(x) =
{

[0, 1] if x < 0,
[0, 1) if x ≥ 0.

C1 is u.h.c. everywhere, while C2 is not u.h.c. at x = 0. (But both of them are l.h.c. everywhere.)
Every correspondence F that satisfies the conditions in the problem is l.h.c., provided only that its

effective domain is open—i.e., if F(x0) �= ∅, then F(x) �= ∅ for all x sufficiently close to x0.
With non-constant a(x) and b(x)many complications arise in connection with upper hemicontinuity.

A detailed study would take us too far afield, so let us concentrate on the four possibilities

F(x) = [a(x), b(x)], G(x) = [a(x), b(x)), H(x) = (a(x), b(x)], K(x) = (a(x), b(x))

(for all x). F has a closed graph and is locally bounded, so Theorem 14.1.2 implies that F is u.h.c.
The other three are usually not u.h.c., except in the constant case. For example, the correspondence
F(x) = (−1−x2, 1+x2) is not u.h.c. at x = 0, since the open setU = (−1, 1) contains F(x) for x = 0
but not for any other value of x, no matter how close to 0 it may be. In fact, F is not u.h.c. at any other
point either.

14.1.11 The set F(x) is compact for each x inX. By Problem 13.5.7,G(x) = co(F (x)) is also compact for
each x. If G(x0) is contained in an open set U , there exists an α > 0 such that G(x0) ⊆ U ′ ⊆ U , where
U ′ is the open “α-neighbourhood” of G(x0) defined as

U ′ = B(G(x0);α) = { y ∈ �m : there is a y′ in G(x0) with ‖y − y′‖ < α
}

This follows from the technical result below, with S = �U = �m \U and K = F(x0). Since F is u.h.c.
and F(x0) ⊆ G(x0) ⊆ U ′, there exists a δ > 0 such that F(x) ⊆ U ′ for every x in N = B(x0; δ). It is
not hard to see that U ′ is convex, and therefore G(x) = co(F (x)) is also contained in U ′ (and so in U )
for all x in N .
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A little technical result:

If S and K are disjoint closed subsets of �m and K is compact, then there exists a positive number α
such that d(x, y) ≥ α for all x in S and all y in K . In other words, the distance between a point in S and
a point in K is never less than α.

Proof: Let y be a fixed point in �n and let x be a point in S. By Problem 13.3.5, h(x) = d(x, y)
attains a minimum at some point x0 in S. Let us call h(x0) the distance between the point y and the set
S, and denote it by d(y, S). If y′ is another point in �n, then

d(y′, S) ≤ d(y′, x0) ≤ d(y′, y)+ d(y, x0) = d(y′, y)+ d(y, S)

so d(y′, S) − d(y, S) ≤ d(y′, y). By symmetry, d(y, S) − d(y′, S) ≤ d(y, y′) = d(y′, y). Hence,
|d(y′, S) − d(y, S)| ≤ d(y′, y). It follows that g(y) = d(y, S) is a continuous function of y. (In the
definition of continuity in (13.3.1), every ε > 0 can be matched by δ = ε.) SinceK is compact, g attains
a minimum value α over K . Then α = g(y∗) = d(y∗, x∗) for a point y∗ in K and a point x∗ in S, so
α > 0.

14.2
14.2.3 By Example 14.1.6, the budget correspondence B(p,m) is lower hemicontinuous and has the

closed graph property at any point (p0,m0) where m0 > 0. It is also locally bounded near (p0,m0),
so by Theorem 14.1.2, B is also upper hemicontinuous at (p0,m0). What if m0 = 0? In that case
B(p0,m0) = B(p0, 0) consists of a single point, namely the origin 0 in �n. If U is an open set in �n

that contains 0, then it will obviously contain B(p,m) for any (p,m) close to (p0, 0), and it follows that
B is upper hemicontinuous at (p0, 0). Lower hemicontinuity at that point follows easily from the result
in (14.1.8).

Thus, B(p,m) is continuous at every point (p,m) in X = �n++ × �+.
The maximum theorem (Theorem 14.2.1) then implies that the demand correspondence ξ(p,m) is

upper hemicontinuous and the indirect utility function V (p,m) is continuous. (Note that x �� F(x) in
Theorem 14.2.1 corresponds to (p,m) �� B(p,m) in this problem, while y and f (x, y) in the theorem
correspond to x and U(x) in the problem.) The demand correspondence will not always be lower hemi-
continuous.

