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CHAPTER 1 TOPICS IN LINEAR ALGEBRA 1

Chapter 1 Topics in Linear Algebra

1.2
1 20
123 LetA = |0 1 1 | beamatrix with the three given vectors as columns. Cofactor expansion of
1

0 1
|A| along the first row yields

1 1

01 +0=1-2(=1)=3#£0

—_ O =

20
| =tfg -2 ]
0 1

1
By Theorem 1.2.1 this shows that the given vectors are linearly independent.

1.2.6 Part (a) is just a special case of part (b), so we will only prove (b). To show that aj, a,, ..., a, are
linearly independent it suffices to show that if ¢y, ¢3, . . ., ¢, are real numbers such that

ciai+ca+---+ca, =0

then all the ¢; have to be zero. So suppose that we have such a set of real numbers. Then for eachi = 1,
2,...,n,we have
a;-(clay +cay+---+ca,)=2a-0=0 (D

Since a;-a; = Owheni # j, the left-hand side of (1) reduces to a; - (c;a;) = ¢;||a; |I>. Hence, ¢;||a; ||> = 0.
Because a; %= 0 we have ||a;|| # 0, and it follows that ¢; = 0.

1.3
1.3.1 (a) Therank is 1. See the answer in the book.

(b) The minor formed from the first two columns in the matrix is = —6 # 0. Since this minor

3
0
is of order 2, the rank of the matrix must be at least 2, and since the matrix has only two rows, the rank
cannot be greater than 2, so the rank equals 2.

-1 3
-4 7
of the matrix is at least 2. On the other hand, all the four minors of order 3 are zero, so the rank is less
than 3. Hence the rank is 2. (It can be shown that r, = 3r| + r3, where ry, r, and r3 are the rows of the
matrix.)

An alternative argument runs as follows: The rank of a matrix does not change if we add a multiple
of one row to another row, so

(c) The first two rows and last two columns of the matrix yield the minor =5 # 0, so the rank

1 2 -1 3\ =2 1 1 2 -1 3
2 4 —4 7)< | ~1l0 0 =21
-1 =2 -1 =2 0 0 -2 1

© Arne Strgm, Knut Sydseater, Atle Seierstad, and Peter Hammond 2008



2

CHAPTER 1 TOPICS IN LINEAR ALGEBRA

Here ~ means that the last matrix is obtained from the first one by elementary row operations. The last
matrix obviously has rank 2, and therefore the original matrix also has rank 2.

1 30
(d) The first three columns of the matrix yield the minor |2 4 0| =—4+#0,so the rank is 3.
1 -1 2
1
(e) 1 4 ‘ =9 # 0, so the rank is at least 2. All the four minors of order 3 are zero, so the rank must

be less than 3. Hence the rank is 2. (The three rows, ry, r», and r3, of the matrix are linearly dependent,
because r, = —14r; + 9r3.)

(f) The determinant of the whole matrix is zero, so the rank must be less than 4. On the other hand, the
first three rows and the first three columns yield the minor

1 -2 -1
2 1 1|=-7#0
-1 1 -1

so the rank is at least 3. It follows that the matrix has rank 3.

1.3.2 (a) The determinant is (x 4+ 1)(x — 2). The rank is 3 if x 2 —1 and x # 2. The rank is 2 if x = —1

orx = 2.

(a) By cofactor expansion along the first row, the determinant of the matrix A = 0 1 1

18
Al=x-(-D)=0-1+(x*>=2)-1=x>—x-2=@x+Dx—-2)

If x # —1 and x # 2, then |A| # 0, so the rank of A equals 3. If x = —1 or x = 2, then |A| = 0 and

r(A) < 2. On the other hand, the minor we get if we strike out the first row and the third column in A is
1

_(]) ‘ =1 # O for all x, so r(A) can never be less than 2.

Conclusion: r(A) = {

2 ifx=—-lorx=2
3 otherwise

(b) A little calculation shows that the determinant of the matrix is 7> + 4t — 4r — 16, and if we note that
this expression has ¢ 4 4 as a factor, it follows that the determinant is

PHar —4t—16 =11 +4) -4+ = -Ht+4H =0+ -2 +4)

Thus, if # does not equal any of the numbers —2, 2, and —4, the rank of the matrix is 3.

If we strike out the second row and the first column of the matrix, we get the minor

6
=5t+14
1 1+4 ‘ s
which is different from O for all the three special values of ¢ that we found above, and thus the rank of

the matrix is
{2 ift =—4,-2,0r2

3 otherwise

(c) The first and third rows are identical, as are the second and fourth. But the first two rows are always
linearly independent. So the rank is 2 for all values of x, y, z, and w.
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CHAPTER 1 TOPICS IN LINEAR ALGEBRA 3

1.4
1.4.2 (a) Itis clear that x; = x» = x3 = 0 is a solution. The determinant of the coefficient matrix is
1 -1 1
D=1 2 —1{=9#0
2 1 3

Hence, by Cramer’s rule the solution is unique and the system has 0 degrees of freedom. (This agrees
with Theorem 1.4.2: since the rank of the coefficient matrix is 3 and there are 3 unknowns, the system
has 3 — 3 = 0 degrees of freedom.)

(b) By Gaussian elimination (or other means) we find that the solution is x; = a, x, = —a, x3 = —a,
and x4 = a, with a arbitrary. Thus, there is one degree of freedom. (We could get the number of degrees
of freedom from Theorem 1.4.2 in this case, too. The minor formed from the first three columns of the
coefficient matrix has determinant —3 # 0, so the rank of the coefficient matrix is 3. Since there are 4
unknowns, the system has 4 — 3 = 1 degree of freedom.)

1.4.3 The determinant of the coefficient matrix is a> — 7a = a(a — 7). Thus, if a # 0 and a # 7, the system
has a unique solution. If @ = 0 or @ = 7, the rank of the coefficient matrix is 2 (why?), and the system
either has solutions with 1 degree of freedom or has no solutions at all, depending on the value of . One
way of finding out is by Gaussian elimination, i.e. by using elementary row operations on the augmented
coefficient matrix:

1 2 3 1 1 -3 (1 2 3 1
-1 a =21 2| <! ~10 a+2 -—18 3
3 7 a b 0 1 a-9 b-3 —(a+2)
1 2 3 1
~|0 0 —a*>+7a —ab—2b+3a+9
\0 1 -9 b—3 j
1 2 3 1
~l0 1 a-9 b—3
0 0 a(7T—a) —ab—2b+3a+9

This confirms that as long as @ # 0 and @ # 7, the system has a unique solution for any value of b. But if
a = 0 ora = 7, the system has solutions if and only if —ab — 2b 4 3a + 9 = 0, and then it has solutions
with 1 degree of freedom. (The rank of the coefficient matrix is 2 and there are 3 unknowns.)

If a = 0, then the system has solutions if and only if b = 9/2.

If @ = 7, then the system has solutions if and only if —9b + 30 = 0, i.e. b = 10/3.

14.6 (a) A= —2)(#+3),s0r(A;) =3ift # 2andt # —3. Because the upper left 2 x 2 minor of
A; is —1 # 0, the rank of A, can never be less than 2, so r(Ay) = 2, r(A_3) = 2.

X 11
(b) Letx = x; . The vector equation A_3x = | 3 | is equivalent to the equation system
X3 6
X1+ 3xp4+2x3 =11 ()
2x14+ Sxp—3x3= 3 2)
4x; + 10x; —6x3 = 6 3
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Equation (3) is obviously equivalent to (2), so we can remove it, and then we are left with the two equations

X1+ 3x 4+ 2x3 =11 (1)
2x1 +5xp —3x3= 3 (2)

We can consider these equations as an equation system with x; and x; as the unknowns:

X1 +3xp =11 —2x3 (1)
2x1 +5x = 3+ 3x3 @)
For each value of x3 this system has the unique solution x; = 19x3 — 46, x, = —7x3 + 19. Thus the

vector equation A3x = (11, 3, 6) has the solution
x = (195 — 46, —7s + 19, 5)’

where s runs through all real numbers.

1.5
1.5.1 For convenience, let A, B, ..., F denote the matrices given in (a), (b), .. ., (f), respectively.
(a) The characteristic polynomial of the matrix A = (3 :;) is
A — Al = ‘2;\ _s;_zx‘ =22 +6L+5=0G+DOA+5)
so the eigenvalues of A are A; = —1 and A, = —5. The eigenvectors corresponding to an eigenvalue A

are the vectors x = <f}) = 0 that satisfy Ax = Ax, i.e.

2x — Ty = —x
< 3x =7y forA=-1
3x =8y =—y
and
2x — 7y = —5x
< Tx =7y forA=-5
3x — 8y = -5y

1
This gives us the eigenvectors v| = s (;) and v, = ¢ < : ), where s and ¢ are arbitrary real numbers
(different from 0).

(b) The characteristic equation of B is |[B — AI| = = A% — 81 +20 = 0. B has two

2—-1 4 ‘
complex eigenvalues, 4 & 2i, and no real eigenvalues.

(c) The characteristic polynomial of Cis |C—AI| = A*>—25, and we see immediately that the eigenvalues

are A1 = 5 and A, = —5. The eigenvectors are determined by the equation systems
x+4y =5x ‘o and x+4y = —5x ——Ex
6x — y =35y -7 6x — y = -5y )
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CHAPTER 1 TOPICS IN LINEAR ALGEBRA 5

respectively, so the eigenvectors are

1 -2
V1=s(l) and szt( 3>

where s and ¢ are arbitrary nonzero numbers.

(d) The characteristic polynomial of D is

2—-x 0 0
D-—A=| 0 3—x2 0 |=Q-MNB-MN@-1
0 0 4—1x

The eigenvalues are obviously A; = 2, A, = 3, A3 = 4, and the corresponding eigenvectors are

1 0 0
vi=s|1O0)], wvwo=t11], vi=u|oO
0 0 1

where s, ¢, u are arbitrary nonzero numbers. (Note: The eigenvalues of a diagonal matrix are always
precisely the diagonal elements, and (multiples of) the standard unit vectors will be eigenvectors. But if
two or more of the diagonal elements are equal, there will be other eigenvectors as well. An extreme case
is the identity matrix I,;: all (nonzero) n-vectors are eigenvectors for I,,.)

(e) The characteristic polynomial of E is

2—A 1 —1
0 1—x 1 (== P+ +20==-22=21-2)
2 0 -2 -
The eigenvalues are the roots of the equation —A(A> —A —2) = 0, namely A; = —1, A, = O and A3 = 2.
The eigenvectors corresponding to A; = —1 are solutions of

2X1 +x2 — X3 = —Xxj |
X| = 5X3 Xy = —X1
Ex = —x < X+ X3=—Xxy <— —

1
X2 = —5X X3 =2x
2)61 — 2X3 = —X2 : 2 : !
1 1 2
so they are of the formv; = s | —1 |. Similarly,v; =¢| —1 | andv3 =u | 1 | are the eigenvectors
2 1 1

corresponding to A = 0 and Az = 2.

(f) The characteristic polynomial of F is

1-2 -1 0

1 2=x =1 |=-X+42-3r=-20>—4+3)=—-2(L— DR —-23)
0 -1 1-A
The eigenvalues are therefore A; = 0, A, = 1, and A3 = 3. By the same method as above we find that
1 —1 1
the corresponding eigenvectors are vi =s | 1 |, vp =1¢ Of,andvz=u| -2
1 1 1
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6 CHAPTER 1 TOPICS IN LINEAR ALGEBRA

ax + ay
152 (a) XAX =X'(AX) = (x, y, 2) | ax +ay | = (ax®> + ay® + 2axy + bz*>) (a1 x 1 matrix),
bz

20> 2a®> 0 4a® 4a> 0
A2=1[24> 24> 0 |, A3=1|4d® 44® 0
0 0 b 0o o0 b

a— X a 0

(b) The characteristic polynomial of Ais p(A) = | a a— A 0 | =M*—=2ar)(b—1),sothe
0 0 b—2x

eigenvalues of A are .} = 0, A, = 2a, A3 = b.
(c) From (b) we get p(A) = —A> + (2a + b)A> — 2abi. Using the expressions for A> and A3 that we
found in part (a), it is easy to show that p(A) = —A3 + (2a + b)A? — 2abA = 0.

1.5.4 (a) The formula in Problem 1.9.7(b) yields

4—n 1 1 1
1 4—% 1 1 . 4 5

A-al=| P EXCEPS <1+3TA)—(3—A)(7—A)
1 1 14—

Hence, the eigenvalues of Aare Ay = Ay = A3 =3, 04 = 7.

(b) An eigenvector X = (xj, x2, x3, x4)" of A corresponding to the eigenvalue & = 3 must satisfy the
equation system (A — 3I)x = 0. The 4 equations in this system are all the same, namely

X1 +x2+x3+x4=0

The system has solutions with 4 — 1 = 3 degrees of freedom. One simple set of solutions is

1 1
—1 0 0

1 _ 2 _ 3 _
X = , X = R E X’ = 0
0 0 —1

These three vectors are obviously linearly independent because if

c1+c+cs

C1X1 + C2X2 + C3X3 =

is the zero vector, then ¢; = ¢y = ¢3 = 0.

1.5.5 (c) If A is an eigenvalue for C with an associated eigenvector x, then C"x = A"x for every natural
number n. If C3 = C%+C, then A’x = A>x+Ax, so (A> — A2 —A)x = 0. Then 1> — 12 — A = 0, because
x # 0. If C 41, did not have an inverse, |C + I,,| = 0. Then A = —1 would be an eigenvalue for C, and
so we would have A3 — A2 — A = 0, which is not true for A = —1. Hence —1 is not an eigenvalue for C,

and consequently C + I, has an inverse.

© Arne Strgm, Knut Sydsater, Atle Seierstad, and Peter Hammond 2008



CHAPTER 1 TOPICS IN LINEAR ALGEBRA 7

1.6
1.6.1 (a) LetA = (? !

N ) The characteristic polynomial of A is

2—x 1
p(k)z‘

— (2 —))2_1=22_ = (h — —
! 2—,\‘_(2 A) Il=A"—4r14+3=0Q—-1)(A—-3)

Thus, the eigenvalues are A; = 1 and A, = 3. The associated eigenvectors with length 1 are uniquely

determined up to sign as
V2 32
X| = 1 and x, = 1/3
2

2
This yields the orthogonal matrix
- (354
“\-ivi L2

(It is easy to verify that P'P =1, i.e. P~! = P’.) We therefore have the diagonalization

v [ [ R

1 10
(b) LetB=| 1 1 O |. The characteristic polynomial of B is
0 0 2
1—x 1 0
1 1—=2 0 [=C-M(A=1*=1)=Q2-1AR*—2)) = —A(r —2)
0 0 2—A

(use cofactor expansion of the first determinant along the last row or the last column). The eigenvalues
are o1 = 0 and A, = A3 = 2. It is easily seen that one eigenvector associated with the eigenvalue
A1 =0isx; = (1, —1,0). Eigenvectors X = (x1, x, x3)" associated with the eigenvalue 2 are given by
B -2Dx =0, i.e.

—X1 + X2 =0
X] — X2 =0
0=0

This gives x; = x», x3 arbitrary. One set of linearly independent eigenvectors with length 1 is then

| 1 1 1 0
1], 0

— | =1], =
v2\ V2 \ 1

Fortunately, these three vectors are mutually orthogonal (this is not automatically true for two eigenvectors
associated with the same eigenvalue), and so we have a suitable orthogonal matrix

12 W2 o
1 1
0 0 1

© Arne Strgm, Knut Sydseater, Atle Seierstad, and Peter Hammond 2008



8 CHAPTER 1 TOPICS IN LINEAR ALGEBRA

It is now easy to verify that P~! = P” and
0 0 O
P'BP=[0 2 0
0 0 2
1 3 4
(c) The characteristic polynomialof C=| 3 1 0 | is
4 0 1
1—x 3 4
3 1—A 1—A 3 2
3 I1—x» 0 _4‘4 0 ‘—F(l—k)‘ 3 1—,\'_(1_“((1_“ —25)

4 0 11—
(cofactor expansion along the last column), and so the eigenvalues are A; = 1, A = 6, and A3 = —4. An
eigenvector X = (x, y, z)’ corresponding to the eigenvalue A must satisfy

x+3y+4z=ix

Cx=Xx <= 3x+ y =1y
4x + z=Az
One set of unnormalized eigenvectors is
0 5 -5
u=|-41], v=|3], w= 3
3 4 4
with lengths ||u|| =5, ||v|| = [|W] = 54/2,and a corresponding orthogonal matrix is
0 5vV2 —3HV2
p=|-% 322 22
TovZ o V2

A straightforward calculation confirms that P'CP = diag(1, 6, —4) = diag(A1, A2, A3).
1.6.5 Forthe given A, wehave A% = S5A—5I. Therefore A3 = A’A = (SA—5I)A = SA>—5A = 20A—25I

50 75
4 — 2 _ = — =
and A* = 20A° — 25A = 75A — 1001 <75 125).

1.7

1.7.5 (a) Itis clear that Q(x1, xo) > O for all x; and x; and that Q(x, x2) = O only if x; = x, =0,s0 Q
is positive definite.

5 0 1
(b) The symmetric coefficient matrix of Qis { 0 2 1 |. The leading principal minors are
1 1 4
5 0 5 0 1
D, =5, D2=O 2=10, Dy;y=|0 2 1|=33
1 1 4

Since all the leading principal minors are positive, it follows from Theorem 1.7.1 that Q is positive
definite. (An alternative way to see this is to write Q as a sum of squares: Q(xy, x2, x3) = (x] + x3)? 4+
(X2 4 x3)> + 4x12 + x% + 2x§ is obviously nonnegative and it is zero only if all the square terms are zero.
But it is not always easy to see how to rewrite a quadratic form in this fashion.)

© Arne Strgm, Knut Sydsater, Atle Seierstad, and Peter Hammond 2008



CHAPTER 1 TOPICS IN LINEAR ALGEBRA 9

(c) Since Q(x1,x2) = —(x1 — x2)> < O for all x; and x,, Q is negative semidefinite. But Q is not
definite, since Q(x, x2) = 0 whenever x; = x,.
-3 1 0
(d) The symmetric coefficient matrix of Q is 1 -1 2 |, and the leading principal minors are
0o 2 -8

D =-3<0,D,=2>0,and D3 = —4 < 0. By Theorem 1.7.1, Q is negative definite.

1.7.7 (a) The symmetric coefficient matrix of Q is

A—(a“ au)_( 3 —(5+C)/2)
“\a an) \-G+0)/2 2c

Since a;; > 0, the form can never be negative semidefinite. It is

(1) positive definite if ¢;; > 0 and |A| > 0,
(ii) positive semidefinite if a;; > 0, azp > 0. and |A| > 0,

(ii1) indefinite if |A| < O.

The determinant of A is
Al =6c— 15+ 0)* = —1(c* — 14c +25) = —1(c — c1)(c — ¢2)

where c; = 7 — 2\/6 ~ 210l and ¢, = 7 + 2\/6 ~ 11.899 are the roots of the quadratic equation
¢ — 14¢ + 25 = 0. It follows that

(1) Q is positive definite if ¢; < ¢ < ¢, i.e. if ¢ lies in the open interval (cy, ¢2);
(2) Q is positive semidefinite if ¢c; < ¢ < ¢y, i.e. if ¢ lies in the closed interval [cy, ¢2];
(3) Q isindefinite if ¢ < ¢y or ¢ > ¢, 1.e. if ¢ lies outside the closed interval [c1, ¢2].
1.7.10 (b) If x satisfies the Lagrange conditions, then Q(x) = X’Ax = X'(AX) = AX'Xx = A[|x|> = A,
because the constraint is simply |x[|> = 1. Hence, the maximum and minimum values of Q(x) are

simply the largest and smallest eigenvalue of O, which are A; = 9 and A, = —5. The corresponding
maximum and minimum points (eigenvectors) are :i:%«/i (1, 1) and :i:%«/i (1, —1), respectively.

1.8
0 O 1 1 1
0O 0 4 =2 1
1.8.3 Negative definite subject to the constraint, by Theorem 1.8.1: | 1 4 -5 1 2| =-180 <
1 -2 1 -1 0
1 1 2 0 -2
0.
0 0 1 2 1
0O 0 2 -1 -3
1.8.4 Positive definite subject to the constraint, by Theorem 1.8.1: | 1 2 1 1 0/=25>0
2 -1 1 1 0
1 -3 0 O 1
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1.9

1.9.3 The obvious partitioning to use in (a) is with Aj; as 2 x 2 matrix in the upper left corner of A, and in (b)
itis natural to let A be the upper left 1 x 1 matrix. In both cases the partitioned matrix will be of the form

A
( 0“ AO ), i.e. Ajp and Ay; will both be zero matrices. If we use formula (1.9.4) we get A = A,
22

. Ay 0N\ ' /AT 0
whereas formula (1.9.5) gives A = Ay;. In either case we find that ( (;1 A ) = ( (1)1 Al >,
and the answers to (a) and (b) are as given in the book. 22 22

A A I
The matrix in (c) can be partitioned as A = < i 12) = ( 4 IV ), where I4 and I; are the
1

/

Ay An v
identity matrices of orders 4 and 1, respectively, and v/ = (1, 1, 1, 0) is the transpose of the 4 x 1
matrix (column vector) v. If we use formula (1.9.4) in the book, we get A =I; — v'v = (=2) = —2I;.
I 1.1 0 1 -1 -1 0
1 1 1 0 —1 1 -1 0
-1 -1 -1 -1 _ oo/ 1 _ 1
ThenAH +A11A12A A21A11 —I4—§VV/—I4—§ 1 110 =3 1 —1 1 ol
0 0 0 O o 0 0 2
and —A7'Ay A} = v = Iv = (1, 1, 1, 0). Further, —A['A;2A~! = v, so we finally get
I -1 -1 0 1
—1 1 -1 0 1
L —ivw Ly
Alz(“l{ g >=% -1 -1 1 0 1
v —ah 0 0 02 0
1 1 1 0 —1
An alternative partitioning is A = I3, w , where W' = 000 .Then A =1, - WW' =
W I 11 1
0 0y (1 0 4 _1(2 O . . w1
I, (O 3) = (O _2),SOA =5 <0 _1).Abltofcalculatlonshowsthat AW =-W
b L-1lww lw (2l —WW W
and WW’' = i i i ,s0 ATl = < %%’V’ Z—l) = E( W IA-] ), as before.

(Note that because A is symmetric, A~! must also be symmetric. Thus the upper right submatrix of A~!
must be the transpose of the lower left submatrix, which helps us save a little work.)

1 —x; ... —x,
. X1 air ... Qi » I, X
194 The matrix B = | . ) . } can be partitioned as B = x A ) where A and X
Xp  Qni ... dpp

are as given in the problem. We evaluate the determinant of B by each of the formulas (6) and (7): By
formula (6),

IB| = L] - |A — XI; ' (=X))| = |A + XX/|

and by formula (7),
Bl = |A| - |I; — (=X)A'X| = |A| - [T} + X'A7'X]|

where the last factor is the determinant of a 1 x 1 matrix and therefore equal to the single element
1 + X’A~'X of that matrix.
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_(An Ap
1.9.6 (a) LetA_( 0 Ap

two ways to demonstrate that |A| = |Aq;| |A2].

), where A1 is a k x k matrix and Ay, is (n — k) x (n — k). We will consider

() By definition, the determinant of the n x n matrix A is a sum X4 of n! terms. Each of these terms
is the product of a sign factor and n elements from A, chosen so that no two elements are taken from
the same row of A or from the same column. The sign factor £1 is determined by the positions of the
elements selected. (See EMEA or almost any book on linear algebra for details.)

A term in this sum will automatically be zero unless the factors from the first k columns are taken
from A and the last n — k factors from Ay;. If the factors are selected in this way, the term in question
will be a product of one term in the sum ¥; making up |A;;| and one from the sum X, that makes up
|A2z|. (The sign factors will match.) All such pairs of terms will occur exactly once and so ¥4 = X1 X,
that is, |A| = |Aq1| |An].

(II) Suppose that A is upper triangular, i.e. all elements below the main diagonal are 0. Then A; and
Ay are also upper triangular. We know that the determinant of a triangular matrix equals the product
of the elements on the main diagonal. (Just think of cofactor expansion along the first column, then the
second column, etc.) In this case it is clear that [A| = |[A ] |A2a].

Of course, in the general case A need not be upper triangular at all, but we can make it so by means
of elementary row operations, more specifically the operations of (i) adding a multiple of one row to
another row and (ii) interchanging two rows. Operation (i) does not affect the value of the determinant,
while operation (ii) multiplies the value by —1. We perform such operations on the first k£ rows of A in
such a way that Aj; becomes upper triangular, and then operate on the last n — k rows of A such that
Ay, becomes upper triangular. The number o of sign changes that |A| undergoes is then the sum of the
numbers o and o, of sign changes inflicted on |A ;| and |Aj; ][, respectively. By the formula we showed
for the upper triangular case, (—1)?|A| = (—1)°"|Aqq| - (—1)?2|A2|, and since o] + 0» = o, we get
|A| = |A11]|Apz]| in the general case too.

Ay 0
Ay Ap

/ /
All A21

of the
0 A

To show the formula

‘ = |A11]| |Agz|, simply look at the determinant
transposed matrix.

(b) The equality follows by direct multiplication. By the result in (a), the first factor on the left has
determinant |I| |I,—x| = 1, and so, by (a) again,
A A _
‘ o = A1 — ApAy Ao |Ax|

_ ‘An —ApAL Ay 0
Ax Ap

N Aoy A»

. I, A (L, —A
1.9.7 (a) W1thD—(0 Im)andE—<B Im)weget

I,+AB 0 A 0
DE_( B Im> and ED_<B Im—i—BA)

Cofactor expansion of the determinant of DE along each of the last m columns shows that |DE| =
|I, + AB|. Similarly, cofactor expansion along each of the first n rows shows that |[ED| = |I,, + BA|.

Alternatively, we could use formula (7) with A, = I,,, to evaluate |DE| and formula (6) withA; =1,
to evaluate |ED].
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(b) With A and B as in the hint, AB is an n x n matrix with every column equal to A. Therefore

aq 1 1 \
a—1 a-1 """ a-1
1 ay 1
F=L,+AB=| &a—1 a-1 "~ a-1
K 1 1 an
ap—1 a,—1 " a,—1
and
a 1 ... 1 ap — 1 0 0
1 a ... 1 0 a—1 ... 0
G=| . . . = . ) . : (I, + AB)
1 1 ... a, 0 0 |

From the result in (a) it follows that

|Gl = (a1 — D(aa = 1) -+ (ap — D) I, + AB| = (a1 — D)(az — 1) -+ - (a, — 1) [I; + BA|

G|
= (a —1>(a2—1>---<an—1)<1+2a__1)
i=1 "

Chapter 2 Multivariable Calculus

2.1
2.1.3 (a) The unit vector in the direction given by v = (1, 1) isa = ﬁv = \/Lj(l, 1). By formula (2.1.8)
the directional derivative of f in this direction at (2, 1) is
1 1 3 32
‘2, H=Vf2,)-a=—=VFf2,DH-(I,)=—2,D)-(1,1) = —=—
fa@Z. D f2, 1 ﬁf()()ﬁ()()ﬁ >

Note: It is pure coincidence that the gradient of f at (2,1) equals (2,1).

(b) The gradient of g is Vg(x, y,z) = (1 + xy)e*’ — y, x%e*¥ — x, —27), and the unit vector in the
direction given by (1,1, 1) isb = \/ig(l, 1, 1). Formula (2.8.1) gives

(0,1,1) =Vg(0,1,1)-b= 1(00 2)-(1,1,1) = 2 __2¥3
gb” _g7’ _\/577 ’ _ﬁ_ 3

2.1.5 (a) The vector from (3,2, 1)to (—1,1,2)is(—1,1,2) —(3,2,1) = (—4, —1, 1), and the unit vector
in this direction is a = \/#178(—4, —1, 1). The gradient of f is

2x2y s o 2xy? 2xyz
, xIn(x“+y " 4+72°9)+ , )
2 SRR X2+ y2 422 x4 y? 422

Vfix, ,z=(1nx2+ S e [ R —
S, y,2) = (yIn(x"+y )x2+y2+Z
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By formula (2.1.8) the directional derivative of f at (1, 1, 1) in the direction a is
fa(,1,1) = (1/~18)V (1,1, 1) - (—4,—1,1)
= (1/4/18)(In3+2/3,In3+2/3,2/3) - (—4,—1,1) = —(5In3+8/3)/v 18
(b) At(1, 1, 1) thedirection of fastest growth for f is givenby V (1,1, 1) = (In3+42/3,1In3+42/3,2/3).

2.1.6 The unit vector in the direction of maximal increase of f at (0,0) is a = ﬁ(l, 3) and therefore

V£(0,0) = ra for a number + > 0. We also know that f,(0,0) = 4. On the other hand, by (2.1.8),
fa(0,0) =Vf(0,0)-a=ra-a= t||a)|> = t. Hence, t = 4 and

V£(0,0) = 4a = 3y = £(1 3) = £(1 3)

V10

2.1.9 (a) We know that y’ = —F{(x, y)/F;(x, y), and by the chain rule for functions of several variables,

//_i(,)_ Fix,y)\dx 9 (Fi(x,y)
Y dx Y Fi(x,y) a’x 8y Fi(x,y)
_F{ﬁFé—FfFéﬁ R -FFy (K
(F3)? (F3)? F;
_ —(F\\Fy — FiF\)Fy + (F)yFy — FiFp)F = F(F)? + 2F) Fi F — F3(F))°
(F3)3 (F;)?

(Remember that F}; = F/,.) Expanding the determinant in the problem yields precisely the numerator
in the last fraction.

2.2

2.2.6 (a) If x and y are points in S and A € [0, 1], then ||x]| < r, |y]| < r, and by the triangle inequality,
IAx 4+ (1 — Dyl < Allx]| + (1 =]yl <Ar+ (1 —A)r =r. Hence, Ax + (1 — L)y belongs to S. It
follows that S is convex.

(b) S is the interior of the ball §, i.e. what we get when we remove the spherical “shell” {x : ||x|| = r}
from S. The triangle inequality shows that S; is convex. The set S, is the spherical shell we mentioned,
while S3 consists of the shell and the part of R” that lies outside S. Neither S, nor S3 is convex.

2.2.7 (a) Let us call a set S of numbers midpoint convex if %(xl + x3) whenever x| and x; belong to S.

The set S = @ of rational numbers is midpoint convex, but it is not convex, for between any two rational
numbers r; and r;, there are always irrational numbers. For example, lett = ry + (r, —r1)/ V2. Then ¢
lies between r; and r,. If ¢ were rational, then V2 = (rp — r1)/(t — r1) would also be rational, but we
know that /2 is irrational.
(b) Suppose S is midpoint convex and closed. Let x; and x; be pointsin S, withx; < x,,andletAin (0, 1).
We shall prove that the point z = Ax;+ (1 —A)x; belongs to S. Since S is midpoint convex, it must contain
V1 = %(xl + x3), and then it contains yp| = %(xl +y1) = %xl + %XQ and yy; = %(yl +xp) = %xl + %XQ.
We can continue in this fashion, constructing new midpoints between the points that have already been
constructed, and we find that S must contain all points of the form

k m_k k k )
SR+ x2:2—nx1+<1 2n>x2, n=1.2.3..... k=0.1,...2
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14 CHAPTER 2 MULTIVARIABLE CALCULUS

Thus, for each n we find 2" + 1 evenly spaced points in the interval [x;, x2] that all belong to S. The
distance between two neighbouring points in this collection is (x; — x1)/2". Now let r be any positive
number, and consider the open r-ball (open interval) B = B(z;r) = (z —r, z +r) around z. Let n be so
large that (x; — x1)/2" < 2r. Then B must contain at least one of the points (k/2")x; + (1 — k/2")x;
constructed above, so B contains at least one point from S. It follows that z does indeed belong to
cl(S) = S.

2.2.8 Let S be a convex subset of R containing more than one point, and let @ = inf S, b = sup S (where
a and b may be finite or infinite). Then @ < b. In order to prove that S is an interval, it suffices to show
that S contains the open interval (a, b). Let x be a point in (a, b). Since x < b = sup S, there exists a S
in § with x < 8. Similarly, there is an « in S with ¢ < x. Then x is a convex combination of @ and S,
and since S is convex, x belongs to S.

2.3

235 (a) zf,(x,y) = —* — "™, 2, (x,y) = —e*™, and 25, (x, y) = —e ¥, s0 z{,(x,y) < 0 and

2},25, — (Z],)* = €Y > 0. By Theorem 2.3.1, z is a strictly concave function of x and y.

: . " — "o 17 N\2 2
(b) z is strictly convex, because z{; = e* ™Y + ¢* 7Y > 0 and z{,25, — (z],)* = 4e¢** > 0.
() w = u? where u = x + 2y 4+ 3z. So w is a convex function of an affine function, hence convex

according to (2.3.8). It is not strictly convex, however, because it is constant on every plane of the form
x + 2y 4 3z = ¢, and therefore constant along each line joining two points in such a plane.

23.6 (b) Let A > A; > 0 and define u = X;/X>. Then u € (0, 1) and by the concavity of f we have
wf2x) + (1 — w) f(0) < f(prox + (1 — w)0), ie. (A1/A2) f(A2x) < f(A1X), s0 f(AaX)/A2 <
f(A1x)/A;. It also follows that if f is strictly concave, then f(Ax)/A is strictly decreasing as a function
of A.

(c) Take any x # 0 in the domain of f. Then x # 2x and f(%x + %ZX) = f(%x) = §f(x) =
% fx)+ f(x) = % fx) + % f(2x). Therefore f cannot be strictly concave.

2.3.8 The challenge here is mainly in getting the derivatives right, but with care and patience you will find
that

flii,v) = =Pv3,  flhui, 1) = Poivy,  foh(v1, v2) = =P}
where
P =(p+ 1D818Aw10) P2 (810) 7 4 8yv, ) O

These formulas show that for all v and vy, the “direct” second derivatives f/} and f,, have the same sign
as —(p + 1). Also, f{} f5» — (fi5)? = 0 everywhere. It follows from Theorem 2.3.1 that f is convex if
p < —1,and concave if p > —1. If p = —1 then f (v, v2) = A(§;v; + §2v2) is a linear function, which
indeed is both convex and concave.

The equation f|] 35 — (f{5)* = 0 is a consequence of the fact that f is homogeneous of degree 1,
see e.g. Section 12.6 on homogeneous functions in EMEA. Since f is homogeneous of degree 1, it is
linear along each ray from the origin and therefore it cannot be strictly convex or strictly concave for any
value of p.

2.3.9 (a) This is mainly an exercise in manipulating determinants. If you feel that the calculations below
look frightening, try to write them out in full for the case k = 3 (or k = 2). Note that z;/] = 4;a;7/X;X;
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CHAPTER 2 MULTIVARIABLE CALCULUS 15

fori # j,and z};, = a;(a; — 1)z /xl.z. Rule (1.1.20) tells us that a common factor in any column (or row)
in a determinant can be “moved outside”. Therefore,

ay(a; — 1) ayaz aa
/" /7 " 2 ¢ X1X o X1X ‘
X
/" " /7 araj le(az — 1) azdy
L1 Lo Ay z N z .-
Dy = = X2X1 X3 XXk
/! i 1 ) ) ) ’
2k L2 v Tk axai axay ax(ap — 1)
_Z _Z ... —zz
XkX1 XgX2 X
a; — 1 ap ap
X X X
! ! ! a; — 1 ap cee ap
@ a—1 @ a a — 1 a
() a1az ... ak - - (2 apaz...ag -
= R X X2 X2 = —zzk . .
X1X2 ... Xk . . ) . (x1x2 ... x1)
) ) ' ) a a ceeoar—1
aj ag a, — 1 k k k
Xk Xk Xk

where equality (1) holds because a;z/x; is a common factor in column j for each j and equality (2) holds
because 1/x; is a common factor in row i for each i.

(b) More determinant calculations. Let s; = Zi‘: | @i = ai+---+aix. We use the expression for Dy, that
we found in part (a), and add rows 2, 3, ..., k to the first row. Then each entry in the first row becomes
equal to s, — 1. Afterwards we take the common factor s; — 1 in row 1 and move it outside.

sp—1 sp—1 -+ sp—1
aay...ap | @ a—-1 - a
Dk:—22 .
(X]Xz...xk)
ay ay ceeap — 1
1 1 1
ajay...ag ;| a—1 - a

= (=D (x1x3 .. .xk)2Z

ay Ay ak—l

Now subtract column 1 from all the other columns. Rule (1.1.22) says that this does not change the value
of the determinant, so

ayay...ag ;|42 -1 -0 i—1 ajay...ag
Dy = (s — 1) 122, = (=D (g = D
(x1x2...x¢) : . (x1x2...x%)
Aag 0 e =1

(c) By assumption, a; > 0 forall i, soif Y '_;a; < 1, then s = Zle a; < 1 for all k. Therefore Dy,
has the same sign as (=K. It follows from Theorem 2.3.2(b) that f is strictly concave.
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2.4

2.4.3 We shall show that Jensen’s inequality (2.4.2) holds for all natural numbers m, not just for m = 3. Let
f be a function defined on a convex set S in R" and for each natural number m let A (m) be the following
statement: “The inequality

FOuxi+ -+ X)) = A f(X1) + -+ A [ (Xp)

holds forall x;, ..., x,, inSandallA; >0,..., A, >0withA; +---4+ A, = 1.7

We shall prove that A(m) is true for every natural number m. It is obvious that A(1) is true, since
it just says that f(x) = f(x), and A(2) is also true, since f is concave. Now suppose that A (k) is true,
where k is some natural number greater than 1. We shall prove that A(k + 1) is also true.

Let xy, ..., X¢+1 be points in S and let Ay, ..., Ar4 be nonnegative numbers with sum 1. We can
assume that Ay > 0, for otherwise we are really in the case m = k. Then & = Ay 4+ Ar4+1 > 0 and we
can definey = (1/u)(MxXr + Ag+1Xk+1). The point y is a convex combination of x; and Xx1, and so
y € S. By A(k) we have

Fuxy + -+ Aaxiq 1) = fFuxg + - 4+ AoiXe—1 + py) )
>MfX) + - Ao fXk—1) + e f(y)

Moreover, since f is concave, and (Ax/w) + (Agr1/1) = 1,

A A A A
uf (y) = uf (;"xk + %x;m) = (ff(xw + %f(ka) = e f (%) + Mt f iy 1)

and this inequality together with (x) yields

FOuxi 4+ 4 X)) = A f (X)) + - 4 Aot f(Xe—1) + A f (Xk) + A1 f K1)

which shows that A(k + 1) is true. To sum up, we have shown that: (i) A(2) is true, (ii) A(k) = A(k+1)
for every natural number £ > 2. It then follows by induction that A(m) is true for all m > 2. Note that
both (i) and (ii) are necessary for this conclusion.

24.5 Letx,ybelongto S andlet & € [0, 1]. Then z = Ax 4+ (1 — 1)y belongs to S. To show that f is
concave, it is sufficient to show that A f (x) + (1 — 1) f(y) < f(z). By assumption, f has a supergradient
p at z, and therefore

fO-f@<p-x-2 ad [H-f@D=p -2
Since both A and 1 — X are nonnegative, it follows that
M)+ =0f) = f@) =1FE = f@]+ 1 =D — f@)]
<p x-2+(1-Ny-2]=p-0=0
by the definition of z.

2.4.6 Theorem 2.4.1(c) tells us that f(x,y) = x*+ y*isa strictly convex function of (x, y) if and only if

fx,y) — f(xo, yo) > V f(x0, yo) - (x — x0, ¥y — yo) whenever (x, y) # (xo, yo). Since V f(xo, yo) =
(4x8, 4y3 ), we have

fx,y) = f(xo, y0) = V f(x0, yo) - (x — x0, y — Yo) = p(x, x0) + p(y, yo)
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where p(t, t9) = t* — 15 — 4t3(t — to) for all ¢ and #y. Now, p(t, 19) = (t — 1) (t> + 1>ty + t13 — 313).
The second factor here is O if 1 = #, so it is divisible by  — fy, and polynomial division yields

p(t, t0) = (t — t0)(t — o) (t* + 2ttg + 313) = (t — 10)*[(¢ + 10)* + 2£3]

The expression in square brackets is strictly positive unless t = fy = 0, so it follows that p(¢, #p) > 0
whenever ¢ # ty. Hence, p(x, xo) + p(y, yo) > 0 unless both x = x¢ and y = yy.

2.5

2.5.2 (a) f is linear, so it is concave and therefore also quasiconcave.

(c) The set of points for which f(x,y) > —1is P_; = {(x,y) : y < x~2/3}, which is not a convex
set (see Fig. M2.5.2(c), where P_; is the unshaded part of the plane), so f is not quasiconcave. (It is
quasiconvex in the first quadrant, though.)

(d) The polynomial x4+ x>+1is increasing in the interval (—oo, —2/3], and decreasing in [—2/3, O].
So f is increasing in (—oo, —2/3] and decreasing in [—-2/3, 00). (See Fig. M2.5.2(d).) Then the upper
level sets must be intervals (or empty), and it follows that f is quasiconcave. Alternatively, we could use
the result in the note below.

fx) < -1

— T 7
45 o R . /\FFM x

Figure M2.5.2(c) Neither P¢ nor P, Figure M2.5.2(d) The graph of f.
is convex for a = —1.

A note on quasiconcave functions of one variable

It is shown in Example 2.5.2 in the book that a function of one variable that is increasing or decreasing
on a whole interval is both quasiconcave and quasiconvex on that interval. Now suppose f is a function
defined on an interval (a, b) and that there is a point ¢ in (a, b such that f is increasing on (a, c] and
decreasing on [c, b). Then f is quasiconcave on the interval (a, b). This follows because the upper level
sets must be intervals. Alternatively we can use Theorem 2.5.1(a) and note that if x and y are points in
(a, b),then f(z) > min{f(x), f(y)} for all z between x and y. We just have to look at each of the three
possibilities x < y <c¢,x <c¢ < y,and ¢ < x < y, and consider the behaviour of f over the interval

[x, y] in each case. This argument also holds if a = —oo or b = 00, and also in the case of a closed
or half-open interval. Similarly, if f is decreasing to the left of ¢ and increasing to the right, then f is
quasiconvex.

We could use this argument in Problem 2.5.2(d), for instance.

2.5.6 Since f is decreasing and g is increasing, it follows from Example 2.4.2 that both of these functions

are quasiconcave as well as quasiconvex. Their sum, f(x) + g(x) = x> — x, is not quasiconcave,
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however. For instance, it is clear from Fig. A2.5.6 in the answer section of the book that the upper level
set Pp={x: f(x)+g(x) >0} =[—1,0]U[1, co), which is not a convex set of R. Similarly, the lower
level set PO = (—oo0, —1] U [0, 1] is not convex, and so f + g is not quasiconvex either.

2.5.7 (a) Let f be single-peaked with a peak at x*. We want to prove that f is strictly quasiconcave. That
is, we want to prove that if x < y and z is a point strictly between x and y, then f(z) > min{f(x), f(y)}.
There are two cases to consider:

(A) Suppose z < x*. Since x < z < x* and f is strictly increasing in the interval [x, x*], we have
f@) > fx).

(B) Suppose x* < z. Thenx*™ < z < y, and since f is strictly decreasing in [x*, y], we get f(2) > f(y).

In both cases we get f(z) > min{ f(x), f(y)}, and so f is strictly quasiconcave

(b) No. Even if f is concave, it may, for example, be linear in each of the intervals (—oo, x*] and

[x*, 00), or in parts of one or both of these intervals, and in such cases f cannot be strictly concave.

2.5.11 With apologies to the reader, we would like to change the name of the function from f to 4. So
h(x) is strictly quasiconcave and homogeneous of degree ¢ € (0, 1), with A(x) > O for all x # 0 in
K and h(0) = 0, and we want to prove that / is strictly concave in the convex cone K. Define a new
function f by f(x) = h(x)'/4. Then f(x) is also strictly quasiconcave (use the definition) and satisfies
the conditions of Theorem 2.5.3. Let x £ y and let A € (0, 1).
Assume first that x and y do not lie on the same ray from the origin in R”. Then both f(x) and f (y)
are strictly positive and we can define «, 8, i, X', and y’ as in the proof of Theorem 2.5.3. We getx’ #y’
and f(x') = f(y’), and (see the original proof)

fOx+ A =0y = f(ux'+ A —y) > f&) = f) =puf &)+ A - wfE)
= uB/a)fx)+ (B =B f¥) =rf(X)+ 1 =2)f(¥)

with strict inequality because f is strictly quasiconcave. Since 0 < ¢ < 1, the gth power function ¢ +— ¢4
is strictly increasing and strictly concave, and therefore

hOx+ (1 =0y = (fOx+ A =) > (f®) + 1 =0 fF)!
> AfX)7 4+ (1= 1) (W = 2h(x) + (1 — Lh(y)

It remains to show that Z7(Ax + (1 — A)y) > Ah(x) + (1 — X)Ah(y) in the case where x and y lie on the
same ray from the origin. We can assume that x # 0 and y = 7x for some nonnegative number ¢ # 1.
Since the gth power function is strictly concave, (A + (1 — X)) > A9+ (1 —AM)t? = A+ (1 —A)r?. It
follows that

hx + (1 =)y = h((h+ (1 = 0Dx) = (A + (1 —)1) h(x)
> (A4 (1 = Vt)h(x) = Ah(x) + (1 — DAEx) = Ah(x) + (1 — L)h(y)

2.6

26.1 (a) fl(x,y) = ye, fi(x,y) = xe®, f1(x,y) = y?e7. flh(x,y) = eV +xye, fh(x,y) =
x2e*¥. With the exception of f15. these derivatives all vanish at the origin, so we are left with the quadratic
approximation f(x, y) ~ f(0,0) + f{5(0,0)xy = 1 4 xy.
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() fi(x,y) =2xe Y, f(x, y) = —2ye" 7, fl1(x, y) = Q+4xD)e¥ T, fl(x, y) = —dxye Y,
1, y) = (=2 + 4y2)e ™", Hence, £/(0,0) = £3(0,0) = 0, f,(0,0) = 2, f,(0,0) = 0,

[3(0,0) = =2.
Quadratic approximation: f(x,y) & f(0,0) + 1 £{1(0, 0)x> + 1 £7,(0,0)y? = 1 +x2 — y2.