Suppose that U is quasiconcave. Then, if x1 and x2 are distinct points in ξ(p,m) (i.e. maximum
points forU over B(p,m)), Theorem 2.5.1 implies that λx1+ (1−λ)x2 also belongs to ξ(p,m) for every
λ in [0, 1]. In other words, ξ(p,m) is a convex set.

A Sets, Completeness, and Convergence

A.1
A.1.3 The answer in the book has been pared down to the bone, with a function defined on a set with only

two elements in it. For an example with a little more flesh on it, consider the following:
Let f (x) = x2 for all x in �, and define two intervals S1 = [−4, 2] and S2 = [−1, 3]. The

intersection of S1 and S2 is S1 ∩ S2 = [−1, 2]. The images of S1 and S2 under f are f (S1) = [0, 16] and
f (S2) = [0, 9], and the image of S1 ∩ S2 is f (S1 ∩ S2) = [0, 4]. Here, then, is a case where f (S1 ∩ S2)

is a proper subset of f (S1) ∩ f (S2).
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A.1.4 A relation is a linear ordering if and only if it is (i) reflexive, (ii) transitive, (iii) anti-symmetric, and
(iv) complete. For each of these four properties it is easy to see that if a relation R has that property, then
so has R−1. Let us just see how to handle (ii):

We are assuming that R is transitive relation in a set S. Let x, y, and z be elements in S such that
xR−1y and yR−1z. We want to show that xR−1z. We have yRx and zRy, and since R is transitive,
zRx. Therefore xR−1z, as promised.

A.2
A.2.2 It is shown in the answer in the book that s < r , and since s is positive and s2 > 2, we also have s > 2.

Thus the rational number s is closer to
√

2 than r is. But how did anyone come up with the expression
s = (2 + r2)/2r in the first place? The answer is Newton’s method, which is a famous procedure for
finding and improving approximate solutions to an equation f (x) = 0, where f is a differentiable
function.

Given one approximate solution, x0, we let x1 = x0 − f (x0)/f
′(x0), and then we construct x2 from

x1 in the same fashion, and so on. If the initial approximation x0 is good enough, the sequence x1, x2, . . .
will usually converge to a root of f (x) = 0. (A brief discussion of this method can be found in EMEA,
for instance.) Now apply this procedure to the equation f (x) = x2 − 2 = 0. If x0 = r is a positive
number, then x1 = r − f (r)/f ′(r) = r − (r2 − 2)/2r = (r2 + 2)/2r is precisely the number s.

A.3
A.3.4 For the solution of this problem we need the fact that, if two convergent sequences have infinitely

many terms in common, they must have the same limit. (This is an easy consequence of Theorem A.3.3.)
Consider the particular subsequences {wk} = {x2k−1} and {zk} = {x2k} of {xk}. They converge to 0

and 2, respectively. Together, these two subsequences contain all the terms of the original sequence, so
any subsequence of {xk} must have an infinite number of terms in common with at least one of {wk} and
{zk}. Hence, any convergent subsequence of {xk} must converge to either 0 or 2.

The six subsequences {y6k}, {y6k+1}, {y6k+2}, {y6k+3}, {y6k+4}, and {y6k+5} converge to sin 0 = 0,
sin(π/3) = 1

2

√
3, sin(2π/3) = 1

2

√
3, sin(3π/3) = 0, sin(4π/3) = − 1

2

√
3, and sin(5π/3) = − 1

2

√
3,

respectively, and they contain all but the first five elements of {yk}. In the same way as for {xk}, it follows
that any convergent subsequence of {yk} must converge to 0, 1

2

√
3, or − 1

2

√
3.

Figures MA.3.4(a) and MA3.4(b) illustrate the behaviour of {xk} and {yk}.
x

k
10 20

2

1

−1

y

k
10 20

1
2

√
3

− 1
2

√
3

MA.3.4(a) MA.3.4(b)

A.3.5 (b) (i): For each natural number n, letMn = sup{xk : k ≥ n} andNn = sup{yk : k ≥ n}. Then for all
k ≥ n, we havexk ≤ Mn andyk ≤ Nn, and soxk+yk ≤ Mn+Nn. Thus sup{xk+yk : k ≥ n} ≤ Mn+Nn ≤
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limn→∞(Mn +Nn) = limn→∞Mn + limn→∞Nn, or limk→∞(xk + yk) ≤ limk→∞ xk + limk→∞ yk .
The proof of (ii) is similar and is left to the reader.