(c) The first- and second-order derivatives are: f|(x,y) =

1 "
s X, = - :
(14 x +2y)? Fx. ) (14 x +2y)? (14 x +2y)?
—4, and the quadratic approximation to f(x, y) around (0, 0) is

fx, )~ £(0,0) + £/0,00x + £5(0,0)y + 3 £11(0, 0)x* + £/5(0, 0)xy + % £35(0, 0)y*
=1+x+2y— %)cz—2xy—2y2

- / —
Txt 2y fHlx,y)

’ 2//2()(:, )’) = -

l+x+2y’
10 y) = -

(There is a misprint in the answer in the first printing of the book.)

2.6.4 7 is defined implicitly as a function of x and y by the equation F(x, y, z) = 0, where F(x, y,7) =
Inz—xy+xz—y. Withx =y =0we getlnz = 0,s0z = 1. Since Fj(x,y,2) = 1/z+x =1 #Oat
(x,y,2)=(0,0,1),zisaC ! function of x and y around this point. In order to find the Taylor polynomial
we need the first- and second-order derivatives of z with respect to x and y. One possibility is to use the
formulaz, = —F 1/ (x,y,2)/F 3/ (x, y, z) and the corresponding formula for z’y, and then take derivatives of
these expressions to find the second-order derivatives. That procedure leads to some rather nasty fractions
with a good chance of going wrong, so instead we shall differentiate the equation Inz = x°y — xz + y,
keeping in mind that 7 is a function of x and y. We get

Z)z=3x%y —z—x7. = (1+x2)7. =3x%yz -7 (1)

z/y/z=x3—xz/y+1 — (1+xz)z/y=x3z+z (2)

Taking derivatives with respect to x and y in (1), we get

(24 x72)7 + (1 +x2)7), = 6xyz + 3x%yz, — 222, 3)
x2,2 + (1 4+ x2)2}, = 3x°z + 3x%yz}, — 222 4)

and differentiating (2) with respect to y, we get
xZ, 2, + (1 +x2)2), = x°2), + 2 5)

Now that we have finished taking derivatives, we can let x = y = 0 and z = 1 in the equations we have

found. Equations (1) and (2) give z;, = —1 and z’y = 1 (at the particular point we are interested in), and
then (3)—(5) give 2/, = 3, z;’y = —2, and z/y/y = 1. The quadratic approximation to z around (0, 0) is
therefore

Z%I—x+y+%x2—2xy+%y2

(The first printing of the book has a misprint in the answer to this problem, too—the coefficient of x? is
wrong.)

2.7

272 (a) F(x,y,2) = x>+ y> + 2% — xyz — 1 is obviously C! everywhere, and F;(0,0,1) = 3 # 0,
so by the implicit function theorem the equation defines z as a C' function g(x, y) in a neighbourhood
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of (xo, y0,20) = (0,0, 1). To find the partial derivatives g{ and g} there is no need to use the matrix
formulation in Theorem 2.7.2. After all, g is just a single real-valued function, and the partial derivative
g1 (x,y) is just what we get if we treat y as a constant and take the derivative of g with respect to x.
Thus, g (x,y) = —F{(x,y,2)/F(x,y,2) = —(3x? — yz)/(3z> — xy) and, in particular, 81(0,0) =
—F[(0,0, 1)/F;(0,0, 1) = 0. Likewise, g5(0,0) = 0.

(b) As in part (a), Fj is C! everywhere and Fi(x,y,z) = € —2z # 0 for z = 0, so the equa-
tion F = 0 defines z as a C! function g(x,y) around (xo, yo,z0) = (1,0,0). We get gj(x,y) =
—F{(x,y,2)/F5(x,y,2) = 2x/(e* —2z) and g5 (x,y,2) = —F}/F; = 2y/(e* — 2z), 50 g1(1,0) =2
and g5(1,0) = 0.

2.7.3 The given equation system can be written as f(x, y, z, u, v, w) = 0, where f = (f1, f2, f3) is the
function R? x R3 — R3 given by fi(x, vy, z,u,v,w) = y2 —z4u—v—w3i+1, fHx,y,z,u,v,w) =
—2x—i—y—z2+u+v3 —w 4+ 3, and f3(x,y,z,u,v,w) =x24+7—u— v+ w? — 3. The Jacobian
determinant of f with respect to u, v, w is

1 —1 —3w?
d(u, v, w) 1 -1 3w?

This determinant is different from O at P, so according to Theorem 2.7.2 the equation system does define
u, v, and w as C! functions of x, v, and z. The easiest way to find the partial derivatives of these functions
with respect to x is probably to take the derivatives with respect to x in each of the three given equations,
remembering that u, v, w are functions of x, y, z. We get

w. — v —3ww. =0 u, — vl — 3w, =
1 2.7 r_ l r_
—24u +3vv, —w, =0, soatP weget u - w, =
1 l 2./ l l r_

2x —u, — v, +3ww, =0 —u, — v, + 3w, = -2

The unique solution of this system is u|, = 5/2, v\ = 1, w), = 1/2. (In the first printing of the book w’,
was incorrectly given as 5/2.)

e'cosv —e'sinv
e'sinv  e“cosv

fa 1y

g &

2.7.4 The Jacobian determinant is

= 2 (cos? v+ sin? v) = €2, which

is nonzero for all u (and v).
(a) e" # 0, so the equations imply cos v = sin v = 0, but that is impossible because cos” v +sin v = 1.
(b) We must have cosv = sinv = e, and since cos?v + sin*v = 1 we get 2cos’v = 1 and

therefore sinv = cosv = /1/2 = %\/5 (Remember that cosv = e™* cannot be negative.) The only
values of v that satisfy these equations are v = (% + 2k)m, where k runs through all integers. Further,

e =1/cosv = /2 gives u = %«/5
2.7.6 The Jacobian is xj. We find that x; = y; + y2, x2 = y2/(y1 + y2) (provided y; + y» # 0). The

transformation maps the given rectangle onto the set S in the y; y,-plane given by the inequalities

» 52

yi+» 3

. Lo 1
O I<yi+y»=2, (II)EE
The inequalities (i) show that y; 4+ y, > 0, and if we multiply by 6(y; + y») in (ii) we get the equivalent
inequalities

3(yi+y2) <6y <4(y1 +y2) = y1 <y =<2y (iii)
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CHAPTER 2 MULTIVARIABLE CALCULUS 21

It follows that § is a quadrilateral with corners at (1/2, 1/2), (1, 1), (2/3,4/3), and (1/3, 2/3). See figure
M2.7.6.

Y2
A
> 2 =2y
y2 =1
1 S
yity=2
1 > » V1
yity=1
Figure M2.7.6
8a—r(r cos b)) %(r cos b))

278 (a) J =

cosf® —rsinf
sin @ rcosf

D (rsing) L (rsing)
(b) J # 0 everywhere except at the origin in the r0-plane, so T is locally one-to-one in A. But it is not
globally one-to-one in A, since we have, for example, 7' (r, 0) = T (r, 27).

2.7.10 (a) Taking differentials in the equation system

l+x+yu—Q+w!™=0 W
2u — (1 +xy)e"®=D =0

we get

1
w(dx +dy) + (x + y) du — e(1+V M+ [ln(2 +u)dv+ 3 1 v

du]:O
u

2du — e V(ydx + xdy) — (1 + xy)e”(x_l)((x —1du+ udx) =0
Ifwenowletx =y =u = 1and v =0, we get

2du+dx +dy —3In3dv—du=0
and
2du —dx —dy —2dx =0

Rearranging this system gives
du —3In3dv=—dx —dy

2du = 3dx +dy
with the solutions
d—3d +ld and dv = ! Sd —I—3d
HE Ty W T 3mz 2T Y
Hence,
ou 3 ov 5
", )= —(1,1) == d ", H=—1,1)= —
(D= =7 and v D=2 D=
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(Alternatively we could have used the formula for the derivatives of an implicit function, but it is still a
good idea to substitute the values of x, y, u, and v after finding the derivatives.)

(b) Define a function f by f(u) = u — ae*®=". Then f(0) = —a and f(1) = 1 — ae’~!. Since
b < 1, we have =1 < €% = 1. It follows that ae?™' < a < 1, so f(1) > 0. On the other hand,
f(0) < 0, so the intermediate value theorem ensures that f has at least one zero in [0, 1]. Further,
ffwy=1—ald— De*®=D > 1, because a(b — 1) < 0. Therefore f is strictly increasing and cannot
have more than one zero, so the solution of f(x) = 0 is unique.

(c) For given values of x and y, leta = (1 +xy)/2 and b = x. The equation in part (b) is then equivalent
to the second equation in system (1). Thus we get a uniquely determined u, and this u# belongs to [0, 1].
(Note that, when x and y lie in [0, 1], then the values of a and b that we have chosen also lie in [0, 1].)
The first equation in (1) now determines v uniquely, as

In(1 + (x + y)u)
In2 + u)

2.8
2.8.1 (a) The system has 7 variables, Y, C, I, G, T, r, and M, and 4 equations, so the counting rule says
that the system has 7 — 4 = 3 degrees of freedom.

(b) We can write the system as

Jim, T,G,Y,C,I,r)=Y—-C—-1—-G=0
LM, T,G,Y,C,I,r)=C—f(Y—-T) =0
LM, T,G,Y,C,I,r)y=1—h(r) =0
JaM, T,G,Y,C,I,r)=r —m(M) =0

(%)

Suppose that f, i, and m are C! functions and that the system has an equilibrium point (i.e. a solution
of the equations), (Mo, Ty, Go, Yo, Co, I, ro). The Jacobian determinant of f = (f1, f>, f3, fa) with
respectto (Y, C, I, r) is

1 -1 -1 0
Wfi,foo 5 fa) _|-f@x=T) 1 0 0 |_ . o
o, C. I,r) 0 0 1 —w@| =TS =D
0 0 0 1

so by the implicit function theorem the system (x) defines Y, C, I, and r as C' functions of M, T, and
G around the equilibrium point if /(Y — T) # 1.

Note that the functions 4 and m have no influence on the Jacobian determinant. The reason is that once
M, T, and G are given, the last equation in () immediately determines r, and the next to last equation
then determines /. The problem therefore reduces to the question whether the first two equations can
determine Y and T when the values of the other variables are given. The implicit function theorem tells
us that the answer will certainly be yes if the Jacobian determinant

‘3(f1, f2)
(Y, C)

—1—f(Y=T)

1 —1
-7 1

is nonzero, i.e.if f/(Y —T) # 1.
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2.8.2 (a) The Jacobian determinants are

A, v) _|uy U ety ety 0 "
= = = 1
a(x,y) v v/y dx +4y—1 4dx+4y—1
1 —X
/ / o 2
d(u, v) U, u, y y 2x 2x 0 i)
= = = — = 11
ax.y) v, —2y 2x YO+ y(y+x)?

(y+x? (x+y)?
(b) (i) Itis not hard to see that v = 2(x + y)> — (x + y) and x + y = Inu, so v = 2(Inu)?> — In u.

(i1)) We have x = uy, so
o y—uy l—u

Cy4uy 14w

2.8.3 We need to assume that the functions f and g are C! in an open ball around (x¢, yo). For all (x, y) in
A the Jacobian determinant is
ou Ju
a(u, v) B ax 5 _ ff(x’}’) fz/(x’)’) _0
0, y) | 0v vl el(x,y) gyl
ax dy

s0 f(x, )& (x,y) = f{(x, y)g5(x, y). Since f](xo, yo) # 0, the equation G(x, y,u) =u— f(x,y) =
0 defines x as a function x = ¢(y, u) in an open ball around (yo, up), where ug = f(xg, yo). Within
this open ball we have ¢|(y, u) = dx/dy = —(3G/dy)/(dG/dx) = —fy(x,y)/f{(x,y). Moreover,
v =g, y) = gle(y,u),y). If welet Y(y,u) = glp(y,u),y), then ¥{(y,u) = g1¢; + &, =
— 81/ + 8, =—figy/f{ + & = 0. Thus, ¥ (y, u) only depends on u, and v = ¥ (y, u) is a function
of u alone. Hence, v is functionally dependent on u.

(If we let F (4, v) = v — ¥ (yo, u), then F satisfies the requirements of definition (2.8.5).)

Chapter 3 Static Optimization
3.1

3.1.3 (a) The first-order conditions for maximum are

| VIR V) L 45 —ap
gpvl / Uz/ —q1 =0, Epvl/ Uy / —q2:0
with the unique solution
16 3 3 I 6 5 4
T T I A VYL TR

The objective function pv;/ 3 v;/ - qi1v1 — qav is concave, cf. the display (2.5.6) on Cobb—Douglas
functions, and therefore (v, v3) is a maximum point.

(b) The value function is

1 h
™ (pyq1, @2) = pH' P WHY? — g} — qavi = @P% 245
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and it follows that
om*(p,qr.q2) 1 5 5

% =P a4 = HBPwn'?
Bﬂ*(p,q1,qz) 1 3 _ am*(p, q1,qz) 1 _
T % = vy, T —  p8 gt =

9q1 216 9q> 144
3.1.5 The first-order conditions for maximum are

f{(x,y,r,s)=r2—2x=0, fz/(x,y,r,s)=3s2—16y=O

with the solutions x*(r, s) = 2r and y*(r,s) = 16s Since f(x, y,r,s) is concave with respect to
(x, ¥), the point (x*, y*) is a maximum point. Moreover,
1 9
* _ * Lk — _ 4
f(’ls)—f(x,y ’rv ) 4}" +32
SO
8f*(rvs) 3 af*(rvs) 9 3
—_— =7 , —_— = =
ar as 8
On the other hand,
af (x,y,r,s) af (x,y,r,s)
- =2rx, - = 6sy
ar as
SO

[af(x7 y’ r’s)]
or ()= %)

in accordance with the envelope result (3.1.3).

I P

:| =6sy* = =
ds (e, )=(x*,y")

3.1.6 We want to maximize

n
TV, p,q, Q) =TV, evvs Ups PoQlseeesQnysQlyee.,dy) = Z(pal- In(v; +1) — g;v;)
i=1
with respectto vy, . .., v, for given valuesof p,q = (g1, ..., qn),anda = (ay, ..., a,). Since I /dv; =
pa;/(v; + 1) — g;, the only stationary pointis v* = v*(p, q,a) = (v}, ..., v;), where v\’ = pa;/q; — 1
Since 7 is concave with respect to vy, ..., vy, this is a maximum point. The corresponding maximum

value is
n

n
n*(P’QI, - qn, ay, ""an) = Z(pai ln(v;'k + 1) _in;k) = Z(pai ln(%) _ql(_ - 1))

i=1 i=1 i qi

n
= (pailnp + pa;Ina; — pa; Ing; — pa; + q;)
i=1
Easy calculations now yield l

T (p,q,a) pa; . . 37 (v, p, q, a)
— = Zai In(—) = Zai In(v} + 1) = e
P i=1 i i=1 P v=v*(p,q.a)
0r*(p. Q@) _ P4 e [Bn(v, p. 4 a)]
0g; qi ' 9q; v=v*(p,q,a)

or*(p,q,a ; or(v, p,q,a
—(;’ a ):pln(ﬂ):pln(v;"ﬂ):[—”( L4 )}
a; qi da; v=v*(p.q.a)

in accordance with formula (3.1.3).
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3.2

3.2.1 The first-order conditions are
fixn, x2,x3) = 2x1 — x4+ 2x3 =0
L&, x2,x3) = =x1 + 204+ x3=0
f3(x1, x2,x3) = 2x1+ x2+6x3=0

The determinant of this linear equation system is 4, so by Cramer’s rule it has a unique solution. This
solution is of course (xy, x2, x3) = (0, 0, 0). The Hessian matrix is (at every point)

2 -1 2
H:f//(xl,XQ,X3) = —1 2 1
2 1 6
. . . . 2 -1 .
with leading principal minors Dy = 2, Dy = 1 | = 3,and D3 = |H| = 4, so (0, 0, 0) is a local

minimum point by Theorem 3.2.1(a).
3.2.3 (a) The first-order conditions are
filx,y,2) =2x+2xy =0
fr(x,y,2) =x"+2y2=0
[y, ) =y"+2z—-4=0

This system gives five stationary points: (0, 0, 2), (0, £2, 0), (:I:«/g, —1, 3/2). The Hessian matrix is

242y 2x O
f'(x,y,2) = 2x 2z 2y
0 2y 2

with leading principal minors Dy = 2 + 2y, D, = 4(1 + y)z — 4x2, and D3 = 8(1 + y)(z — y?) — 8x2.
The values of the leading principal minors at the stationary points are given in the following table:

Dy D, D3

0,0,2) 2 8 16
0,2,0) 6 0 -96
0,-2,0)0| -2 0 32

(3, -1,3/2) 0 | —12 | —24
(—v3,-1,3/2)| 0 | —12 | —24

It follows from Theorem 3.2.1 that (0, 0, 2) is a local minimum point, and all the other stationary points
are saddle points.

(b) The stationary points are the solutions of the equation system

fl/(XI, X2,X3,X4) =8xp —8x1 =0
le(xl, X2, x3, x4) = 20 + 8x; — 12x22 =0
f3(x1,x2, x3,x4) =48 —24x3 =0

fz{(xl’XZ, X}, x4) - 6 - 2x4
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The first equation gives xo = x1, and then the second equation gives 12x12 — 8x1 — 20 = 0 with the two
solutions x; = 5/3 and x; = —1. The last two equations determine x3 and x4. There are two stationary
points, (5/3,5/3,2,3) and (—1, —1, 2, 3). The Hessian matrix is

-8 8 0 0
£/ (x1, x2, x3, x4) = 8 —24x; 0 0
1, A2, A3, X4 0 0 24 0

0 0 0 -2

and the leading principal minors of the Hessian are
D] = —8, Dz = 192)62 — 64 = 64(3)62 - 1), D3 = —24D2, D4 = 48D2

At(—1,—1,2,3)weget D, < 0,sothispointisasaddle point. The other stationary point, (5/3, 5/3, 2, 3),
we get D; <0, Dy > 0, D3 < 0, and D4 > 0, so this point is a local maximum point.

3.3

3.3.2 (a) Theadmissible setis the intersection of the sphere x>+ y?+z> = 216 and the plane x +2y+3z = 0,
which passes through the center of the sphere. This set (a circle) is closed and bounded (and nonempty!),
and by the extreme value theorem the objective function does attain a maximum over the admissible set.
The Lagrangian is £(x,y,2) = x +4y + 2z — A (x> + y? + 22 — 216) — Aa(x + 2y + 3z), and the
first-order conditions are:

() 1—20x —Aa=0, (i) 4—2xky =20 =0, (i) 1 —2kiz—3% =0

From (i) and (ii) we get Ay = 1 — 2X1;x = 2 — A1y, which implies A;(y — 2x) = 1. Conditions (i)
and (iii) yield 1 — 24jx = 1 — 2A;z = 0, which implies A;(3z — 2x) = —%. Multiply by —3 to get
AM(Bx —z)=1.

It follows that y — 2x = 3x — z, so z = 5x — y. Inserting this expression for z in the constraint
x +2y + 3z = 0 yields 16x — y = 0, so y = 16x and z = —11x. The constraint x> + y*> 4+ z> = 216
then yields (1 + 256 + 121)x? = 216, so x> = 216/378 = 4/7, and x = +2/7. Hence there are two
points that satisfy the first-order conditions:

1 2 32 22 2 2 32 22
x' = (V7. 3V -BVT), X =(-3V1.-FVT. BVT)
The multipliers are then A1 = 1/(y — 2x) = 1/(14x) = £5+/Tand hy = 1 — 24 1x =

The objective function, f(x, y, z) = x + 4y + z, attains it maximum value fyax
with A = 21—8\/7 LAy = g. (The point x2 is the minimum point and fiin = —@«/7 .)

6
T 108
= Tﬁ at Xl,

Comment: It is clear that the Lagrangian is concave if A; > 0 and convex if A; < 0. Therefore
part (b) of Theorem 3.3.1 is sufficient to show that x! is a maximum point and x? is a minimum point in
this problem, so we did not need to use the extreme value theorem.

(b) Equation (3.3.10) shows that Af* &~ Ay - (—1) + A2 - 0.1 = — /7 + %° ~ —0.009.
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3.3.4 (a) With the Lagrangian £(x, y) = %ln(l +x1) + % In(1 4+ x2) — A(2x; 4+ 3x, — m), the first-order

conditions are |

— A=0
2(1 + x1)

1) A =0, (i1)

40 +x)
Equations (i) and (ii) yield

1 1
A= =
41 +x1) 12(1 +x2)

— 1l4+x1=31+x) < x;—3x,=2

Together with the constraint 2x| 4 3x; = m this gives x| = x(m) = (m+2),x, = x3(m) = §(m—4),
and then A = ?T(m +5

(b) U*(m) = 3 In(1+x{(m)+3 In(1+x3(m)) = 5 In(3(n+5))+ 3 In(5(m+5)) =  In(m+5)—In3,
sodU*/dm = 3(m +5)"" = A.

3.3.6 (a) The two constraints determine an ellipsoid centred at the origin and a plane through the origin,
respectively. The admissible set is the curve of intersection of these two surfaces, namely an ellipse. This
curve is closed and bounded (and nonempty), so the extreme value theorem guarantees the existence of
both maximum and minimum points. It is not very hard to show that the matrix g’(x) in Theorem 3.3.1
has rank 2 at all admissible points, so the usual first-order conditions are necessary.

Lagrangian: L(x, y,z) = x4+ y2 + 22—+ v +422 - 1) — mx + 3y + 2z). First-order
conditions:

1) 2x —=2xx — 2 =0, (i) 2y —2A1y — 33X =0, (iii)) 2z —8i1z — 242, =0

From (i) and (ii) we get (iv) Ap = 2(1 — Ap)x = %(1 —A1)Yy.

(A) If Ay = 1, then A, = O and (iii) implies z = 0. The constraints reduce to X2+ y2 =landx+3y =0,
and we get the two candidates

(x,y.2) = (£5v10, F5+/10,0) (%)

(B) If Ay # 1, then (iv) implies y = 3x, and the second constraint gives z = —5x. The first constraint
then yields x> + 9x2 4 100x? = 1 which leads to the two candidates

(x,y,2) = (£115vV110, £535V/110, F5;+/110) (%)

In this case the multipliers A; and A, can be determined from equations (i) and (iii), and we get 1| = %

and A, = %x.

The objective function, x> + y? 4 z2, attains its maximum value 1 at the points (x), while the points
() give the minimum value 7/22. It is worth noting that with A; = 1 the Lagrangian is concave (linear,
in fact), so Theorem 3.3.1(b) shows that the points in (%) are maximum points, even if we do not check the
rank condition in Theorem 3.3.1(a) (but without that rank condition we cannot be sure that the first-order
conditions are necessary, so there might be other maximum points beside the two that we have found).

(There is a much simpler way to find the maximum points in this problem: Because of the first
constraint, the objective function x> 4+ y? 4 z? equals 1 — 3z2, which obviously has a maximum for z = 0.
We then just have to solve the equations x> + y?> = 1 and x + 3y = 0 for x and y.)

(b) Af*~1-0.05+0-0.05= 0.05.
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3.3.10 There was a misprint in this problem in the first printing of the book: The constraints should all be
equality constraints, so please correct g;(x,r) <0to g;j(x,r) =0forj =1,...,m.
Now consider two problems, namely the problem in (3.3.13) and the problem

i(x,r) =0, ji=1,...,m
max f(x,r) subject to {gj / ()
I"l'me_H', i=1,...,k

The Lagrangian for problem (3.3.13) is L(x,r) = f(X,r) — ZT:] Ajgi(x,r) and the Lagrangian for
problem () is f(x, r)=f(x,r)— 27:1 rigi(x,r)— Zle Amai (ri —byai). The first-order conditions
for maximum in problem () imply that

m

0L, 1) _ f(x,1) 3 8% D)
3}’,‘ - ar,- 8rl-

i =0, i=1,... .k
j=1

Equation (3.3.9) implies that df*(r)/dr; = A;+i, and so

m

af*(r) _df(x,r) B Z dgj(x,r) _ aL(x, 1)

= Ay =
31’,’ et arl- al’i ari

j=1

3.4
3.4.3 Lagrangian: L(x,y,2) = x+y+z—A1 (x> +y>+72—1)— Xy (x —y —z—1). First-order conditions:
(1) 1-20x =24 =0, (@) 1 =24y+A =0, (i) I -2x4z+2,=0
Equations (ii) and (iii) give 2A1y = 2A1z. If A = 0, then (i) and (ii) yield 1 — A =0and 1 4+ A, = 0.

This is clearly impossible, so we must have A1 # 0, and therefore y = z. We solve this equation together
with the two constraints, and get the two solutions

(x1, y1,21) = (1,0, 0), A =1, Ay =—1

(2, y2,22) =(=3. -3, -3, Mh=-1, h=3
In the second-derivative test (Theorem 3.4.1) we now have n = 3 and m = 2, so all we need check is

0 0 2x 2y 2z

0 O 1 —1 —1
B3(x,y,z) =|2x 1 —2)\1 0 0

2y =1 0 2% 0

2z -1 0 0 -2\

A little tedious computation yields B3(x1, yi, z1) = —16 and B3(x3, y2, z2) = 16. Hence (x1, y1, z1) is
a local maximum point and (x3, y2, z2) is a local minimum point.
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3.5

3.5.2 (a) The Lagrangianis L(x,y) =In(x +1)+In(y +1) —A1(x +2y —¢) — Ax(x + y — 2), and the
necessary Kuhn—Tucker conditions for (x, y) to solve the problem are:

1
L1, y)=———= A =2 =0 1
1(x, ) T 1= A2 (1)

1
Lo(x,y)=—— =271 — A =0 )
2(x, y) vE 1= A2 )
A >0, and A; =0 1if x+2y <c 3)
A2>0, and A =0if x4+ y <2 4)

Of course, (x, y) must also satisfy the constraints

X+2y<c )
x4+ y<2 (©6)

(b) Let c = 5/2. We consider the four possible combinations of A; = 0, ; > 0, A, = 0, and X, > 0.
(I) A1 = A = 0. This contradicts (1), so no candidates.

D) x; > 0, A, = 0. From(3)and (5), x+2y = 5/2. Moreover, by eliminating A; from (1) and (2) we get
x+1 = 2y+2. The last two equations have the solutionx = 7/4, y = 3/8. Butthenx +y = 17/8 > 2,
contradicting (6). No candidates.

(III) Ay =0, A, > 0. From (4) and (6), x + y = 2. Moreover, eliminating A, from (1) and (2) we get
x =y,andsox =y = 1. Butthen x + 2y = 3 > 5/2, contradicting (5). No candidates.

IV) A1 >0, 2 >0. Thenx+y =2andx+2y =5/2,s0x =3/2,y = 1/2. We find that .| = 4/15
and Ay = 2/15, so this is a candidate, and the only one.

The Lagrangian is obviously concave in x and y, so (x, y) = (3/2, 1/2) solves the problem.

(c) If we assume that V (¢) is a differentiable function of ¢, then formula (3.5.6) yields V'(5/2) = A =
4/15.

A direct argument can run as follows: For all values of ¢ such that A; and X, are positive, x and y
must satisfy the constraints with equality, and so x = 4 — ¢ and y = ¢ — 2. Then equations (1) and (2)
yield

1 1 1 1 2 1 2 1

= — = — and = - =
y+1 x4+41 c¢—1 5—-c x+1 y+1 S5S—c¢c c¢c—1

Al

It is clear that these expressions remain positive for ¢ in an open interval around ¢ = 5/2. (More precisely,
they are both positive if and only if 7/3 < ¢ < 3.) For such c, the derivative of the value function is

_8Vdx | 9Vdy 1 1

8xdc+$dc_ 1+x+1—|—y_

3.5.3 We reformulate the problem as a standard maximization problem:

—x*—y <2

maximize —4 ln(x2 +2)— y2 subject to |

—X

A
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The Lagrangian is L(x, y) = —4In(x?>+2) — y> — A (=x%2 — y+2) — Ay(—x + 1), so the necessary
Kuhn-Tucker conditions together with the constraints are:

L) =— 28x F x4 =0 ()
x> +2

Ly=-2y+r=0 (ii)

A >0, and A =0 if x> +y>2 (iii)

>0, and A, =0 if x > 1 (iv)

x2+y22 V)

x>1 (vi)

We try the four possible combinations of zero or positive multipliers:

(A) & =0, Ar = 0. From (i) we see that x = 0, which contradicts x > 1.

B) *1 =0, Ay > 0. From (iv) and (vi), x = 1, and (ii) gives y = 0. This contradicts (v).

(C) A1 > 0, Ap = 0. From (iii) and (v) we get X2+ y = 2. Equation (i) gives A; = 4/(x2 +2), and then
(i) gives y = A1 /2 = 2/(x%> +2). Inserted into x> + y = 2, this gives x* = 2, or x = /2. It follows

thaty = 2/(v/242) =2—+/2,and A} =4 —2+/2.So (x, y, A1, M) = (V2,2 —+/2,4—2/2,0)
1s a candidate.

(D) A1 >0, A2 > 0. Then (iii)—~(vi) imply x2 + y =2and x = 1. Sox = y = 1. Then from (i),
A2+ 241 = 8/3 and (ii) gives A; = 2. But then Ay = 8/3 — 4 < 0. Contradiction.
Thus the only possible solution is the one given in (C), and the minimum value of f(x, y) = 41In (x242)+
y? under the given constraints is f(~/2,2—+/2) = 4In(+/2+2)+(2—+/2)% = 4In(+/242)+6—42.
3.5.4 Withthe Lagrangian L(x, y) = —(x — a)?— (y— b)Y —r(x—1)—x, (y —2) we get the Kuhn—Tucker
necessary conditions for (x, y) to be a maximum point:

Li(x,y)=-2(x—-a)—r =0 (1)
Lyx,y)==2(y —=b) =2 =0 (i1)
AM >0, and Ay =0 if x <1 (iii)
A >0, and A, =0 1if y <2 @iv)

Of course, a maximum point (x, y) must also satisfy the constraints (v) x <1 and (vi) y < 2.
We try the four possible combinations of A; =0, A; > 0, 2, =0, and X, > 0.

(A) A1 =0, A» = 0. Equations (i) and (ii) give x = a and y = b. Because of the constraints this is
possible only ifa < 1 and b < 2.

B) 21 =0, A, > 0. We get x = a and y = 2. Constraint (v) implies a < 1, and equation (ii) yields
b=y+%)»2>y=2.

(C) A1 >0, Ap =0. Thisgivesx =1,y =b,a =1—|—%)\1 > 1,and b < 2.

(D) A1 > 0, A, > 0. With both multipliers positive, both constraints must be satisfied with equality:
X = 1,y=2.Wea1sogeta=l+%)»1 > 1andb=2+%)»2 > 2.

We observe that in each of the four cases (A)—(D) there is exactly one point that satisfies the Kuhn—
Tucker conditions, and since the objective function is concave, these points are maximum points. Which
case applies depends on the values of a and b. The solution can be summarized as x* = min{a, 1},
y* = min{b, 2}.
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The admissible set in this problem is the same as in Example 3.5.1, and the maximization problem
is equivalent to finding an admissible point as close to (a, b) as possible. It is readily seen that the point
(x*, y*) given above is the optimal point. In particular, in case (A) the point (a, b) itself is admissible
and is also the optimal point.

3.5.6 (a) With the Lagrangian L(x, y) = x> = y3 — A1(x — 1) — Ap(x — y) the Kuhn-Tucker conditions
and the constraints are

LG, y) =5x* =11 — A =0 i)
Lyx,y) = =3y +1=0 (i1)
M >0, and A,y =0if x <1 (iii)
AM>0, and A =01if x <y @iv)
x <1 (v)
x <y (vi)

Consider the four possible combinations of zero or positive multipliers:

(A) A1 =0, Ap = 0. Equations (i) and (ii) give x = 0 and y = 0. Thus (x1, y;) = (0, 0) is a candidate
for optimum.

(B) A1 =0, Ap > 0. Since A, > 0, the complementary slackness condition (iv) tells us that we cannot
have x < y, while constraint (vi) says x < y. Therefore x = y. Equations (i) and (ii) then give
5x* =0+ 1, = 3y?, and thus 5y* = 3y?. Since A» # 0 we have y # 0, and therefore 5y* = 3, so
x =y =+3/5=+/15/25 = £1+/15. We get two new candidates, (x, y2) = (:+/15, $+/15)
and (x3, y3) = (—%\/B, _%\/E),

(C) A1 >0, A, =0. Now (ii) gives y = 0, while (iii) and (v) give x = 1. But this violates constraint

(vi), so we get no new candidates for optimum here.

(D) A1 > 0, A, > 0. The complementary slackness conditions show that in this case both constraints
must be satisfied with equality, so we get one new candidate point, (x4, y4) = (1, 1)

Evaluating the objective function i (x, y) = x> — y3 at each of the four maximum candidates we have
found shows that

]’l(XI, }’1) == I’l(X4, y4) =0

h(xa,y2) =3 —y3 = x5 —x3 = (x3 — Dx3 = —%xé’ = _%V 15

h(x3, y3) = h(—=x2, —y2) = —h(x2, y2) = 1%/15

(For the last evaluation we used the fact that 4 is an odd function, i.e. h(—x, —y) = —h(x, y).) Hence, if
there is a maximum point for 4 in the feasible set, then (x3, y3) is that maximum point. Note that although
the feasible set is closed, it is not bounded, so it is not obvious that there is a maximum. But part (b) of
this problem will show that a maximum point does exist.

(b) Leth(x,y) = X — y3 and define f(x) = max,-, h(x, y). Since h(x, y) is strictly decreasing with
respect to y, it is clear that we get the maximum when y = x, so f(x) = h(x, x) = x> — x3. To find the
maximum of f(x) for x < 1 we take a look at

) =5x* = 3x2 =5x2(x* — ) = 5x2(x + 1) (x — x2)
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where x, = 4/3/5 = %\/ 15 (asin part (a)). It is clear that

f(x) >0 if x € (=00, —x2) or x € (x2, 00)
f(x) <0 if x € (—x2,0) or x € (0, x2)

Therefore f is strictly increasing in the interval (—oo, —x»], strictly decreasing in [—x», x2], and strictly
increasing again in [x;, 00). It follows that f(x) will reach its highest value when x = —x; or when
x = 1. (Draw a graph!) Since f(—x;) = % and f (1) = 0, the maximum point is —x (= x3).

So why does this show that the point (x3, y3) that we found in part (a) really is a maximum point in

that problem? The reason is that for every point (x, y) withx < 1 and x < y we have

h(x,y) < f(x) = f(x3) = h(x3, x3) = h(x3, y3)

3.6

3.6.2 Lagrangian: L(x,y) =xy +x 4+ y — A (x*> + y?> —2) — A»(x + y — 1). First-order conditions:

Lix, ) =y+1=20x—2=0 i)
Lox, y)=x+1-20y—2=0 (i1)
A >0, and A =0 if x2+y> <2 (iii)
Ay>0, and A =0if x4+y <1 @iv)

It is usually a good idea to exploit similarities and symmetries in the first-order conditions. In the present
case, we can eliminate A, from (i) and (ii) to get

y=2Ax=x—2A0y <= (1 +2A)(y—x)=0

Since 1+2A; > 1, this implies y = x for any point that satisfies the first-order conditions. Now consider
the various combinations of zero or positive values of A; and A;:

(A) A1 =0, A» = 0. Equations (i) and (ii) give (x, y) = (—1, —1).
(B) A1 =0, Ay > 0. SinceAp > 0, wemusthavex+y = 1,andsincex = y,weget (x, y) = (1/2,1/2).

(C) A1 >0, Ap =0. Now x? + y> = 2 because A; > 0, and since x = y we get x = y = =£1. The
point (1, 1) violates the constraint x + y < 1. If x = y = —1, then equation (i) yields 2A; = A, = 0,
contradicting the assumption A; > 0. Thus there are no candidate points in this case. (We did get the
point (—1, —1) in case (A) above.)

(D) A1 > 0, A, > 0. In this case both constraints must be active, i.e. x> + y> = 1 and x +y = 1. Since
x =y, the first constraint yields x = y = 1/2, but then x? 4+ y?> # 2. So no candidates in this case either.

Comparing the values of the objective function xy + x + y at the two points (—1, —1) and (1/2, 1/2)
shows that (1/2, 1/2) must be the maximum point. (The extreme value theorem guarantees that there
really is a maximum point.)
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3.7

3.7.1 (a) The Lagrangianis L(x,y) =100 —e™ —e™ —e ™ * —A(x + ¥y +z —a) — Ap(x — b) and the
Kuhn-Tucker conditions are

e_x—)\.l—)xzzo (1)
e Y — M =0 (ii)
et — M =0 (iii)
A >0, and Ay =0if x+y+z<a @iv)
M >0, and L, =0 1if x <b (V)

Equations (ii) and (iii) imply that A1 > O and y = z. From (iv) we getx +y +z =a,so x + 2y = a.
(A) Suppose A, = 0. Then (i) and (ii) imply A; = e * and x = y. Hence x + y +z = 3x = a, so
x = a/3, and therefore a/3 < b, i.e. a < 3b.

(B) Suppose A, > 0. Condition (v) now implies x = b, and so y = (@ — x)/2 = (a — b)/2. Then
M =e Y =e @ D2 and () yields i, = e P—e=@=b/2 Since r, > 0, we musthave —b > —(a—b)/2,
ie.a > 3b.

Thus, the Kuhn—-Tucker conditions have a unique solution in each of the two cases a < 3b and a > 3b.
The Lagrangian is concave, so we know that the points we have found really are optimal.

(b) See the answer in the book for the evaluation of df*(a, b)/da and df*(a, b)/db. Strictly speaking,
if a = 3b, you must consider the one-sided derivatives and show that the left and right derivatives are the
same, but things work out all right in that case too.

3.7.3 (a) Consider the maximization problem and write it in standard form as

2x% 4 4y? <52 (*)

- 2 2 .
maximize (x,y) =x"+ subject to
ey Y ! —2x% — 4y2 < —r? (k)

We use the Lagrangian £(x, y, 7, s) = x>+ y> — A1 (2x%2 +4y? — 52) + 1 (2x%2 +4y> — r?), and get the
Kuhn-Tucker conditions

L) =2x —4rx +4rx =0 )
L5 =2y —8ry+8iy =0 (ii)
A >0, and A =0 if 2x> +4y? < 52 (iii)
A2 >0, and Ay =0 if 2x> +4y? > /2 (iv)

If &1 = 0, then (i) and (ii) would yield
24+4)x =0 — x =0, 248)y=0 = y=0

which contradicts the constraint 2x* + 4y? > r2. Therefore we must have A; > 0 and 2x? + 4y? = 5.

Moreover, we cannot have A, > 0, for that would imply 2x> + 4y> = r? < s2, which contradicts
2x2 + 4y2 = s2. Hence, A; > 0, Ar» = 0. Equations (i) and (ii) reduce to

i) Q2—4rx)x=0 and () 2-8x)y=0
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If x = 0, then y # 0 (because 2x> 4+ 4y?> = 5% > 0), and (ii’) implies A; = 1/4. If x # 0, then (i’)
implies A = 1/2. We are left with the two possibilities

(A) A =1/2,y=0,x = +125 B) A =1/4,x =0,y ==+3s

Case (A) gives the optimum points, (x*, y*) = (i%ﬁs, 0),and f*(r,s) = f(x*, y*) = %sz. To verify
the envelope result (3.7.5), note that

aL(x,y,r,8)/0r = —2Aor, dL(x,y,r,8)/ds =2X11s

If we insert the optimal values of x* and y* and the corresponding values A; = 1/2 and X, = 0 of the
multipliers, we get

AL(x*, y*,r,8)/0r =0=203f*(r,s)/0r, OL(x*, y*,r,5)/0s =5 = 3f*(r,s)/0s

in accordance with (3.7.5).

(b) The minimization problem is equivalent to maximizing g(x, y) = — f (x, y) subject to the constraints
(x) and (%) in part (a). We get a new Lagrangian L(x, Y, 1, 8) = —x2 - y2 —a2x2+ 4y2 — s+
A2(2x2 + 4y% — r?), and the first-order conditions are as in (a), except that (i) and (ii) are replaced by

£y =—2x — 40 x +4hx =0 (i)
Ly =2y — 81y + 8y =0 (ii’)
The solution proceeds along the same lines as in (a), but this time A, = 0 is impossible, so we get 1, > 0
and A; = 0. The optimum points are (x*, y*) = (0, i%r), with A, = 1/4, and g*(r,s) = g(x*, y*) =

—(x*)? — (y*)* = —4r?, and the minimum value of f is f*(r,s) = —g*(r,s) =
(3.7.5) now become

irz. The equations in

Bg* 8f* —/
5 = T Lo(x*, y*,r,s)=210s=0=

ag*  of”"
ds  0s
(c) The admissible set is the area between two ellipses, and the problems in (a) and (b) are equivalent to
finding the largest and the smallest distance from the origin to a point in this admissible set.

I’,(x*, v, s) = —2kr = —%r

3.7.4 Letr andsbe points in the domain of f*,letA € [0, 1], and putt = Ar+4(1—2X)s. We want to prove that

3.8

) = Af*(r)4+ (1 —21) f*(s). There are points x and y such that f*(r) = f(x,r) and f*(s) = f(y, s).
Let w = Ax + (1 — A)y. Since g is convex, we have g(w, t) < Ag(x,r) + (1 — A)g(y,s) < 0, so (w, t)
is admissible. And since f is concave, we have
O = fw,t) = fO(x, 1) + (1 = 2)(y,9)
>Af(x )+ (=0 f@y,s) =1f"r) + 1 =21 f*(s)

3.8.2 (a) Lagrangian: £L(x,y) = xy — A(x 4+ 2y — 2). Kuhn-Tucker conditions:

dL/dx=y— A<0 (=0 if x > 0) @)
dL/dy =x—2L<0 (=0 if y > 0) (ii)
A>0 (=0 if x+2y <2) (iii)
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There are admissible points where xy > 0, so we cannot have x = 0 or y = 0 at the optimum point
or points. It follows that (i) and (ii) must be satisfied with equality, and A must be positive. Hence,
x=2r=2yandx +2y =2,s0x =1,y = 1/2, A = 1/2. (The extreme value theorem guarantees
that there is a maximum, since the admissible set is closed and bounded. It is the closed line segment
between (2, 0) and (0, 1).)

(b) As in part (a), there are admissible points where x*y# > 0, so we may just as well accept (2, 0) and
(0, 1) as admissible points and replace the constraints x > 0 and y > 0 by x > 0 and y > 0. Then the
extreme value theorem guarantees that there is a maximum point in this case too, and it is clear that both
x and y must be positive at the optimum. With the Lagrangian £(x, y) = x%y# — A(x + 2y — 2) we get
the Kuhn—Tucker conditions

AL/dx =ax® 'y — A <0 (=0 if x > 0) Q)
L)y = Bx*yP1 —20 <0 (=0 if y>0) (ii)
A=0 (=0 if x +2y <2) (iii)

It is clear that (i), (ii), and (iii) must all be satisfied with equality, and that A > 0. From (i) and (ii) we
get Bx*yP~1 = 21 = 2ax*~'yP, so Bx = 2ay. This equation, combined with (iii) yields the solution:
x =2a/(a+ ),y =p/(a+p).

(If we had not extended the admissible set to include the end points, then we could not have used the
extreme value theorem to guarantee a maximum, but with the conditions on « and 8 the Lagrangian is
concave, so we could still be certain that the point we have found is a maximum point. But the argument
above, with a closed and bounded admissible set, works for all positive values of « and S, even if L is
not concave.)

3.8.3 With the Lagrangian £(x, y, ¢) = cx + y — A(x? + 3y? — 2) we get the Kuhn-Tucker conditions:

Li=c—=2xx <0 (=0 if x>0) i)
Lr=1-6ry<0 (=0 if y>0) (ii)
A>0 (=0 if x24+3y?<?2) (iii)

If A = 0, then (ii) implies 1 < 0, but that is impossible. Hence, A > 0 and x4+ 3y2 = 2. Further, (i1)
implies 61y > 1, so y > 0. Therefore (ii) is an equality and y = 1/6A.

(A) If x = 0, then (i) implies ¢ < 2Ax = 0. Further, 3y> = 2,50y = /2/3 = V6/3,and A = 1/6y =
V6/12.

(B) If x > 0, then (i) is satisfied with equality and ¢ = 2Ax > 0, and x = ¢/2A. The equation
x2 +3y> =2thenleads to A = /6(3¢2 + 1)/12, x = 6¢/4/6(3c2 + 1), and y = 2//6(3¢2 + 1).
Since the admissible set is closed and bounded and the objective function f(x, y) = cx 4+ y is continuous,
the extreme value theorem guarantees that there is a maximum point for every value of c¢. The cases (A)
and (B) studied above show that the Kuhn—Tucker conditions have exactly one solution in each case, so
the solutions we found above are the optimal ones.

If ¢ <0, then we are in case (A) and f*(c) = cx* + y* = V/6/3.

If ¢ > 0, then we are in case (B) and f*(c) = cx* + y* = /6(3¢%2 + 1)/3.

The value function f*(c¢) is obviously continuous for ¢ # 0, and because lim._.o+ f*(c) = \/6/ 3 =
f*(0) = lim._o- f*(c), it is continuous at ¢ = 0 too. The value function is differentiable at all ¢ # 0,
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and it is not hard to show that both one-sided derivatives of f*(c) at ¢ = 0 are 0, so f* is differentiable
there too.

For ¢ < 0 we get (f*)'(c) = 0 = x™*, and a little calculation shows that ( f*)'(c) = x* for all ¢ > 0 as
well. Thus (f*)'(c) = L5(x*, y*, ¢) for all ¢ in accordance with equation (3.7.5).