A.3.6 Let n and m be natural numbers with n > m, and let p = n−m. Then

|xn − xm| = |xm+p − xm|
= |(xm+p − xm+p−1)+ (xm+p−1 − xm+p−2)+ · · · + (xm+2 − xm+1)+ (xm+1 − xm)|
≤ |xm+p − xm+p−1| + |xm+p−1 − xm+p−2| + · · · + |xm+2 − xm+1| + |xm+1 − xm|
<

1

2m+p−1
+ 1

2m+p−2
+ · · · + 1

2m+1
+ 1

2m

= 1

2m

(
1 + 1

2
+ · · · + 1

2p−1

)
= 1

2m
1 − ( 1

2 )
p

1 − 1
2

<
1

2m
1

1 − 1
2

= 1

2m−1

which obviously becomes arbitrarily small for m sufficiently large.

B Trigonometric Functions

B.1

B.1.4 cos(y − π/2) = sin y follows directly from Problem 3. Then, from the hints in the question, as well
as (B.1.8) and the result of Problem 3 again, it follows that

sin(x + y) = cos(x + y − π/2) = cos x cos(y − π/2)− sin x sin(y − π/2)
= cos x sin y + sin x cos y = sin x cos y + cos x sin y

Substituting−y for y then yields sin(x−y) = sin x cos(−y)+cos x sin(−y) = sin x cos y−cos x sin y.

B.1.6 It is clear from the definitions of sin x and cos x that sin(x+π) = − sin x and cos(x+π) = − cos x
for all x. This also follows from Problem 4 and formula (B.1.8) together with the fact that sin π = 0 and
cosπ = −1. The formula for sin(x−y) in Problem 4 also shows that sin(π −x) = sin x for all x. These
results come in handy in this problem.

(a) sin(π − π/6) = sin(π/6) = 1/2.

(b) (cos(π + π/6) = − cos(π/6) = − 1
2

√
3.

(c) By Problem 2(a), sin(−3π/4) = − sin(3π/4) = − 1
2

√
2.

(d) cos(5π/4) = cos(π/4 + π) = − cos(π4) = − 1
2

√
2.

(e) By formula (6), tan(7π/6) = tan(π/6) = 1
3

√
3.

(f) sin(π/12) = sin(π/3 − π/4) = sin(π/3) cos(π/4)− cos(π/3) sin(π/4) = 1
4 (
√

6 −√
2).

B.1.7 (a) The formula for sin(x + y) in Problem 4 gives
√

2 sin(x + π/4)− cos x = √
2(sin x cos(π/4)+

cos x sin(π/4))− cos x = √
2(sin x · 1

2

√
2 + cos x · 1

2

√
2)− cos x = sin x

(b) Since sin(π − x) = sin x and cos(2π − x) = cos(−x) = cos x, we have

sin[π − (α + β)]
cos[2π − (α + β)] =

sin(α + β)
cos(α + β) = tan(α + β)
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(c) Formula (B.1.8) and the formulas in Problems 3 and 4 give

sin(a + x)− sin(a − x)
cos(a + x)− cos(a − x) =

sin a cos x + cos a sin x − sin a cos x + cos a sin x

cos a cos x − sin a sin x − cos a cos x − sin a sin x

= 2 cos a sin x

−2 sin a sin x
= −cos a

sin a
= − cot a

B.1.8 With x = 1
2 (A + B) and y = 1

2 (A − B) we get sinA − sinB = sin(x + y) − sin(x − y) =
sin x cos y + cos x sin y − sin x cos y + cos x sin y = 2 cos x sin y = 2 cos A+ B

2 sin A− B
2 .

B.1.12 (a) This is a sine curve y = A sin(ax) with A = 2 and a(8π) = 2π , i.e. a = 1/4.

(b) y = 2 + cos x. (A cosine curve with amplitude 1 and period 2π shifted 2 units upwards.)

(c) y = 2e−x/π cos x. (An exponentially damped cosine curve with amplitude 2e−x/π .)

B.1.13 Since the lengths of the line segments AC and BD are equal, we have (cos x − cos y)2 + (sin x +
sin y)2 = (cos(x + y)− 1)2 + sin2(x + y). The left-hand side is

LHS = cos2 x − 2 cos x cos y + cos2 y + sin2 x + 2 sin x sin y + sin2 y

= 2 − 2 cos x cos y + 2 sin x sin y

and the right-hand side is

RHS = cos2(x + y)− 2 cos(x + y)+ 1 + sin2(x + y) = 2 − 2 cos(x + y)
where we have repeatedly used that sin2 u + cos2 u = 1. The equation LHS = RHS implies that
cos(x + y) = cos x cos y − sin x sin y.