3.8.5 See Fig. A3.8.5 in the answer section of the book. Since the Lagrangian
L& y)=x+y = 5@+ )7 = §x = 5y —hilx = 5) = ha(y = 3) = A3 (—x +2y —2)

is concave, a point that satisfies Kuhn—-Tucker conditions must be a maximum point. The objective
function has no stationary points, so any maximum points must lie on the boundary of S. The Kuhn-
Tucker conditions are:

Lix,=l—x+y—1—2—+ =<0 (=0if x>0 Q)
Lox, ) =1—(x+y) -1 -2 —-213<0 (=0if y>0) (ii)
M >=0 (=0 if x <5) (iii)
AMm>0 (=0if y <3) @iv)
A3>0 (=0 if —x+2y <2) )

The solutionis x =3/4,y =0, withA; = X, = A3 = 0.

Once we have found or been told about this point it is easy to check that it satisfies (i)—(v), but otherwise
it can be a very tedious job to go through all possible combinations of zero or positive multipliers as well
asx =0orx >0and y =0ory > 0. In this problem there are 32 different combinations to check if
we do not see any shortcuts. In fact it would probably be more efficient to check each of the five straight
line segments that form the boundary of S. But it would hardly be practical to do that in a problem with
more than two variables, because it quickly becomes difficult to visualize the geometry of the admissible
set.

3.8.6 (a) The last inequality in () gives

m m

ij(g,(x*) —bj) > Z,\j(gj(x*) —bj) forall A =0 (k)

j=1 j=1
If gr (x*) > by for some k, then Z;"zl Aj(gj(x*) — b;) can be made arbitrary large by choosing A; large
and A; = O for all j # k. Hence, g;(x*) < b;, j = 1,...,m. By choosing all A; equal to 0 in (xx),
we get Z"le k;‘(gj (x*) = bj) = 0. Now, k}‘ > 0 and g;(x*) < b; for every j, so each A}'.‘(gj (x*) — b))
must be zero, and then Z;"zl A;‘ (gj(x*) — bj) = 0. Finally, whenever x is admissible, the inequality
L(x, 1*) < L(x*, A*) implies that f(x)— f(x*) < > 7L, Ai[g;(x0)—g; (x)] = 2271, Aflg;(x)—b;] < 0.
Therefore f(x) < f(x*), so x* solves problem (1).
(b) Proof of the second inequality in (x): Under the given assumptions, f(x*, A*) — f(x*, A =
Z}”:l rilgj(x*) — b1 — Z;”zl 278 (x*) — bl = 27:1 Ailgi(x*) —bj1 <0 w}fn A > 0. Since the first
inequality in () is assumed, we have shown that (x*, A*) is a saddle point for L.

3.9

3.9.1 (A)implies that 7 (x*) > 7 (%), i.e. f(x*) — Z;."zl rigi(x*) > f(X) — Z;"zl 1;gj(%). But, because &

also solves (3.9.1), f(X) = f(x*) and then Z}":] rigi(R) > Z}"Zl Ajgj(x*). Thus, because A; > 0 and
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g (X) <b;, j=1,...,m,and also because of (3.9.5), we have

m

Z = Z 1igi®) = ) kg () =) by (+)
=1 =1 j=1 Jj=1

Here the two middle terms, being squeezed between two equal numbers, must themselves be equal.
Therefore f(X) — Z;"zlkjgj(f() = f(x¥) — Z;"zl rigi(x*) > f(x) — Z;n:Mjgj(X) for all x > 0,
proving (A). Also, if gx(X) < by and 1; > O for any k, then Z;"Zl Aj(gj(X) — b;j) < 0, which contradicts
(x). Thus X satisfies (A)—(C).

3.10

3.10.1 (a) Since the admissible set is closed and bounded, there is at least one maximum point in this

problem. We use Theorem 3.8.3 (necessary first-order conditions for problems with mixed constraints).
With L(x, y,z,a) = x>+ y> + 22 — A2x> + y? + 22 — a?) — u(x + y + z), the necessary conditions
are:

0L/Ix =2x —4rx —u =0 < 2(1 =20)x = @)
0Ly =2y =2y —u=0 << 2(1 —N)y=pn (ii)
0Lz =2z-2072—pnu=0 <<= 2(1—-Nz=n (iii)

A >0, and )»=0i1°2x2+y2—|—z2<a2 @iv)

There is no sign restriction on u, since the corresponding constraint is an equality, not an inequality.

If L =0,wegetx =y =z= /2, which implies 3x = 0, so x = y = z = u = 0. But the point
(x,y,2) = (0,0, 0) is obviously not a maximum point but a global minimum point in this problem.

If A > 0, then 2x? 4 y? + z> = 4 because of complementary slackness. There are two possibilities:
A=1land A # 1.

(A) If A # 1 then (ii) and (iii) imply y = z, so the constraints yield x +2y = 0 and 2x% 4 2y? = a?,
with the solutions (x, y, z) = (:i:%\/Ea, ;%\/ﬁa, q:%ma). Since x = —2y, equations (i) and (ii)
yield —4(1 —20)y = u =2(1 — A)y,so A = 3/5.

(B) If »=1,then u =0and x = 0,50 y + z = 0 and y? + % = a?, with y = —z = \/a?/2. This
gives the two points (x, y, z) = (0, :I:%\/Ea, :F%«/Ea).

If we evaluate the objective function x> + y? + z2 at each of the points we have found, we find that
the two points (x*, y*, z*) = (0, :I:%\/Ea, :Féﬁa), with A = 1, u = 0 both solve the problem. We
have found several other points that satisfy the necessary conditions for a maximum but are not maximum
points. Such is often the case when the Lagrangian is not concave.

(b) f*(a) =a? sodf*(a)/da = 2a, and dL(x*, y*, z*, a)/da = 2ra = 2a.

3.11

3.11.1 Assume first that f is a function of just one variable, and let xy be any point in A € R. There are

three cases to consider:

(D If f(xg) > 0, then f(x) > O for all x in an open interval U around x( (because f is continuous).
Then, for all x in U we have f+(x)? = f(x)?, and so (d/dx)(f(x)?) =2f(x) f'(x) = 2f T (x) f'(x).
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D) If f(xp) < O, then there is an open interval V around xq such that for all x in V we have f(x) <0
and f*(x) =0, and then (d/dx)(f*(x)?) =0 =21 (x) f'(x).

(IIT) (The most interesting case.) If f(xg) = 0, let K = |f’(xp)|. There is then an open interval W
around x( such that for all x # xo in W,

J &) = f(xo)

X — XQ

’f(X)—f(xo) G+ = K 41
X — Xo

—f ’(xo)‘ < 1, which implies

and therefore

|f ] = 1f(x) = fxo)| < (K + Dlx — xo

Then for all x # xo in W, we get

f)?

X — Xq

<(K+1D%x—x) =0 as x— xg

=

’ fT@)? = fTx)?

X — Xo

f(x)?
X0

X —

and 5o ((f1)?)(x0) = 0 = 2" (x0) ' (x0).
Thus, in all three cases we have shown that (d/dx)(fT(x)?) = 21 (x) f'(x). This result immediately
carries over to the partial derivatives of f*(x)? if f is a function R” — R:

ad ad
ST =21 (0 —f(x)
X; 0x;
and the gradient of f¥(x)? is
bl d
VTN = (5T g ))
T I ) =25+
=27 (5 S0 5 0) =27 VS

Note that f need not really be C'. All that is needed is that all the first-order partial derivatives of f exist.

Chapter 4 Topics in Integration

4.1
4.1.5 (a) Expand the integrand. We get

S(Wx-1r  Px-2yx4+1  (° 2 1\
A—x dx_/4 e dx_/;<l—ﬁ+;>dx—

(b) Withu =1+ /x wegetx = (u — 1), dx =2(u — 1) du, and

2 20 1\2
(u—l)zlnu—/ w=17,,
1

1 u

9
9
(x —4/X +1nx) = I+1n
4

1 2
/1n(1+ﬁ)dx=f 2w —Dlnudu =
0 1
2

(%u2 —2u+lnu) =1

=1n2 — 5

1
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(c) Letu =1+ x'3. Thenx = (u — 1)3, dx = 3(u — 1)*>du, and

27 173 4,1 43,3 _ 9,2 19y —3 45
/ x—dx:/ ”—3(u—1)2du=/ e e P B S PP
o 1+x!/3 . u 1 u 2

4.2

4.2.2 We use formula (4.2.1) and then introduce u = ax?

as a new variable, assuming « 7# 0. This yields

1 1 o o o o

B 1 1 — 1

Fl(a) = / —(xe‘”z)dx = f X3 dx = — uedu = — | (ue" —e") = e —e + 7
0 aOl 0 20[2 0 20[2 0 20[2

L e* —1 oe® —e* + 1

= , which gi F’ = —
Oe o which gives F'(«) 2

1
Direct calculation of F yields F(x) = e
o

confirming the result above.
We assumed above that o # 0. If @ = 0, then formula (4.2.1) yields F'(0) = fol x3>dx = 1/4. To

get the answer by differentiating F directly, we need to know that F'(0) = fol xdx = 1/2. Then
F(x) — F(0) e —1—a “07 1

F/) = lim — 2~ "% & - T
(0) = lim, o a0 202 0 4

as it should be.
4.2.6 By Leibniz’s formula (Theorem 4.2.1),

t

x(1) = e 20Dy (1) + / —8e I y(t)dt = y(1) — 8x(1)

—0oQ
4.2.8 See the answer in the book. In order to use Leibniz’s formula (Theorem 4.2.2 in this case) we need
to know that there exist functions p(t) and g () such that fi « P(t)dt and fi « 4(7) dt converge, and
such that | f/(r — ©)k(7)| < p(v) and |G/ (7, 1)| < g(v) for all T <. Since G'(z, 1) = —k(v) f(t — 1),
the inequality for G| boils down to |k(7) f(t — )| < g(7) forall T <t.
4210 (a) g(Q)=c+h [’ f(D)dD — p [3 f(D)dD,and g"(Q) = (h + p) f(Q) = 0.
(b) Since ;' f(D)dD =1, we have

a a 0 o
f f(D)a'D:/ f(D)a’D—/ f(D)dD = 1 —f f(D)dD
0 0 0 0

and therefore 0
§(Q)=c—p+ -+ p)/o f(D)dD

Since Q* is the minimum point of g(Q), it must be a stationary point—that is, g’(Q*) = 0. Therefore
c—p+ (h+ p)F(Q*) =0, which implies F(Q*) = (p —c¢)/(p + h).

4.3

4.3.2 From the functional equation (4.3.2), F(%) = F(% +1) = %F(%) = %ﬁ . The given formula is thus
correct for n = 1. Suppose it is correct for n = k. Then, using (4.3.2),
2k — 1)!

r(k+1+§):r((k+§)+1):(k+%)r(k+%)=(k+§)mﬁ
2k+1 2k —1)! 2k — 1)1 2k 2k + 1) 2k +1)!
) 22k—1(k—1)!ﬁ:2-2k-22’<—1(k—1)!ﬁ: g VT

Thus the proposed formula is valid also for n = k + 1. By mathematical induction it is true for all natural
numbers 7.
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4.3.5 (a) Introduce u = Ax as a new variable. Then

oo )\’a o0 )\’Ot o 1 1 o
/ f(x)dx = / x o™ dx = / (u/M)* e ™~ du = —/ u e " du =1
—00 I'(@) Jo (o) Jo A (o) Jo

_ o _
(b) M(t) = /_ooe f(x)dx = r@)

o0
/ x4 e =D gx With u = (L — f)x as a new variable we
0
get

l—u o
= [ T
(o) (A —1) MNa) (A —1)* A—t

Differentiation gives M'(t) = aA*(A — 1)~* ! and in general

)a — A — 1)

['(a +n) A¢

(n) _ e — « -1 =
M® (1) = o+ 1) (@ +n— DA% — 1) Cl@) (= net

Hence,
ale+1)---(x+n-—1) . ' +n)
A (o)A

M’(O):% and  M™(0) =

(Alternatively we could have used the formula M ™) = f x" f(x) dx from Problem 4.2.5.)

4.4
1 (b1 1= 1 1 @ 1
4.4.2 The inner integral is — - dy = — e = —zeb/x ——Z,SOI —/ (—zeb/x——z) dx.
X 0o X x?2 y=0 X 1 X X
. 1 1 1 ta 2 _bw 2 1
With w = —, we get x = — and dx = —— dw. Therefore I = (w=e”™ —w )(——) dw =
x w w? 1 w?
1/a 1 1
/ (=™ + ) dw = —(’ — e+ - — 1.
1 b a
4.4.3 Theintegral I = [[, f(x,y)dxdyis
1 a 2k 1 |1x=a k
PR [ A {
o Mo (x+y+1) 0 My=0 (x+y+1

1

! k k k k
A D )
o \(y+D* (H+a+] o\ y+1 y+a+1
k k k k(a*+3a)

k — =
2+a+2+ a+1 2(@*+3a+2)

. . 2(a* +3a +2)
The int | Islifk=k;j = ——5——— =2
e integral equals 1 i “ 243 + 2+

. Obviously, k, > 2ifa > 0.

4.4.5 The innermost integral is

2

: FHx e+ xDl =4+ x e+

1
/O (Xf+x3 4+ +x2)dx; =

Next,

1 1
/0(%+x%+x§+---+x3>dxz=01x2+%x§+xz<x§+x£+ Dl =3 At

etc. By induction, I = n/3.
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4.5
4.5.2 Ify € [0, 1], then x runs from O to y, and if y € [1, 2], then x must run from /y — 1 to 1. Thus,
3

V:/Ol(/oyxyzdx>dy+/12</l lxy2dx>dy=/01y§dy+/lz<y2_%)dy:16770

y—

45.6 |x—y|=x—yifx > yandy—xifx < y. Hence (see Fig. A4.5.6(a) in the book),

1 pl
/ / |x—y|dxdy=// |x—y|dxdy+/ |x —yldxdy
0o Jo A B
1 y 1 1 jx=y
=/[f (y—x)dx+f(x—y)dx]dy=/[
o “Jo y 0

1
(yx — =x?) +
x=0 2 x=y

1
/ i S NI G S P (y —y+ )dy— (1y3—1y +ly=l
0 2 2 2 3 2 2 3
4.6
4.6.1 (a) Use the same subdivision as in Example 4.6.1, except that j =0, ..., 2n — 1. Then
i j 11 i j 1
Qx; — v+ 1) Ax; Ayy = (2;—;+1>;;=2n—3—n—3+;
and
2n—1n—1 1 1 2n—1 n-—1 1 n—1 2n-—1 1 2n—1 n—1
(o —Z+ ) =2 () = (X )+ ()
j=0 i=0 j=0 i= i=0 j=0 j=0 i=0
1 2n711 1 n—1 1 2n—1
:2n—32§n(n—1)—n—3. S @n =2+ — Z
J= l=0 =O
11 11 1 1
= 2n—3§n(n —1)2n — EE(Zn — 1)2nn + ﬁn2n =2 - — 2
asn — oo.
4.7
y
A
01 0> 03 >
Figure M4.7.2
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4.7.2 Assume for convenience that the points P; = (x;, y;), i = 1, 2, 3, all lie in the first quadrant, and that
X1 < xp < x3. Figure M4.7.2 shows the triangle P; P, P3 together with the normals from the P; to the
corresponding points Q; on the x-axis. For each pair (i, j) withi < j, the points P;, Q;, Q;, and P; form
a quadrilateral with two parallel sides (called a trapezium in Britain, a trapezoid in the US), whose area is
T;; = %(xj —x;)(yi +y;). If P, lies below the line P P3, then the area of the triangle is 713 — Ti2 — T3,

L x1 »n

and an easy computation shows that this equals A = % 1 xo yp|. If P, lies above P Ps, then the area
I x3 3

of the triangle is T + T>3 — T13 = —A. In either case the area equals |A|.

If the x; are in a different order from what we assumed above, we can renumber them. That may
change the sign of the determinant but not its absolute value. Finally, if the triangle does not lie in the
first quadrant, we can move it there by a parallel translation. Such a translation will not change the area
of the triangle, nor will it change the value of the determinant, since we are just adding multiples of the
first column to the other two columns.

4.7.3 (b) In this problem it is convenient to use polar coordinates centred at (0, 1), so let x = rcos6,
y = 1 4+ rsin6. The Jacobian is d(x, y)/d(r, @) = r in this situation too, and

2, pl)2 a0 r=1/2 4 1 2 .
2 _ 32 _ 2 _ 2 _
//xdxdy_/ (/ r3 cos edr)de_/ < L cos 9>d9_—/ cos20do = =
A o o 0o M=o 4 64 Jo 64
4.7.5 (b) Introduce new variables u = y — 2x, v = 3x + y. Then x = —éu + %v, y = %u + %v and
_ 0 y) 1
J = ) = 5 It follows that

fAz(x+y)dxdy:A8(/_ll(§u+gv)umu)dv=A8(/_ll(§u+§v)édu)dv=144/25

4.8
4.8.1 (a) Use polar coordinates and let A,, = {(x,y) : 1 < x% 4+ y2 < n?}. Then

2 n n
/f ()c2+yz)73 dxdy =/ (f r5r dr) do = 271/ rdr = %n(l—n%) — %n as n — oo
A, 0 1 1

About the equality =: The integral J, = " r~%r dr is independent of 6, therefore f02” J,do =27 J,.
(b) With polar coordinates and with A, as in part (a), we get

2-2p _
n n .
I":// <x2+y2>l’dxdy=2ﬂf Frar =y g, MPE
Ay 1 .
27 Inn ifp=1

Ifp>1,thenl, - n/(p—1)asn — oo, butif p <1, then I,, — oc.

4.8.4 Note that the integrand takes both positive and negative values in the domain of integration. In the
calculations of the two iterated integrals the positive and the negative parts will more or less balance
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each other, but not in exactly the same way. The two iterated integrals fld flb y(y + x)3dxdy and

flb fld y(y +x)~3dy dx both tend to oo as b and d tend to oo, and so do the integrals of x (y + x) 3. The
trouble arises when we try to take the difference. That leads us into an oo — oo situation that does not
lead to any definite value.

4.8.6 (b) Introduce new variables u = x +y, v = x — y. Then x = %(u +v),y = %(u — v), and the
Jacobian determinant is d(x, y)/d(u, v) = —1/2. The square B, = [—n, n] x [—n, n] in the uv-plane
corresponds to the square B,, with corners (2n,0), (0,2n), (—2n,0), and (0, —2n) in the xy-plane,

—(x y)? n n e—v2 1 n ) nq 1
and I, = // dxdy = / (/ —du)dv = / e’ dvf - du =
T+ +y)? aNJop THu?2 n —n 2 14 u?

7302

T T
/ —v v - arctann. Let n — o0. Then I, —>/ —v? dv-Ezﬁ-E:T.(Hereweused
—n

Poisson’s integral formula (4.3.3).)

4.8.7 (b) With polar coordinates and with the sets A, as in Example 3,

-1 2 2 /2 1 1 2 1
// —In@? 57 )dxdyz lim (f el rdr)d@:—n lim Inrdr=---=m
0

/x2+y2 n—o00 1/n r n—o00 1/n

Chapter 5 Differential Equations I: First-order Equations
in One Variable

5.1

5.1.6 The statement of the problem is slightly inaccurate. Instead of “for all #” it should have said “for all ¢ in
some open interval / around 0”. With that modification the answer in the book is quite correct. (Actually,
the given differential equation has no solution defined on the entire real line. One can show that, with the
initial condition x (0) = 0, the equation has the solution x = tan(%tz) over (—+/7, /), but this solution
cannot be extended to any larger interval because x (¢) runs off to infinity as ¢ approaches either endpoint.

5.2
7/ e ~ N
s —\}— y2 =4, x>0
/ / \ \
o Vo
+ + +—» [
Vo /o
[ NN B
N N ~ ~ - e 7/ /
N ~ ~ ~ - - e 7/
Figure M5.2.2

5.2.2 The solution curves are semicircles (not full circles) of the form 2 + x2 = C, x # 0, with C an
arbitrary positive constant. (This can be shown by direct differentiation, or by solving the separable
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equation X = —t/x using the method set out in the next section.) The integral curve through (0, 2) is
given by 24+x% =4, x > 0, in other words it is the graph of the function x () = +/4 — t2 over the interval
(=2, 2). The lower semicircle shown in Fig. M5.2.2 is the graph of another function, x(f) = —v/4 — 12,
which is also a solution of the differential equation, but not the one you were asked to find. (The figure
in answer in the book is misleading since it shows a full circle.)

5.3
5.3.3 (a) One constant solution, x = 0. Otherwise, separating the variables,
dx 1—1t 1
e e T (——l)dt — Inlx|=Injt| -1+ C
X t t
Hence, |x| = eMl1=+C1 = phnltlo=1,Ct = Cy|tle™", so x = Cte™, where C = +C; = +¢°'. The

integral curve through (7o, xo) = (1, 1/e) is x = te™".
(b) One constant solution, x = 0. Otherwise,

t2

£=1—|-t3 = ln|x|:%ln|1+t3|+cl — X=C3/l_+t3
X

Integral curve through (¢y, xo) = (0, 2) for C = 2.

(c) No constant solutions. /xdx = /tdt — %xz = %tz +C = x2 =1>+C, where C = 2C.

An integral curve through (zy, xo) = (+/2, ) musthave C = —1 and x > 0, s0o x = /12 — 1.

(d) The equation is equivalent to X = e 2 (x + 1)%. One constant solution, x = —1. The nonconstant
solutions are found by separating the variables:

dx o 1 L l—e ¥ +C
— = dt — =—ze 7 4+C - = —
f<x+1>2 /e AT X=1r ¢
where C = 1 4 2C;. For the solution to pass through (#y, x¢o) we must have 1 — +C=0ie.C=0,
1— —2t
N P —
14e2

5.3.6 For convenience we shall suppose that x > O and ¢ > 0.

tx
(a) The equation — = a is separable, and we get

X
dx a a Inx a C a
— = ;dr — Inx=alnt+Ci=ht"+Cy, = x=e"" ' =t"-¢"'=Ct
X

where C = ¢€1.

i
(b) Here, A at + b. That gives
X

dx at +b b at.b
@ —di = (a+;>dt — Inx=ar+blni+C, = x=Ce"t
X
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. IX . X I . 1 1/1 a
(c) The equation — = ax + b gives —— — = — . Since - (— — >, we get
X x ax+b

x(ax + b) 7 x(ax + b) b
1 a b
/(—— )dx:/—dt — nx—Inlax+b|=blni+C; —>
X ax—+b t

c Cbt®
where C = £e"!', and finally x = ———.
1 — Cat?

538 (a) Let P = Ang‘ab and Q = av + &. Separating the variables we get / K¢ bdKk = P / e dr.
Kl—b-‘rc P
Integration yields

Q' 4 C,. Hence, K [P(l b+ c)e? +C]W_b+c) h
- = — . Hence, K = | —(1 — , r
T ho Qe 1. Hence c)e where

0
C=Ci(1-b+o).

d
(b) We separate the variables and get / Ty = / dt. The hint in the problem gives
(B —ax)(x —a)

/ pdx +f adx =(/3—aa)/dt — ~Lmip-axi+amlx—al= ¢ -aar+cy
B —ax xX—a «

— “h|g—ax|—alnjx—a|=In|p —ax|?* +In|x —a|™ = —(B — aa)t — C;
o
— |,8 _ O{x|ﬂ/a|x _ a|—a — e—(ﬂ—()la)l‘—C| — e—(ﬁ—aa)te—Cl — Ce(aa—ﬂ)t
where C = ¢~¢!. We have the same answer as in the book (since |8 — ax| = |ax — B|).

5.3.9 (a) Note first that L = Loe™ = [LEe*]Y/*, soast — oo,

K
Z [Lgleoz)»t]l/a -

[KS + (sA/WLG (e —1)]'® |:K0"‘ SA

1/a 1
—aAt SAN/«
Lo T e )] - (5)

A
and

X AK'™L® A(K)l—a A(SA)u—a)/a Al/a<S>“‘°‘)/"‘
_—— — = —_ —_— _— = —
L L L A A

(b) The equation is separable, dK /dt = sAK'™*L* = sAK'=%b*(t + a)*. We get

1 AbY

/K“‘ldK :sAbo‘/(t Fa)dr = EKa _ ;a+1(t+a)Pa+l i
1 Ab”

The initial condition gives C = — K — s—al’““

1 , and so
pa

K = [Kg + sa Ab* ((t + )Pt — ap"‘+1) /(pa + 1)]1/a
It follows that

po+1
[bo(t + aype]"®

K< SaA apa-i—l 1/a
= 0 + t+a — ————— — 00 as t—> oo
b*(t +a)P*  pa+1 (t + a)pre
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5.4

5.4.6 Use formula (5.4.6) to solve these equations.
(b) Here [a(t)dt = — [(1/t)dt = —Int, and (5.4.6) yields the solution x = Ct + 2.
(c) In this case, [a(t)dt = —4In(t> — 1), and (5.4.6) yields the solution x = Cv/1Z — [ + > — L.
(d) Here a(t) = —2/t,b(t) = —2a*/t?, [a(t)dt = —2Int, which leads to x = Ct*> + 2a*/3t.

54.9 From x = X/N, by logarithmic differentiation, x/x = X/X — N/N. Moreover, (ii) implies that
X/X =aN/N,so%x/x = (a—1)N/N = (a— D[ —B(1/x)]. It follows that x = (a — 1)ax —(a — 1)B.
The solution is x(¢) = [x(0) — B/ale®*@=D" + B/a. Then (ii) and x = X/N together imply that
N(t) = [x(t)/A]V @D X(t) = A[N@®)]*. If0 < a < 1, then x(t) — B/a, N(t) — (B/aA)!/@=D,
and X (1) = A(B/aA)Y@ D ast — oo.

5.4.10 (b) It suffices to note that (1 — e~%7) /& > 0 whenever £ # 0 (look at £ > 0 and £ < O separately).
Then apply this with & = oo — w. Faster growth per capita is to be expected because foreign aid
contributes positively.

H, H
(c) Using equation (%), we get x(t) = |x(0) + ( ? )—0 e~ (Pt (L)—Oe(“_p)t.
aoc —u/ Ny w—ao/ Ny

Note that, even if «o < p, x(#) is positive and increasing for large ¢ as long as & > p. So foreign aid
must grow faster than the population.

5.5

5.5.2 With f(r,x) = land g(r, x) = t/x +2, we have (g, — f,)/f = 1/x, so we are in Case (II). It follows
from (5.5.11) that we can choose 8(x) = exp(f(l/x) dx) = exp(Inx) = x as an integrating factor.
Hence, x 4 (¢ + 2x)x = 0 is exact, and (8) easily yields A(z, x) = tx + x2 — toxg — xg. The solution of
the differential equation is obtained from tx + x% = C, where C is a constant. We assumed that ¢ > 0

and x > 0, so C will be positive, and the solution of rx + x2=Cisx = —%t +4/ itQ + C.

5.6

5.6.1 (a) Witht > 0, the given equation is equivalent to the Bernoulli equation X 4+ (2/t)x = x" withr = 2.
Letz = x!™" = x~! = 1/x, so that x = 1/z. Then % = —z 27 and the differential equation becomes

2%+ =77 = - Q2/)z=—1

whose solution is z = Ct? + ¢. Thus x = (Cr? + 1)~ L.

(b) The equation is a Bernoulli equation as in (5.6.1), with » = 1/2. Thus we substitute z = x!~1/2 =

x!/2 ie. x = z%. Then X = 2zZ and the given equation becomes
277 =477 42’7 = 7 -27=¢
(Recall that x is assumed to be positive, and therefore z > 0.) Formula (5.4.4) yields

z=e"(C+ / e~ el dt) = ¥ (C + / e7'dt) = e (C—e ) =Ce* —¢'.
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(Alternatively we could go back to the method that was used to deduce (5.4.4) and calculate like this:

—2z7=¢€ — (Z—27)e M =¢"'

e ze ™ =—¢"4+C, etc)

= %(ze_h) =e
The solution of the given equation is therefore
x=z>=(Ce¥ —¢')?
(c) Asin part (a), we substitute x = 1/z, with x = —z~2dz. This leads to the differential equation
z—(1/t)z=—(n1)/t
Formula (5.4.6) yields the solution

Int —lntlnt Inz —1
z=e (C— e Tdt)zt(C— t—zdt)th—l—lnt-l—l:>x:(Ct+1nt+1)

(The answer in the book also lists x = 0 as a solution, and it certainly satisfies the equation, but the
problem explicitly calls for solutions with x > 0.)

5.6.3 Introducing z = K!7 as a new variable, we find that (see (5.6.3)) z + Pz = Qe“’*®’ where
P = ad(1 — b) and Q = aAnj(l — b). According to (5.4.4), the solution of this linear differential
equation is

7 = Ce P! + Qe—Pt / ePlelavtor gp — =Pt + Qe—Pt / elavte+P)t gy

1 e(av+8+P)t — Ce—Pt +
av+e¢e¢+ P av+e¢e+ P

(av+e)t
e
:Ce—Pl_"_Qe—Pl Q

Insert the values of P and Q. Then K = z!/(!=?) gives the answer in the book.

5.6.4 Introduce z = K'~% as a new variable. By (5.6.3), we get the equation z — y»(1 — @)z = y1b(1 — @).
According to (5.4.3), the solution is z = Ce”?(1=®" — yb/y,. Then K = z!/(1~% gives the answer in
the book.

5.6.7 The equation is of the form x = g(x/t) with g(z) = 1 + z — z%. According to Problem 5.6.6,
the substitution z = x/¢ leads to the separable equation 7 = g(z) — z = 1 — z2. This has the two

constant solutions z = —1 and z = 1. To find the other solutions, we separate the variables and get
d dt 1 1 1 dt

/ 1 _ZZ2 — f? By a well-known identity, /§<1 T + I _Z)dz = /7 + C. Integration
yields %lnll +z| — %ln|1 —zl=Inlt| + C, so

1 1

ln‘ +Z)=21n|t|+2czlnt2+2c s P2 _ap
1—z 11—z
here A = +¢2C. Solving for z gi A1 fnal o= AT addit h
where A = te°“. Solving for 7 gives 7 = ———, and finally x = 1z = . In addition we have
BT BV S = Y VR

the two solutions x = —t and x = ¢, corresponding to z = +£1.
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5.7

5.7.3 (a) Thisis aseparable equation with solution x () = (1+Ae')/(1 — Ae') where A = (xo—1)/(xo+1)
for xg # —1. For xo = —1 we get the constant solution x(¢) = —1. For xg # 1, x(t) - —1 ast — oo.
If xo > 1, which occurs when 0 < A < 1, then x(t) - occast — (—InA)~, and x(t) - —o0 as
t — (—In A)™". See Fig. A5.7.3(a) in the answer section of the book for some integral curves.

57.4 (a) 9k*/ds = f(k*)/[r — sf'(k*)] > 0 and 0k*/OA = —k*/[1 — sf'(k*)] < O when A > sf'(k*).
In equilibrium, capital per worker increases as the savings rate increases, and decreases as the growth
rate of the work force increases. From F(K,L) = Lf (k) with k = K/L, we obtain Fi(K,L) =
LI (k)(1/L) = f' (k).

(b) From equations (i) to (iv), ¢ = (X — K)/L =1 —s)X/L = —s)f(k). Butsf(k*) = Ak™, so
when k = k* we have ¢ = f(k*) —Ak™. The necessary first-order condition for this to be maximized w.r.t.
k* is that f'(k*) = 1. But F(K,L) = Lf (k) and so F, = Lf'(k)dk/dK = f'(k) because k = K /L
with L fixed. Thus 0 F /0K = A.

(c) See the answer in the book.

5.8

5.8.4 The equation is separable, and the solution through (79, x9) = (0, %) isx =1/(1 + e~ "). If condition
(3) in Theorem 5.8.3 were satisfied, then for every ¢, there would exist numbers a(¢) and b(¢) such that
[x(1 —x)| < a(t)|x| + b(¢) for all x. But then |1 — x| < a(t) + b(t)/|x|, which clearly is impossible
when x is sufficiently large. Similarly, (4) implies x2(1—x) <a@®x*>+b(t),s0l —x <a(t)+ b(t)/xz,
which becomes impossible as x — —o0.

5.8.5 SeeFig. M5.8.5. Fort < a, ¢(t) = —2(t —a) =2(a —t) = 2y/(a — t)? = 2/]¢(t)]. The argument
for t > b is similar. For ¢ in (a, b) we have ¢(¢t) = 0 = 2/]¢(#)|. Fort < a, (p(t) — ¢(a))/(t —a) =
—(t — a)z/(t —a) = —(t —a) = a —t, and for ¢ slightly larger than a, (¢p(t) — ¢(a))/(t —a) = 0.
It follows that when ¢ is near a, |(go(t) —@(a)/( — a)| < |t — al, so g is differentiable at a, and
@(a) = lim; 4 (p(t) — ¢(a))/(t —a) = 0 = 2./|¢(a)]|. In the same way we show that the differential
equation is satisfied at ¢ = b.

-

Figure M5.8.5
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6 Differential Equations Il: Second-Order Equations and
Systems in the Plane

6.1

6.1.4 In each of these three equations, let # = x. That will give simple first-order equations for # which
you can solve, and afterwards find x as x = [ u dr.

(a) Putting u = x, we get u + 2u = 8, which has the solution (see (5.4.3)) u = Ce 2" + 4. But then
X = /(Ce_Z’ +4)dt = —1Ce™ + 4t + B = Ae”™ + 4t + B, with A = —1C.

(b) With u = X, we get it — 2u = 2¢%, with the solution (see (5.4.4))
u=Cée + e / e 226 dt = Ce? + & / 2dt = Ce* + &*'2t = (C + 21)e*
Integration by parts then yields

x = /(c +2t)e* dt = 2(C +2t)e* — 4 f 2¢* dt
= HC+2)e” — e + B=3(C—1)e* +1e* + B=Ae* +1e* + B
with A = 3(C — D).
(c) Letu = x. Then &t — u = t*, which has the solution (see (5.4.4)) u = Ae' + ¢ / e~'t? dt. Using
integration by parts twice gives /e’t dt = —t*¢™" —2te™ —2¢7', and sou = Ae' — 1> — 2t — 2.
Then x = /(Ae’ —t? =2t —2)dt = Ae' — i’ —1* — 2t + B.

6.1.6 (a) Suppose x = @(¢) is a solution of X = F(x, §). We know that if x = ¢(¢) # 0, then the equation
x — @(t) = 0 defines ¢ as a function of x, with

di @)@ —p@)  ga-e@®) 1 1

dx — @/in—e®)  L—e@) @0 i

Therefore x = 1/t', where t' = dt/dx. (The prime ' denotes differentiation with respect to x.) Now the
chain rule gives

.o d . d /1 d /1\dx t” 1 t”
X:_(X):_(—>:_<—>_:—_—:—_
dt dt \t' dx \t'/) dt 2 v (3
and the differential equation X = F(x, X) becomes
t// 3
_ l " o__ / /
—W—F(x,l/t) — ' =—()Fx,1/1)
(b) (i) Obviously, x(z) = C is a solution for any constant C. The equation for ” in (a) becomes

" = —(t)}(—x)(1/t?) = x, or d°t/dx> = x. Integration yields df/dx = 1x? + A, and further
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integration results in t = %x3 + Ax + B, where A and B are arbitrary constants. A nonconstant solution
of the equation ¥ = —xx? is therefore given implicitly by the equation x> + A;x 4+ B; = 6¢.

(ii) In this case, x(¢) = C is a solution for every constant C 7~ 0. For solutions with x % 0 we use the
transformation in (a) and get

!/ / VA
¢ = —(t/)3<Lt)2) _U s Lol =t
by X t X
This yields ¢’ = Ay/x, where Ay = 4e”!, and then t = [t'dx = Ay In|x| + By. This yields In|x| =
At + B>, where A = 1/A, and By = —B|/A;. Finally, x = ef2¢4" = BeA'.
(Note that the constants A and B here are different from 0. If we let A = 0 in Be?', we recover the
constant solutions mentioned at the beginning.)

6.2

6.2.3 (a) Direct calculations show that ii; +u; — 6u; = 0 and ii» + t1o — 6ur = 0. Since u; and u, are not
proportional, Theorem 6.2.1(a) says that the general solution of X + X — 6x = 0is x = Au; + Buy =
Ae* + Be .

(b) Theorem 6.2.1(b) now tells us that the general solution is Au + Bus +u™, where u* is any particular
solution of the equation. Since the right-hand side of the equation is a polynomial of degree 1, we try to find
aparticular solution of the formu™ = Ct+D. We getii*+u*—6u* = C—6(Ct+D) = —6Ct+(C—6D),
so u* is a solution if and only if —6C = 6 and C = 6D, in other words if and only if C = —1 and
D = —1/6. Thus the general solution of the given equation is x = Ae? + Be™> —t — 1/6.

625 Letx=(+k) . Thenx = —(+k)2,%=2(t+k) > and

(t+a){t +b)i +2Q2t +a+ b)x +2x
=+ 0720 +2)(t +b) =20t +a+b)(t +k) +2(t + k)]
=t + k) 2k — (@ + bk +ab] = (t + k) *2(k — a)(k — )

Thus x = (¢ + k) ! solves the given differential equation if and only if k = a or k = b. Since a # b, the
functions u; = (t +a)~' and u = (¢t + b)~! are not proportional, and the general solution of the given
equation is x = Au; + Bupy = a(t + a)" '+ Bt +b)"".

6.3

6.3.2 (a) The characteristic equation is r2—1 =0, withroots » = 1 and r = —1. The general solu-
tion of the corresponding homogeneous differential equation is therefore (Case (I) in Theorem 6.3.1),
x = Ae' + Be™'. To find a particular solution of the given equation we try u*(¢) = psint + g cost.
Then u* = pcost — g sint, and ii* = —psint + g cost. Inserting this into the given equation yields
—2psint — 2gcost = sint. Thus p = —1/2 and ¢ = 0. The general solution of X — x = sint is

therefore x = Ae’ + Be ™' — % sint.

(b) The general solution of the homogeneous equation is again x = Ae’ + Be ™. Since e~ is a solution
of the homogeneous equation, we try u*(t) = pte™'. Then u*(t) = pe™" — pte ' and ii* (1) = —pe™" —
pe~ ' + pte”', which inserted into the given equation yields —2pe™" = e/, so p = —1/2, and the
general solution is x = Ae’ + Be ' — %te".
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(c) The characteristic equation is r> —10r +25 = (r —5)> =0, so r = 5 is a double root. The general
solution of the homogeneous equation is therefore (Case (II) in Theorem 6.3.1), x = Ae' + Bte'. To
find a particular solution we try u*(t) = pt + ¢, and find p = 2/75, g = 3/125. Hence, the general
solution of the given equation is x = Ae> + Bte>' + %t + % .

6.3.3 (a) The characteristic equationis 7> +2r +1 = (r +1)?> = 0, sor = —1 is a double root. The general

solution of the homogeneous equation is therefore (Case (II) in Theorem 6.3.1), x = Ae™" + Bte™'. To
find a particular solution we try u*(¢) = Ct>+ Dt + E. Then it* = 2Ct + D, and ii* = 2C. Inserted into
the given equation this yields 2C +4Ct+2D+Ct>*+Dt+E = t?,or Ct>*+(4C+D)t+2C+2D+E = 1.
Equating like powers of ¢ yields C = 1,4C + D =0, and 2C + 2D + E = 0. It follows that D = —4,
and E = 6. So the general solution is x = Ae™ + Bte™ + t> — 4t + 6. The constants A and B are
determined by the initial conditions. The condition x(0) = 0 yields A + 6 = 0, so A = —6. Since
x(t) = —Ae™ ' 4+ Be™' — Bte™! + 2t — 4, the condition x(0) = 1 implies —A + B — 4 = 1, and so
B = A+ 5 = —1. The required solution is x = —6e’ — te' + 1> — 4t + 6.
(b) The characteristic equation is 7> +4 = 0, so » = £2i are the complex roots. The general solution of
the homogeneous equation is therefore (Case (III) in Theorem 6.3.1), x = A sin2¢ 4+ B cos2¢. To find
a particular solution we try u*(t) = Ct + D, and find C = 1 and D = 1/4. It follows that the general
solutionis x = A sin 2t + B cos 2t 4+t + 1/4. To find the solution with the given initial conditions we must
determine A and B. The initial condition x (7 /2) = 0 gives Asinw + Bcosnw + /2 + 1/4 = 0. Since
sint =0andcosm = —1,we find B =m/2+ 1/4. Since x = 2A cos 2t — 2B sin 2t + 1, the equation
x(mw/2) =0 gives —2A + 1 = 0. Therefore A = 1/2, and so x = % sin 2t + (}T + %7‘[) cost+t+ le .

6.3.4 Since the right-hand side is a linear function of #, we try to find a particular solution of the form
u* = Pt+ Q. We getu™ = P and &i* = 0, so we must have

yYIB+a(l =pB)IP —y8*Pt —y8*Q = —y8*kt — y8*Ly

It follows that P = kand Q = Lo+ [B + (1 — B)]k/5*.
The characteristic equation is 7> + y [ + a(1 — B)]r — y8* = 0, with roots

r=—3y71B+al = A+ 3vVy2E +al — HP +4ys*

Oscillations occur if the characteristic roots are complex, i.e. if and only if }Lyz[ﬂ +a(1—B)>+ys* <O.

6.3.8 (a) This is an Euler differential equation. With x = ", we get x = rt" L and ¥ = r(r — "2
Inserting this into the given equation and cancelling " gives the equation r% + 4r + 3 = 0, with roots
r = —1 and r = —3. The general solution is therefore x = Ar~! + B3,
(b) Substituting x = ¢" into the homogeneous equation yields the equation r2—4r+3 =@ -1 -3).
The general solution of the homogeneous equation is therefore x = Ar + Bt>. To find a particular
solution of the nonhomogeneous equation, t>% — 3tx + 3x = t2, we try u*(t) = Pt> 4+ Qt + R. Then
u* =2Pt+ Q,and ii* = 2 P. Inserted into the given equation this yields

2P1> —3tQ2Pt+ Q) +3Pt> +30t+3R=1t> <<= —Pt’+3R=1>

This holds for all ¢ if and only if P = —1 and R = 0. (Note that Q did not appear in the last equation. That
is because Q¢ is a solution of the homogeneous equation.) One particular solution of the nonhomogeneous
equation is therefore u* = —¢2, and so the general solution is x = At + Bt — >
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6.3.10 By Leibniz’srule, p = a[D(p(t)) — S(p())] = a(dy — s1)p + a(dy — so). In other words, p must
satisfy p 4+ a(s; — dy)p = a(dy — so). Note that a(s; — d;) > 0, and see the answer in the book.

6.4

6.4.3 Write the equation as p(t) — Ap(t) = k, where A = y(a — «). If A > 0, then the solution is
p(t) = Ae"' + Be " — k/rz, where r = «/X; if A = 0, then the solution is p(t) = At + B + %ktz; if
A < 0, then the solution is p(1) = Acos</—At 4+ Bsin/—At —k/A.

The equation is not stable for any values of the constants. This is obvious from the form of the
solutions—if A > 0, the corresponding homogeneous equation has solutions that run off to infinity, and
if A < O the solutions oscillate with a fixed amplitude.

We can also see the instability from the criterion in (6.4.2): The characteristic equation is 7> — 1 = 0.
If & > 0, this equation has two real solutions, one positive and one negative. If A = 0, the characteristic
roots are r; = rp = 0. If A < 0, the equation has complex roots with real part equal to 0.

6.5

6.5.2 (a) If we add the two equations we get X +y = (a + b)(x + y). Hence x + y = Ce@*?" Because of
the initial conditions x (0) = % v(0) = %, we must have C = 1. This implies X = a(x + y) = ael@thi
and y = be@+P)

Ifa+ b # 0, then
ae(a+b)t be(a-i—b)t

= A’ =
* + Y a+b

B
a+b +

for suitable constants A and B. The initial conditions yield

a 1 a b—a b 1 b a—>b
A=x(0)— =5 - = ., B=y0)—- —=--— =
a+b 2 a+b 2a+Db) a+b 2 a+b 2a+Db)
and so
2ae@tdt L p g 2belatht 4 4 —p
x(t) = , y() =
2(a +b) 2(a + b)

Ifa+b=0,thenx =a and y = b = —a, and therefore

1 1
X =5 +at, y=5—at

(b) The first equation gives y = x — 2¢x, and if we use this in the second equation we get

X —2x —2tx = -2t —2x & X —2tx =-2¢t

This is a first-order linear equation for x with general solution x = C e~ + 1. From the first equation

and the initial conditions we get x(0) = 0 + y(0) = 1, so C = 0. Therefore x = 1. Because x(0) = 1,
wegetx =r+1l,andy=x —2tx =1—-2t(t +1) = =212 =2t + 1.

(c) The first equation yields y = —%fc + % sin . From the second equation we then get
—%5&+%cost=2x+1—c0st < X+4x =-2+43cost (%)
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The corresponding homogeneous equation, X +4x = 0, has the general solution x = A cos 2¢ + B sin 2¢.

To find a particular solution of (x) we try u* = C 4+ Dcost + Esint. Then ii* = —Dcost — E sint
and i* 4+ 4u™ = 4C + 3Dcost 4+ 3E sint. It follows that C = —1/2, D = 1, and E = 0. Thus
the general solution of (%) is x = A cos2t + Bsin2t — % + cost, and we get y = —%)'c + %sint =

—A cos 2t + B sin 2t + sint. The initial conditions x(0) = y(0) = 0 yield B — % +1=0and —A =0,
so the solutions we are looking for are

x:—%cos2t+cost—%, y:—%sin2t+sint

6.5.3 The firstequation gives p = e 2 ( —x). Then p = —2e 2 (x —x)+e 2 (¥ —%) = e 2 (¥ — 3% +2x).
If we insert these expressions for p and p into the second equation, we get

e ME—3x+2x) =2 Fx—eHE—x)=eHBx—x) = Fi-25k—-x=0

The general solution of the last equationis x = AeIHY2 4 Be(1=V2) \where | /2 are the roots of the

characteristic equation, r> — 2r — 1 = 0. A straightforward calculation gives X — x = A\/ie(“”/i)t —
Bﬁe(l_ﬁ)’ and theng =e X —x)= A\/Ee(ﬁ—l)’ _ Bﬁe(—ﬁ—l)t.