B.2
B.2.1 (b) (x cos x)′ = x ′ cos x + x(cos x)′ = cos x − x sin x.

(c) Let u = x2. Then
d

dx
(tan(x2)) = d

du
(tan u)

du

dx
= 1

cos2 u
2x = 2x

cos2(x2)
.

(d) (e2x cos x)′ = (e2x)′ cos x + e2x(cos x)′ = 2e2x cos x − e2x sin x = e2x(2 cos x − sin x).

B.2.4 (c) All you need is the chain rule and a steady hand.

B.2.5 (c) lim
t→0

1 − cos t

t2
= “0

0

” = lim
t→0

sin t

2t
= 1

2
lim
t→0

sin t

t
= 1

2
by (B.2.10) (or just use l’Hôpital’s rule

again).

B.2.6 The derivative of f ′(x) is f ′(x) = 3(sin x−x−1)2(cos x−1). It is easy to see that sin x < x+1 for
all x > 0, because sin x ≤ 1 < x + 1. Moreover, cos x < 1 for all x in the open interval J = (0, 3π/2).
It follows that f ′(x) < 0 for all x in J . Thus, f is strictly decreasing in the closed interval I = [0, 3π/2],
and attains its maximum value −1 at x = 0 and its minimum value −(2 + 3π/2)3 ≈ −302.43 at
x = 3π/2.

B.2.8 You can read all these values off from Table B.2.1.

B.2.9 (a) Let u = 2x. The chain rule yields
d

dx
(arcsin 2x) = d

du
(arcsin u)

du

dx
= 2√

1 − u2
= 2√

1 − 4x2
.

(b) (d/dx)(arctan v) with v = 1 + x2.
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(c) Let w = √
x. Then

d

dx
(arccos

√
x ) = d

dw
(arccosw)

dw

dx
= − 1√

1 − w2

1

2
√
x
= − 1

2
√

1 − x√x .

B.2.10 (c) Integration by parts yields

I =
∫

sin2 x dx =
∫

sin x(− cos x)′ dx = sin x(− cos x)−
∫
(sin x)′(− cos x) dx

= − sin x cos x +
∫

cos2 x dx = − sin x cos x +
∫
(1 − sin2 x) dx

Hence, I = − sin x cos x + x − I + C, and we get I = 1
2 (x − sin x cos x) + C1, where C1 = 1

2C.
Note: When integrating trigonometric functions it is very easy to get wrong signs here and there, and
integration by parts also often leads to such mistakes, so it is a good rule to check the results by finding
the derivatives when that is possible.

(d) Integration by parts here too.

B.2.11 (a) Let u = cos x. Then du = − sin x dx and
∫

tan x dx = −
∫
du

u
= − ln |u| + C =

− ln | cos x| + C.

(b) With v = sin x, we get dv = cos x dx and
∫

cos xesin x dx =
∫
ev dv = ev + C = esin x + C.

(c) As in part (a), let u = cos x. Then
∫

cos5 x sin x dx =
∫

−u5 dx = − 1
6u

6 + C = − 1
6 cos6 x + C.

B.3

B.3.3 To simplify a complex fraction (a+ bi)/(c+ di), where a, b, c, d are real, it is usually a good idea to
multiply both the numerator and the denominator by c − di, the conjugate of the original denominator.
This has the effect of making the denominator real (and positive) because (c−di)(c+di) = c2−(di)2 =
c2 − d2i2 = c2 + d2. Thus,

(a)
(3 + 2i)(1 + i)
(1 − i)(1 + i) = 3 + 5i + 2i2

1 − i2 = 1 + 5i

2
= 1

2
+ 5

2
i, (b)

(4 − 3i)(−i)
i(−i) = −3 − 4i

1
= −3−4i.

(c) Simplify the numerator and denominator before making the denominator real:
(3 − 2i)(2 − i)
(−1 − i)(3 + 2i)

=
6 − 7i + 2i2

−3 − 5i − 2i2
= 4 − 7i

−1 − 5i
= (4 − 7i)(−1 + 5i)

(−1)2 − (5i)2 = −4 + 27i − 35i2

1 − 25i2
= 31

26
+ 27

26
i.

(d)
1 − i
1 + i =

(1 − i)2
1 − i2 = 1 − 2i + i2

2
= −2i

2
= −i, so

(
1 − i
1 + i

)3

= (−i)3 = −i3 = −i2i = i.
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Corrections to FMEA 2nd edn (2008), first printing

(Spelling and grammatical mistakes are not included.)