6.5.4 From the first equation, 0 = ot — 7. Inserting this into the second equation, we get

aﬁ—ﬁ:n—%n+%ff = ﬁ+<%—a>ﬁ+(l—%)n=0 (%)

which is a second-order differential equation for 7 with constant coefficients. The characteristic equation
isr?+(1/B—a)r+(1—a/B) =0, withroots ri » = 3(@—1/B) £ 3/ (@ +1/p)> —4. Ifa+1/B > 2,
then ry and r, are real and different, and the general solution of (x) is 7 = Ae"'" + Be™'. It follows that
o=ar —17 = (a—r))Ae"" + (a — ry)Be™'.

6.6

6.6.3 (ii) The equilibrium point of the linear system x = x + 2y, y = —y, is (x*, y*) = (-5, 2). Let
z=x+5and w =y — 2 (cf. example 6.5.4). The given equation system is equivalent to the system

w=w+2z i
7=-z Z b4
. . . 1 2 . . . .
with coefficient matrix A = 0o -1/ Since the trace of A is 0, the system is not globally asymptotically

1 1
stable. The eigenvalues of A are A; = 1 and A, = —1, with corresponding eigenvectors < O) and ( 1 )

1 1 Ae' + Be™!
According to (6.5.9), the solution of (%) is (w) = Ae' (0) + Be™! ( 1) = < ¢ ; _,e > The
Z — —Be
solution of the given system is therefore x =z —5 = Ae’ + Be™" —5and y = w +2 = —Be ' + 2,
the same solution as in (i).
Itis clear that if A # 0, then x does not converge to the equilibrium value as t — o0, which confirms
that the system is not asymptotically stable.
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6.6.4 (a) From the first equation, y = %(3& — ax — o). The second equation then yields
I —ab)y=2x+4a —ax —a)+B = Fi-2ai+@-Hx=2—aa ()

The characteristic equation is r? —2ar +a* — 4 = 0, which has the roots r1,2 = a £ 2. It follows that the
homogeneous equation associated with (<>) has the general solution xy = Ae“ =" 4 Be@*+2! Hence,
the general solution of equation (<) itself is xg + u*, where u* is any particular solution of (<>). Since the
right-hand side of the equation is a constant, we look for a suitable constant ™, which turns out to be u* =
(2B —aa)/(a>—4). Thus, the general solution of () is x = Ae @ 2" + Be@tD! 1 (28 — aa)/(a® — 4).
Then the equation y = %()'c —ax —a) yields y = —Ae @2 4+ Be @t L Qa0 — aB)/(a* — 4).

(b) The equilibrium point (x*, y*) is given by the equation system
ax* +2y" +a =0, 2x" +ay*+B=0

Easy calculations show that x* = (28 — aa)/(a*> — 4) and y* = 2« — aB)/(a*> — 4). Of course, this
is just the stationary solution of the system in part (a), given by A = B = 0. The equilibrium point is
globally asymptotically stable if and only if ¢/“~" and e both tend to 0 as t — oo, and this happens
if and only if both @ — 2 and a + 2 are negative, i.e. if and only if a < —2.

An alternative way to check stability is to consider the trace and determinant of the coefficient matrix

2
A= <a a)' We get tr(A) = 2a and |A| = a® — 4, and Theorem 6.6.1 says that the equilibrium point

is globally asymptotically stable if and only if 2a < 0 and a®> — 4 > 0, which is equivalent to a < —2.
(c) Witha = —1, @ = —4, and B = —1, the general solution of the system is x = Ae™> + Be' + 2,
y = —Ae™¥ 4 Be' + 3. It is clear that this will converge to the equilibrium point (2, 3) if and only if
B = 0. One such solution is then x = ¢~ + 2, y = —e 3" 4+ 3. This solution moves towards (2,3)
along the line x + y = 5, and so do all the convergent solutions, i.e. the solutions with B = 0.

6.7

6.7.4 (a) See Figs. A6.7.4(a) and (b) in the answer section of the book. The system has a single equilibrium
point, namely (0, 0). It seems clear from the phase diagram that this is not a stable equilibrium. Indeed,
the equations show that any solution through a point on the y-axis below the origin will move straight
downwards, away from (0, 0).

(b) The first equation has the general solution x = Ae~’, and the initial condition x(0) = —1 implies
A = —1,50x = —e~’. The second equation is the system the becomes y = e¢~'y — y?, which is a
Bernoulli equation.

Withz =y 2=y~ ' =1/ywegety = 1/z, y = —z/7%, and

—z/P=e'(1/2) = 1)7? = i4+e'z=1
If we use formula (5.4.7) witha(t) = e ', b(t) = 1,1p = l,and zo = 1, we get_fs’a(g) dé =e'—e¢™s

and
—t ! —t_ ,—s —t ! —s
z=2¢e° _l—l—/ e ¢ ds =e¢° (e_l—i—/ e ¢ ds)
0 0

Lt
e ¢

y = =
el + [ye ds

Foralls > O we have e < 1,50 —e* > —l and e ¢ > e L. It follows that for r > 0 we have
I e

velds>e e <e®=1landy(t) < 1/(e7! +1te7!) — Oasroo.
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6.7.6 The equation x = —x has the general solution x = Ae™". The initial condition x(0) = 1 then implies
x(t) = e~!. The second equation becomes y = —e~2y. This is a separable equation and we get

dy_

1
—/e—”dt — Inly|=-e 2 +C
y 2

The initial condition y(0) = 1 yields C = —1, and we get y(1) = ele™=D/2

(x(1), y(1)) tends to (0, e~'/?).

. Ast — oo, the point

6.8

6.8.5 Let f(Y,K) = a(I(Y, K)— S, K)) and g(Y, K) = I(Y, K). The matrix A in Theorem 6.8.2 is
/ / R r

A(Y,K) = (ff f,K) - (“(IY ~Sy) el SK)). Now, tr(A(Y, K)) = a(I}, — S}) + I}y <0

vy 8k Iy Iy

and [A(Y, K)| = a(ly — Sy I —a(ly — Sp)ly = a(ly Sy — I Sy) > 0 by the assumptions in the

problem. Finally, f} g% = a(Iy — Sk)I;, < 0 everywhere, so an equilibrium point for the system must

be globally asymptotically stable according to Olech’s theorem.

6.8.6 See the answer in the book for the stability question.
K must satisfy the Bernoulli equation K = s K% — 8K . This corresponds to the equation in Problem
5.6.4, with y1b = s and y, = —§. The general solution is therefore K (1) = [Ce“s(l_“)’ + s/6]1/(17a).
The initial condition K (0) = Ky yields C = Ké_“ —s/8. Since 6(1 — @) > 0, the solution K(¢) =
[(Ké_‘" —5/8)e U0t 4 s/(S]]/(]_a) tends to (s/8)/1~% = K* ast — 0.
6.9

6.9.2 Write the system as
k=F(k,c)= f(k)—8k—c, ¢c=Gk,c)=—c(r+38— f'(k)

The Jacobian matrix at (k, ¢) is

_(F F\_[(f®-3 -1
A(k’@—(g;( Gg)_( cf" (k) f’(k)—r—5)

The origin (k,c) = (0,0) is an equilibrium point, but not the one the authors had in mind. At an
equilibrium point (k*, ¢*) with ¢* > 0 we have ¢* = f(k*) — 6k* and f'(k*) = r + 8. Then

e o [ fEY=8 =1\ r —1
A(k , C )— ( Cf”(k*) 0) - (Cf//(k*) 0)

has determinant |A(k*, ¢*)| = cf”(k*) < 0, so (k*, ¢*) is a saddle point.

6.9.3 (a) (xo, yo) = (4/3, 8/3). It is a saddle point because the Jacobian at (4/3, 8/3) is

y—x—2 X —-2/3 4/3 . )
A= ( y2/2x2 1 — y/x) = ( > 1) with determinant |A| = —2.

(b) See Fig. A6.9.3 in the answer section of the book.
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6.9.4 (a) The equilibrium points are the solutions of the equation system
() y—x=0, (i) 25/4—-y'—(x—-1/4)*=0

Substituting x for y? in (ii) leads to the quadratic equation x> + x/2 — 99/16 = 0, which has the
solutions x = (—1 % 10)/4. Since x = y’> must be nonnegative, we get x = 9/4 and y = +3/2.

-1 2 —1
The Jacobian at (x, y) is A(x, y) = (—2x 1. _2§>, so A(9/4,3/2) = A = (_4 _§> and
-1 =
A9/4,-3/2) = A, = ( 4 ; . The determinants and traces of these matrices are |[A;| = 15,
tr(A;) = —4, |Ay| = —15, and tr(A,) = 2. It follows that (9/4, 3/2) is locally asymptotically stable,

whereas (9/4, —3/2) is a saddle point. These conclusions are confirmed by the solution to part (b). See
Fig. A6.9.4 in the answer section of the book.

7 Differential Equations lll: Higher-Order Equations
7.1

7.1.3 The homogeneous equation X + x = 0 has the two linearly independent solutions #; = sint and
uy = cost. To find the solution of the equation X +x = 1/t we use the method of variation of parameters.
Let x = C1(¢) sint 4+ C»(t) cost. The two equations to determine ¢, (1) and C‘z(t) are

C, (t)sint + C"z(t) cost =0
Cl(t) cost — Cz(t) sint =1/t

This is a linear equation system in the unknowns C\(r) and C5(t), and the determinant of the system is

sin ¢ cost ) . .
. = —sin’t — cos?t = —1. (See Section B.1.) Cramer’s rule gives
cost —sint
. cost . sin ¢
Cl(l)ZT, Cz(f)Z—T

i cost cost . . , . .
It follows that u™*(¢) = sint / — dt — cost / X dt is the general solution of the given equation

(provided we include an arbitrary constant of integration in each of the two integrals).

7.2

7.2.2 Integer roots of the characteristic equation 73 — 2 —r 41 = 0 must divide the constant term 1 (EMEA,
Note 4.7.2), so the only possibilities are +1, and we see that both» = —1 and r = 1 are roots. Moreover,
PB=r2=r+D=r=1) = @>=1),50r=r>—r+1 = (r—-1)(#>=1) = (r—1)?(r+1). According to the
general method for finding linearly independent solutions to linear homogeneous equations with constant
coefficients, the general solution of the associated homogeneous equation is xy = (A + Bt)e' + Ce™".
Looking at the right-hand side of the given nonhomogeneous equation, it might seem natural to try
u* = (D + Et)e”" as a particular solution. But that does not work because r = —1 is a root in
the characteristic equation. We must therefore increase the degree of the polynomial factor and try
with a quadratic polynomial instead. Let u* = (Et 4+ Ft*)e™'. A bit of tedious algebra gives i* =
(E+QF—E)t—Ft>)e ', ii* = QF —2E+(E—4F)t+Ft>)e ", u* = BE—6F+(6F—E)t—Ft*)e™",
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and finally ™ — ii* — u* + u* = (4E — 8F + 8Ft)e™". This equals 8te " if F = 1 and E = 2, so the
general solution of the given equation is x = xy + u* = (A + Bt)e' + (C + 2t + t?)e™". Requiring this
solution to satisfy the initial conditions gives A = —1, B =1,C = l,andsox = (t — 1)e' + (1 + 1)2e".

Why did we not include a term of the form De ™" in the tentative solution u*? The answer is that De ™’

is a solution of the homogeneous equation for every value of D, so D would not appear in o™ —ii* —u*+u*.

7.2.3 Differentiating the equation w.r.t. ¢ gives (using the product rule and (4.1.5))
“ee . t . .
K = ik + y2)K + (yi0 + y3)ope™ / e MK (D)dt + (y10 + y3)puoe'e K@) (%)
0

From the given equation, (y0 + y3)uoet! fot e"”f((r)dr =K — (y1k + yz)K. Inserting this into ()
yields the equation K — pK + ¢ K = 0 given in the answer in the book. One root of the characteristic
equation 7> — pr? 4+ qr = 0 is r3 = 0. The other two are the roots r; and r;, of 7> — pr + g = 0,
and they are real, nonzero, and different if p> — 4g > 0 and g # 0. If these conditions are satisfied, it
follows from the theory in this section that the general solution of the differential equation is of the form
K@) = Cie"'! 4 Cpe™' 4 Cze™!.

7.3

7.3.2 The roots of the characteristic equation PP4+4rf+5r+2=0arer; =r, = —1 and r3 = —2, which
are all negative, so global asymptotic stability also follows from Theorem 7.3.1.

7.4

7.4.1 (i) Thesystemis: (a) x| = —x|+x2+x3, (b) X2 = x; —x2+x3, (¢) X3 = x; +x3+x3. Differentiating
(a) w.r.t. ¢ and inserting from (b) and (c) gives (d) X; + x; — 2x; = 2x3. Differentiating once more w.r.t.
¢ and inserting from (c) gives x| + X; — 2%; = 2x3 = 2x; + 2(x2 + x3) = 2x1 + 2(X; + x1), using
(a) again. Thus the differential equation for x; is (e) x| + X; — 4x; — 4x; = 0. Since the characteristic
polynomial is (r + 1)(r 4+ 2)(r — 2), the general solution is x; = Cie™" 4+ Cre™% + C3e?. From (d)
we find x3 = %()'c'l + % —2x1) = —Cre! +2C3e%. We then find x, from (a): x, = x| +x; — x3 =
Cie ! — Czefzt + C3€2t.

-1 1 1 X1
(i) We write the system as X = Ax, where A = 1 —1 1 ]andx = | x; |.The eigenvalues of
1 1 1 X3
—1—=2 1 1
A are the solutions of the equation 1 —1—A 1 = 0, and we find them to be A; = —1,
1 1 1—A
Ay = —2,and A3 = 2. (These are the same as the solutions of the characteristic equation of the differential

equation (e). This is no coincidence. See the remark above Theorem 6.6.1 concerning second-order
systems.) The eigenvectors associated with the eigenvalues are determined by the three systems

X2+ x3=0 x1+x2+ x3=0 =3x14+ x+x3=0
X1 + x3=0, xX1+x2+ x3=0, x1—3x2+x3=0
X1+ x24+2x3=0 X1 +x2+3x3=0 X1+ xp—x3=0
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The following vectors are solutions of these systems:

1 1
vV = 1 , Vo = —1 , V3 = 1
— 0

The solution of the given system of differential equations is then

X1 1 1 1
x| =Cle? 1 +Ce™®| =1 |+C3e* | 1
X3 -1

We see that we have arrived at the same solutions as above.

(ii1) The resolvent, with 7y = 0, is

1 -t 1,-2 1,2t 1,—t 1,2 1,2t 1t 1 2t

3¢ + 53¢ 7 +ge z€ e+ ge e +3e
P(l‘, 0) — %e—t _ %e_Zt + ée2t %e_’ + %e_Zt + %eZt _%e—t + %eZt
1 - 12 1 -t 1,21 1 -t 2,2t

e +3e e +3e e +3e

The ith column of P(z, 0) is a vector (x1(z), x2(¢), x3(¢))" of particular solutions of the system such that
(x1(0), x2(0), x3(0)) is the ith standard unit vector e;. In particular, P(0, 0) = I3. It is not hard to verify
that AP(¢, 0) = (d/dt)P(¢, 0).

7.5

7.5.4 (a) Equation (%) is separable, so

g1(x) Iy — 2
SV
f1(x) 22(y)

the function H (x, y) is constant along each solution curve for the system.

(b) H(x,y)szx_hdx—/k_“ydy:f(b_ﬁ)dx_/(f_a)dy:
X y X y

bx —hlnx — (klny —ay) +C = b(x —xpInx) +a(y — yglny) + C,
where xo = h/b and yg = k/a.

dy + C for some constant C. Therefore,

7.5.5 We can write the system as
x =x(k —ay — ¢ex), y = y(—h + bx — §y)
It is clear that a point (xg, yo) with xg 7 0 and yo # O is an equilibrium point if and only if

b)C() — 8y0 =h
(%)

exo+ayy =k

The determinant of this system is ab + d& # 0, so it has a unique solution, and Cramer’s rule gives the
solution as xo = (ah + k8)/(ab + d¢), yo = (bk — he)/(ab + S¢), as given in the problem.
We claim that the function

L(x,y) =b(x —xolnx)+a(y — yoIny) — b(xo — xoInxp) + a(yo — yoln yo)
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isastrong Liapunov function for the system, with (xg, yo) as its minimum point. Firstnote that L (xg, yg) =
0. Moreover, L' (x,y) = b(1 — x¢/x) and L)(x,y) = a(l — yo/y) are both 0 at (xo, yo) and LY =
bxo/x? > 0, L’y’,y = ayy/y*> > 0, and L;’y = 0, so L(x, y) is strictly convex and has a unique minimum
at (xo, yo). Finally,

L =b(1 —xo/x)x +a(l —yo/y)y = blk —ay — ex)(x — x¢) +a(—h + bx — 8y)(y — yo)
= b(exo + ayo — ay — ex)(x — xo) + a(dyo — bxo + bx —8y)(y — yo)
= —eb(x — x0)* — ad(y — yo)*

which is negative for (x, y) # (xo, yo). We used the equations k = exg + ayp and h = —38yy + bxo
from (x). We have proved that L is a strong Liapunov function for the system, so (xg, yo) is locally
asymptotically stable.

7.7

7.7.1 (a) By integration, z = %x“ + %xZ y2 — ¥y 4+ ¢@(y), where ¢(y) is an arbitrary function and plays the
role of a constant of integration when we integrate with respect to x.

(b) The recipe for solving equations of the form (7.7.2) leads to the solution z = 3x 4+ ¢(y — 2x), where
@ is an arbitrary differentiable function. It looks as if x has a special role here, but that is an illusion.
If we use the recipe with y instead of x as the independent variable in equations (7.7.3), we are led to
z=3y/2+ ¥ (x — y/2), where y seems to be singled out. Actually, these solutions are just two ways of
writing the same thing. The functions ¢ and ¥ are related by the equation ¥ (1) = ¢(—2u) + 3u.

(c) The equations in (7.7.3) are both separable, dy/dx = y*>/x* and dz/dx = z*/x>. The solutions are

—1/y = —1/x+ Cy, —1/z = —1/x + C,. The general solution is therefore ®(1/x — 1/y, 1/x — 1/z)
=0,0or1/z = 1/x —¢(1/x — 1/y), and hence z = a , where ¢ is an arbitrary
I —xp(/x —1/y)

differentiable function.

7.7.3 (a) Theequationsin(7.7.3)aredy/dx = —y/x anddz/dx = 1. The latter equation gives z = x+C1,
and so z — x = Cy. The first equation is separable with solution xy = C,. The general solution of (%) is
given by ®(z — x, xy) = 0. Solving this equation for the first variable yields z = x 4+ ¢(xy), where ¢ is
an arbitrary differentiable function.

(b) The condition f(x, 1) = x2 implies that x + ¢(x) = x2. Thus px)=—x+ x2 for all x, and hence
fy) =x+9@ky) =x —xy+x°y~

7.7.7 Theequationsin(7.7.3)aredv,/dvy = vy /v; anddx/dv, = xe(x) /vy, with the solutions v, /vy = Cy,
f(x) —Inv; = Cy, where f(x) = f(l/xe(x)) dx. Since f'(x) = 1/xe(x) > 0, f is strictly increasing,
and has an inverse f~! thatis also strictly increasing. The general solution is ® (v /vy, f(x)—Inv;) =0,
or f(x) = Inv; + ¢(va/v1). Hence, x = f~'(Inv; + @(v2/v1)). Define g(vy, vy) = eMVite2/v0) —
v1e?®2/Y)  Then g is homogeneous of degree 1, and we see that x = f~!(In(g(v;, v2)). The composition
F of the two increasing functions f ~landInis increasing. Itfollowsthatx = F(g(vy, v2)) is homothetic.
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8 Calculus of Variations

8.2
823 (a) With F(t, x, %) = x? + %> + 2xe’ we get F/ = 2x + 2¢' and F; = 2%, and the Euler equation
becomes J
2x+2et—Z(2)'c)=O = 242 —2i=0 < i—x=¢
(b) With F(t, x, x) = —e* =% we get F/ = ae* =% and F L= —e*79% The Euler equation is
i d ;_ ‘e i ax e . . .
ae” ax—l—ae" P=0 & g "+ A —ax) =0 & X¥—ax+a=0
(c) Here F(t,x,%) = [(x —x)*+x?]e™% 50 F| = [2(x — %) + 2x]e* and F| = —2(x —%)e~%'. The
Euler equation becomes
. —at d -\ —at
2(x —x) 4+ 2x]e™ ™ + 5[2(x —x)e Y] =0
= [2(x —X)+2x]e " +2(x —X)e ¥ —2a(x —x)e " =0
<— 2x—X)+2x+2(x —X) —2a(x —x) =0
< Xi—ax+a—2)x=0
(d) With F(z, x, ¥) = 2tx + 3xx + %% we get F/ = 2t + 3% and F; = 3x +2tx, and the Euler equation
becomes

d
2t+35c—a(3x+2tfc)=0 = 20 +3x—-3x—-2x -2t =0 & X+x=t

It is worth noting that this is an exact equation for x because it says that (d/dt)(tx) = t. Hence,
tx = %tz + C, which implies x = %t +C/t,andsox = %tz + Cln |t|+ A, where C and A are constants.

8.2.4 With F(r, x, %) = x2 + 2txx + x% we get F| = 2x + 2tx and F;C = 2tx + 2x, so the Euler equation
(8.2.2)is

d
2x+2t5c—E(2tx—f—2)'c)=0 — 2x+2tx —2x+2tx+2X) =0 << i=0

The general solution of X = 0 is x = Ar + B, and the boundary conditions x(0) = 1 and x(1) = 2 yield
A = B = 1. Thus the only admissible function that satisfies the Euler equation is x =7 + 1.
We have F, =2 >0, F, = 2t,and F, =2 > 0, and since F,, F{. — (F)g’)é)2 =4 — 442 > 0 for

all ¢ in [0, 1], it follows that F (¢, x, X) is convex with respect to (x, x) as long as ¢ € [0, 1]. Hence, by
Theorem 8.3.1, x =t 4 1 is the optimal solution of the problem.

d
. The Euler equation, F, — —F; =0,

8.2.6 Let F(t,x,%) =+/1+ %2 Then F, =0and F, = o

therefore reduces to

X
V14 x2

d X X
—[——— ) =0, ie. ———— = C (constant)
dl‘(«/l—l—)'cz) V1 +x2

This implies
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=C?, so i=C (=—m)

Since x is a constant, x is a linear function of z:
x=Cit+ (.

Thus the graph of x is a straight line, namely the straight line through the points (¢, xo) and (#1, x1). Of
course, this is precisely what we would expect: the shortest curve between two points is the straight line
segment between them. The function x is given by the equation

X

x(1) = xo + =L
1 —

X0
(t — 1)
Io

Note also that F, = 1/(1 + x2)3/2 =~ 0, so F is convex with respect to (x, x), and Theorem 8.3.1 in
Section 8.3 shows that the function we have found really does give the minimum, at least among the
admissible C? functions.