Page 26, line 12 from the bottom. . . . (See Example B.3.2.)

Page 59, Theorem 2.3.5: In parts (b) and (c) the conclusion should be that U(x) = F(f (x)) is convex!

Page 117, Theorem 3.3.1(b): Add the assumption that S is convex.

Page 124, Problem 3.3.10: Replace the inequality in (∗) with equality.

Page 132, Theorem 3.5.1, line 1–2: Assume that f and g1, . . . , gm are defined in a set S and that x∗ is an
interior point of S.

Page 164, Problem 10, line 5: The function f must also be continuous.

Page 192, Problem 6: The differential equation has no solution defined over the entire real line. We must be
satisfied with a function x that satisfies the conditions in the problem in an open interval around 0.

Page 199, Problem 6, line 2: . . . all t > 0.

Page 225, Problem 6, line 3: . . . , provided ẋ �= 0, we have

Page 352, Theorem 9.11.2, line 2: . . . that
∫∞
t0

|f (t, x(t), u(t))|e−t dt <∞ for all . . .

Page 357, Problem 9.12.3(c), line 2: . . . with K(t) > 0 for

Page 382: The entries in the first column of the table should be “t ∈ [0, t∗]” and “t ∈ (t∗, T ]”.

Page 444, Problem 12.4.2(b): . . . in Theorem 12.4.1 are . . .

Page 454, formula (10): E
[
F ′

2(t, xt , xt+1(xt , Vt ), Vt ) | vt−1
]+ F ′

3(t − 1, xt−1, xt , vt−1) = 0

Page 455, line 5: . . . . Next, for t = T ,

Page 455, line 8: 2
3vT−1 should be 2

3VT−1 .

Page 457, Problem 12.6.6: The summation goes from t = 0, and the scrap value is X1/2
T .

Page 508: See SM (not Problem 11) for the proof of Theorem 14.1.5(c).

Page 566, Problem 2.6.1(c): f (x, y) ≈ x + 2y − 1
2x

2 − 2xy − 2y2

Page 566, Problem 2.6.4: z ≈ 1 − x + y + 3
2x

2 − 2xy + 1
2y

2

Page 566, Problem 2.7.3, line 2: . . . , wx = 1/2.

Page 570, Problem 3.7.3, line 2: f ∗(r, s) = 1
4 r

2. . . . to find the squares of the largest

Page 570, Problem 3.8.3, line 2: Replace (c) by (b).

Page 570, Problem 3.8.5, line 1: Drop the labels (a) and (b).

Page 571: New Problem 3.11.1: See SM.

Page 574, Figure A5.2.2: The integral curve through (0, 2) is only the semicircle above the t-axis.

Page 576, Problem 5.6.1: Delete “and x ≡ 0”. (We require x > 0.)
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Page 577, Problem 5.7.3, line 2: . . . . See Fig. A5.7.3(b).

Page 582, Problem 6.9.6: Drop the references to (a) and (b).

Page 583, Problem 7.2.3: Remove (b) from line 2.

Page 586, Problem 9.4.2: . . . where A = 2e/(e2 − 1).

Page 588, Problem 9.7.3: (a) . . . , x∗(t) = e(α−2β)T+αt

e(α−2β)T − 1
− e2(α−β)t

e(α−2β)T − 1
=
(
e(α−2β)T − e(α−2β)t

)
eαt

e(α−2β)T − 1
, . . .

Page 589, Problem 9.11.4: (x∗(t), u∗(t)) =
{
(e − e−t , 1) if t ∈ [−1, 0]
(e − 1, 0) if t ∈ (0,∞)

, p(t) = e−t .

Page 589, Problem 9.12.3, line 1: . . . , and so Ċ∗/C∗ + λ̇/λ = 0. . . .

Page 590, Problem 10.4.3, line 3: . . . . When u = 2, ẋ = −3 and . . .

Page 591, Problem 10.6.3, line 2: Replace x∗ by x∗ and t∗ by t ′.

Page 593, Problem 11.7.2, line 1: (a) x∗ ≈ −2.94753.

Page 595, Problem 12.6.6: ut (x) = xt/4a2
t = xt/(1 + a2

t+1), aT = a/2, at = 1
2 (1 + a2

t+1)
1/2 for t < T .

Page 595, Problem 12.6.8: x1 = 1
2 − v0, x2 = 1 − v0 − v1, x3 = 3

2 − v0 − v1 − v2

Page 599, Problem 14.2.3: The demand correspondence ξ is upper hemicontinuous, but it need not be lower
hemicontinuous.
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