8.3
8.3.2 (a) The objective function is F(z, x, x) = U(¢c — xe'"), and

oF oF
— =0, — = -U'(c —xe™Me"".
ax ox

As 0F/0x = 0, the Euler equation reduces to

d
E(—U’(E —xeMe") =0, so U'(c—xe")e" =K (aconstant)

d
(Evaluating the derivative 7 (—U (¢ —xe™M)e"! ) above leads to the equation
—U"(@c —xe")(=ie" —rxe)e —rU'(c —xe")e =0
This can be simplified to

rU’(c —xe'") _,,

X+rx = U’ — )'Cert)

which will most likely be harder to solve.)
(b) It follows from part (a) that

U —xe")=Ke "
If U(c) = —e ¥“/v, then U'(c) = e '¢, and we get

exp(—vc + vxe”) = Ke™"!

—ve4vxe" =InK —rt
i =C—rijy (C=c+nK)/v)
x=(C—rt/v)e "
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Integration by parts yields
x=x() = /(C —rt/v)e""dt = A+ (B+t/v)e "
where B = (1 — vC)/rv. Finally, the constants A and B are determined by the equations

A+ B = x(0) = xo, A+ B+T/v)e T =x(T)=0

U is concave because U”(c) = —ve Y < 0. Hence, Theorem 8.3.1 shows that the solution we have
found is optimal.

8.3.4 (a) With F(z, y, y) = In[y—oy—zl(r)|weget F| = 1/[y—oy—2zl(1)]and Fj = —o/ly—oy—2l1)].
The Euler equation is then

1 d[ —o ] 1 o(y —oy —zl1)
y—oy—zlr) B

y—oy—z(t) di B y—oy—z) [y—oy—zDOP

. 2 1 .
== y—oy—zt)—oy+o*i+ozl(t) =0 jf—g)'i-l-a—zy:;—z[l(t)—al(t)]

(b) With [(r) = lpe*" the Euler equation becomes

2 1 2 —ao)ly ,,
— ¢

y—=y+=Sy= (%)
o o

o2
The characteristic equation 72 — (2/o)r + 1/0> = 0 has the double root r; = r, = 1/, so the
corresponding homogeneous differential equation has the general solution yy = Ae'/? + Bte'/?. To find
a particular integral of (x) we try with a function u* = Ce®'. We get

i — %u* + ibt* =a’Ce" — z—aCe"” + LCe"” = C—(1 _ aa)zem
o 0'2 o 0'2 0—2
It follows that u™ is a solution of (x) if and only if C = z/p/(1 — ao), and the general solution of (x) is

zly
eat

y=yu+u* = Ae'/’ + Bre'” +
1 —ao

(If wo = 1, then (%) is homogeneous and the general solution is yy.)

8.4

8.4.1 With F(t,K, K) = e/*In(2K — K) we get Fj, = 2¢™"/4/(2K — K)) and Fi, =—e'1*/QK - K).
The Euler equation is

s 2 d( _ 2e1/4 e/ e 42K — K)
e e J N S o
2K —K dt 2K — K 2K —K 4QK-K) (K -K)?
—t/4 . . L
————[8QK —K)— 2K — K) —4Q2K - K)] =0

4(2K_K)2[( ) —( ) —4( )]

& 4K — 15K + 14K =0
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The characteristic equation of the Euler equation is 47> — 157 + 14 = 0, which has the roots r; = 2
and o = 7/4. Hence the general solution of the Euler equation is K = Ae* + Be’'/*. The boundary
conditions yield the equations

K@) =A+ B = Ky, K(T) = Ae’T + B'T* = Ky
By means of Cramer’s rule or by other methods you will find that

Kr —e'TAKy TKy— Kr

A= ————— B=_ - -
2T _ JIT/4 2T _ IT/4

84.2 (a) Let F(t,x, %) = (llmtx — )&2) e /1% Then F! = te™"/19/100 and F, = —2xe~ /19 and the
Euler equation becomes

r g0 d . —1/10 P10 | ne —t/10 2 . _i/10
— L ) —0 = — ) =z —0
1008 dt ( xXe ) 1OO€ Xe 10 xe
N 1
[ — — __l’
= 10x 200 ()

The general solution of the corresponding homogeneous equation is
Xg=A+ Be'/10

To find a particular solution u* of (%) we try with u = Pt> + Qt. Then it = 2Pt + Q and ii = 2P, and
if we insert this into (x) we get

This yields P = 5/200 = 1/40 and Q = 20P = 1/2, so the general solution of the Euler equation is

1, 1
= A+ B4 — 24 ¢
FEATBATA G T

The boundary conditions x(0) = 0 and x(7") = S yield the equations
A+B=0, A+ B/ L T2/404+T/2=S
with the solution

T?/40+T/2—S
A=-B= oT/10 _

Since F(t, x, x) is concave with respect to (x, x), this is indeed an optimal solution.

(b) With 7 = 10 and S = 20 we get B = —5/2+4+5 —20/(e — 1) = 25/2(e — 1), and the optimal
solution is

_25(0 -1

I, 1
X = + —t"+ <t

2(e — 1) 40 2

8.43 With F(r, K,K) = U(C, ) we get Fi = U Cyx = Up(f] —8) and Fl/& =U( - (—1) = =U(. The
Euler equation is

’ d -
Uc(fgx —8) + EUé =0 = Uc(fx =8 +UccC+UE =0
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The Euler equation implies C = —[U{, + Up(fx — 81/ U, and therefore

C _ UL+Ufr—0 1<Ug,
C CU/c B

Co\UL +f’/<_8)

where ® = CU['-/ U(. is the elasticity of marginal utility with respect to consumption.

844 (a) F(1, p.p) = pD(p. p) —b(D(p, p)) yields F, = D+ pD), —b' (D)D), = D+[p —b'(D)ID),
and F,/a =[p— b/(D)]D;, so the Euler equation is

’ d / / / d / /
Fp _ E(Ff’) =0 < D+ [p—b(D)]Dp — E[[l)—b(D)]D[)] =0

(b) Withb(x) = ax?+Bx+yandx = D(p, p) = Ap+Bp+C,wegeth' (x) =2ax+p,0D/dp = A,
and 0D /0 p = B. Insertion into the Euler equation gives

d
Ap+Bp+C+1p—2u(Ap+Bp+C) = BlA— —[(p—2u(Ap+ Bj +C) — p)B] = 0

which yields Ap + Bp 4+ C + Ap —2aA’p — 20 ABp — 20 AC — BA — Bp +2aABp +2aB*j = 0.
Rearranging the terms we can write the Euler equation as

A*—AJa  BA+20AC—C
gz I~ 20 B2

p—
and it is easy to see that we get the answer given in the book.

8.5

8.5.2 (a) The Euler equation is

(=2% — 10x)e™" — —[(—2% —2x)e "1 =0 <= ¢ (=2 — 10x + 2% + 2% — 2% —2x) =0

d

dt
— i+x—-6x=0

The general solution of this equation is x = Ae* 4 Be~2, and the boundary conditions yield the equations
x(0)=A+ B =0, x(1)=Ae’ + Be? =1

which have the solution A = —B = 1/(e® —e~?). The integrand F (¢, x, X) = (10 — x> —2xx —5x%)e ™’

is concave with respect to (x, x) (look at the Hessian or note that —%2 — 2x% — 5x2 = — (& — x)* — 4x?),
so the solution we have found is optimal (Theorem 8.5.1).

(b) (1) With x(1) free, we get the transversality condition [F ;] ] = 0, which implies
(D) 4+x(1)=0 < 34> —2Be >+ A’ +Be =0 < 44> —Be 2=0
Together with the equation A + B = x(0) = 0, this yields A = B = 0, so the optimal solution is x = 0.
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(i) With the terminal condition x (1) > 2 the transversality condition is [F ;] 1 = 0, with [F ;] = 0
if x(1) > 2. In our case this reduces to

—x(1)—x(1) <0, and —x(1) —x(1) =0 if x(1) > 2
Since x (1) = Ae¥ — Ae™?, we get
—A@de+e¢2) <0, and —A@S+e ) =0if x(I) = A(* —e?) >2

From the last condition it is clear that we cannot have A(e> — e~2) > 2, for then we must have A = 0,
2(e? —e7?)

and that is impossible. Therefore A —e?)=2and x = 5

e3—e

8.54 WithU(C)=a—e "¢, wegetU'(C) = be "C and U"(C) = —b*e¢~*C, so equation (x) in Example
8.53 reduces to A —rA = (p — r)/b. Putting 7 = A, we get 7z —rz = (p — r)/b. This is a linear
first-order differential equation with constant coefficients, and the solution is z = Pe"" — (p — r)/br.
Then A = f zdt = Ke" — (p —r)t/br + L, where K = P/r and L are constants. These constants are
determined by the boundary conditions A(0) = Ag and A(T) = A,.

8.5.5 (a) The conditions are —(d/dt)[C;(t,)'c)e_”] = 0 and C)/-C(S, x(5)) >0 (= 0if x(5 > 1500). It
follows that C’, (¢, X) = Ke™"', where K is a constant.
(b) It follows from part (a) that if » = 0 then C; (t, x) = K must be constant. With C(z,u) = g(u) it
means that g’(X) must be constant. Since g’ is strictly increasing, x must also be a constant, so x = At.
We must have 5A > 1500. Since C(t, %) = g'(x) = g'(A) > 0, the transversality condition shows
that x(5) = 1500, so A = 300 and x = 300¢. Thus planting will take place at the constant rate of 300
hectares per year.

9 Control Theory: Basic Techniques
9.2

1
9.2.3 We transform the problem to a maximization problem by maximizing f [—x() — u(t)z] dt. The
0

Hamiltonian H(t, x, u, p) = —x — u* — pu is concave in (x, u), so according to Theorem 9.2.1, the

following conditions are sufficient for optimality (using (9.2.7)):

() H,(t, x*(t), u*(t), p(t)) = =2u*(t) — p(t) = 0;
(i) p(t) = —H.(t, x*(t), u* (1), p(t)) = 1, p(1) = 0;
(iii) x*(t) = —u*(@), x*(0) = 0.
From (i1), p(t) = t 4+ A for some constant A, and p(1) = 0 gives A = —1 and so p(t) =t — 1. From (i)
wehave u™(t) = —%p(t) = %(l—t). It remains to determine x*(¢). From (iii), x*(¢) = —u*(t) = %t—%,
and so x*(r) = 12— %t—l—B. With x*(0) = 0, we get B = 0. So the optimal solution is u™(t) = %(1 —1),
x*(t) = 312 — I, with p(t) =t — L.

=

9.2.4 TheHamiltonian H (¢, x, u, p) = 1—4x —2u’+ puisconcavein (x, u), soaccording to Theorem 9.2.1
(using (9.2.7), the following conditions are sufficient for optimality:
() H,(t,x*(0), u*(1), p(1)) = —4u*(1) + p(1) = 0;
(i) p(t) = —H (t, x*(t),u*(t), p(t)) =4, p(10) =0;
(i) x*(t) = u*(@), x*(0) = 0.
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From (ii), p(t) = 4t + A for some constant A and p(10) =40+ A = 0,s0 A = —40and p(t) = 4t —40.
From (i) we have u*(¢t) = %(4t —40) =t — 10. From (iii), x*(t) = u™(¢t) = t — 10, and with x*(0) = 0,
we get x*(t) = %tz — 10z.

9.2.5 TheHamiltonian H (¢, x, u, p) = x— u? + p(x+u)isconcavein (x, u), so according to Theorem 9.2.1
(using (9.2.7), the following conditions are sufficient for optimality:

() H,(t, x*(t), u*(t), p(t)) = =2u*(t) + p(t) = 0;
(i) p(t) = —H (t,x*(),u*(t), p(t)) = —1 — p(t), p(T) = 0;
(iil) x*(¢) = x*(¢) + u*(r), x*(0) = 0.
From (ii) we get the linear differential equation p(7)+p () = —1. The general solutionis p(r) = Ae ' —1,
and p(T) = 0 gives A = e, so p(t) = e/ ~" — 1. From (i) we have u*(t) = %(eT_’ — 1). Finally,

from (iii), £*(r) = x*(1) 4+ 3(e" =" — 1), with general solution x*(#) = Be' + ¢’ f e = dt =

| T— 1 o . 1 1 1 1 1
Be' — z¢" 7' 4 5. The condition x*(0) = 0 gives B = ZeT — 5. Thus, x*(r) = ZeTJF’ 4eT ! zet+§.

9.2.6 (b) Conditions (7) and (5) reduce to
() I*(1) = 3p@);
(i) p() —0.1p(t) = —1 + 0.06K* ().
Moreover, K*(t) = I*(t) — 0.1K*(t) = %p(t) — 0.1K*(¢t). Thus (K*(t), p(t)) must satisfy
(iii) K = p —0.1K, and
@iv) p—0.1p = —1+0.06K.

From (iii) we get p = 2K + 0.2K, and then p = 2K + 0.2K. Inserting these results into (iv) and
simplifying yields K — 0.04K = —0.5.

9.4

9.4.2 The Hamiltonian H(t, x, p,u) = 1 — x> — u? + pu is concave in (x, u), so according to Theorem
9.4.2 (using (9.2.7), the following conditions are sufficient for optimality:

() H,(t,x*(t), u*(t), p(t)) = =2u*(t) + p(t) = 0;

(i) p(t) = —H (t, x*(1), u*(1), p(t)) = 2x*(1);

(iii) p(1) > 0,and p(1) =0if x*(1) > 1;

(iv) x*() = u™(t), x*(0) =0, x*(1) > 1.
From p(t) = 2x*(t) we get p(t) = 2x*(t) = 2u*(¢t) = p(¢). It follows that p(t) = Ae' + Be™' for
suitable constants A and B. Furthermore, x*(t) = % p = %(Aet — Be™"), and since x*(0) = 0 gives
B = A, we have x*(t) = JA(e' —e™), u*(t) = ¥*(t) = JA(e' +e7"), and p(t) = A(e' +e7'). If
x*(1) > 1, we must have p(1) = 0, and therefore A = 0, but that would give x*(z) = 0 for all ¢, which
contradicts x*(1) > 1. Therefore we must have x*(1) = 1, which gives A = 2/(e —e™!) = 2e/(e* — 1).
(The value of A here is twice the value of A given in the book.)

9.4.3 (a) As in Example 9.2.1, we have p(t) = —%(T2 — £2), but this time u*(¢) is the value of u that
maximizes H (¢, x*(t), u, p(t)) = 1 —tx*(t) — u> + p(t)u for u € [0, 1]. Note that H = 2u+p) =
—2u—3(T*—1?) < Oforall < T. Thus the optimal choice of u must be u*(¢) = 0, and then x*(¢) = xo.
(b) Also in this case H, = —2u + p(t) = —2u — %(T2 —t?)and H/ = —2. So for each 7 in [0, T,
the optimal u*(#) must maximize the concave function H (¢, x*(t), u, p(t)) for u € [—1, 1]. Note that
H) = 0 whenu = —‘]—‘(T2 — ¢?), and this nonpositive number is an interior point of [—1, 1] provided
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—3(T?—1?) > —lie. t > VT?—4.If t < /T? — 4, thenu = —1 is optimal. (Choosing u*(t) = 1
cannot be optimal because H,, is negative for u = 1.) For the rest see the answer in the book.

9.4.4 (a) Since H(t,x, p,u) = x + pu is concave in (x, u), the following conditions are sufficient for

optimality:

(1) u = u*(t) maximizes p(t)u for u € [0, 1];

(i) p=-1,

(i) x*(r) = u*(@), x*(0) = 0, x*(10) = 2.
From (ii) we get p(t) = A — ¢t for some constant A, and (i) implies that u*(t) = 1 if p(¢) > 0 and
u*(t) = 0if p(t) < 0. Now u*(¢) = 0 and u*(¢) = 1 are both impossible because x*(r) = u*(¢) and
x*(0) = O contradict x*(10) = 2. Since p(¢) is strictly decreasing, we conclude that for some #* in
(0, 10) we have p(r) > 0, and thus u*(t) = 1, for ¢ in [0, t*], and p(¢) < O with u*(¢) = O for ¢ in
(t*, 10]. Att* we have p(t*) = 0,50 A = r* and p(t) = t* — t. We see that x*(¢) = ¢ for ¢ in [0, r*] and
x*(t) = t* for ¢ in (¢*, 10]. Since x*(10) = 2, we conclude that t* = 2, and the solution is as given in
the book.
(b) Asin (a) we find that for some t* in (0, T'), u*(#) = 1in [0, t*] and u*(¢) = 0 for ¢ in (+*, T']. Then
x*({t) =t 4+ xo fortin [0, t*] and x*(¢) = t* + xo for ¢ in (¢*, T']. Since x*(T') = x|, we conclude that
t* = x1 — x9, and the solution is as given in the book.

9.4.6 The Hamiltonian H (¢, x, u, p) = [10u — u? — 2]e 01 — pu is concave in (x, u), so according to

Theorem 9.4.2, the following conditions are sufficient for optimality:

(1) u*(t) maximizes H (¢, x*(¢), u, p(t)) = [10u — u? —2Je 0 — p®)u foru > 0;

(i) p@t) = —H(t, x*(t), u*(t), p(1)) = 0;

@iii) p(5) = 0,and p(5) =0if x*(5) > 0;

(iv) x*(t) = —u*(), x*(0) =10, x*(5) > 0.
From (ii) we have p(t) = p for some constant p. Suppose u*(¢) > 0 for all 7 in [0, 5]. Then (i) is
equivalent to H, (t, x*(t), u*(t), p(t)) = 0, that is,

(V) [10 = 2u*(1)]e” 1 = p.
If p = 0, then (v) implies that u™*(¢) = 5, and then x*(r) = —5. With x*(0) = 10, we get x*(r) = 10— 5¢,
which gives x*(5) = —15, a contradiction. Hence p > 0 and from (iii) (and x*(5) > 0) we conclude
that x*(5) = 0. From (v) we have u*(t) = 5 — %ﬁeo'“, and then x*(t) = —u™*(¢) with x*(0) = 10
gives x*(t) = 5p(e®!" — 1) — 5t + 10. The condition x*(5) = 0 gives p = 3/(e"> — 1). Since all the
conditions (i)—(iv) are satisfied by the pair (x*(¢), u*(¢)), we have found an optimal solution.

9.4.7 (b) The Hamiltonian H (¢, x, u, p) = —(ax + bu?) + pu is concave in (x, u). To check the maximum
condition (9.4.5) in Theorem 9.4.1, it suffices to check that, if u* () > 0, then (H))* = —2bu™*(t)+p(t) =
0, and if u*(¢) = 0, then (H,))* = —2bu*(t) + p(t) < 0. Also p(t) = at + A for some constant A.
Suppose u*(t) > O for all ¢ in [0, T]. Then u*(t) = p()/2b = (1/2b)(at + A). Moreover,
X*(t) = u*(t) = (1/2b)(at + A), so x*(t) = (1/2b)(3at> + At) + C. Here x*(0) = 0 yields C = 0,
and x*(T) = B gives A =2bB/T —aT /2. Thus

u*(ty =aQt —T)/4b+ B/T and x*(t) =at(t —T)/4b+ Bt/T

Note that u*(¢) is increasing in ¢, and u*(0) = B/T —aT /4b > 0 if and only if B > aT?/4b. So in this
case we have found an optimal solution, because it is easy to check that all the conditions in Theorem
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9.4.2 are satisfied. (This solution is valid if the required total production B is large relative to the time
period T available, and the storage cost a is sufficiently small relative to the unit production cost b. See
Kamien and Schwartz (1991) for further economic interpretations.)

Suppose B < aT?/4b. Then we guess that production is postponed in an initial time period. We
cannot have u*(t) = 0 because then x*(¢) = 0, which contradicts x*(T) = B > 0 (assumed implicitly).
Ifu*(t**) > 0, then by continuity of p(t), the unique maximizer of H wouldbe > 0O forsomer < t*, with¢
closetot*. Sou*(t**) = 0,and u*(t) = x*(t) = 0in [0, ¢*]. Inparticular, x*(t*) = 0. In (t*, T] we have
asbefore u*(t) = (1/2b)(at+A), and since u*(t**) = 0, wehave A = —at*, andu*(¢t) = (a/2b)(t —1%).
Thenx*(¢) = u*(t) = (a/2b)(t—t*),and withx*(+*) = 0, x*(¢) = (a/4b)(t—t*)*>. Now t* is determined
by the condition x*(T) = B, which gives (a/4b)(T — t*)?> = B, or T — t* = +./4bB/a. The minus
sign would make * > T, so we must have t* = T — 2./bB/a. Note that t* > 0 <= B < aT?/4b.
We end up with the following suggestion for an optimal solution:

0 if ¢t € [0, t*] 0 if ¢ € [0, t*]
*t= t_* , *t= _*2
u”(t) a(t —r*) it 1@t T] x*(1) a(t —t*)
2b 4b

witht* =T — 2/bB/a.

It remains to check that the proposed solution satisfies all the conditions in Theorem 9.4.2. The
pair (x*, u*) is admissible and satisfies the terminal condition x*(7) = B, and p = a = —(H))*. It
remains only to check the maximum condition. For ¢ in (#*, T] we have u*() > 0 and we see that
(H))* = —2bu*(t) + p(t) = 0. For ¢ in [0, t*], we have u*(t) = 0 and (H,)* = —2bu*(t) + p(t) =
a(t —t*) <0, as it should be. So we have found an optimal solution.

Note: When we use sufficient conditions, we can use “wild” guesses about the optimal control and
the optimal path, as long as we really check that all the conditions in the sufficiency theorem are satisfied.

if re(@,T]’ p)=alt=1)

9.4.8 The Hamiltonian is H(z, x, p,u) = x> — 2u + pu = x> + (p — 2)u. (Since x(2) is free, we put

po = 1.) The maximum principle (Theorem 9.4.1) gives the following necessary conditions:

(i) u = u*(t) maximizes (p(t) — 2)u foru € [0, 1];

(i) p=—H (t, x*(1),u*(1), p(t)) = =2x*(@), p(2) =0;

(iii) x*(t) = u™(t), x*(0) = 1.
From (i) we see that p(r) > 2 = wu*(t) = 1and p(t) <2 = wu*(t) = 0. The function x* must
be increasing, because x*(¢) > 0. Hence p(t) = —2x*(t) < —2x*(0) = —2 < 0. Consequently p is
strictly decreasing. Since p(2) = 0, we have p(t) > 0 for ¢ in [0, 2). Because p < —2, we see that
p2) — p0) = f02 p)dt < foz(—2) dt = —4, 50 p(0) > p(2) + 4 = 4. There is therefore a unique ¢*
in (0, 2) with p(t*) = 2, and

>2 for t €0, ")
<2 forte(t* 2]

1 for ¢t € [0, t*]

- ”*(t):{o for € (r*,2]

p() {

For t < t*, we have x*(t) = u*(t) = 1, so x*(t) = x*(0) +¢ = 1 + t. Moreover, p(t) =

—2x(t) = —2 —2t, which gives p(t) = =2t — 12 + C, for a suitable constant Cy. Since x* is continuous,
x*(t*) = 1 + ¢* (the limit of x*(¢) as ¢ approaches ¢* from the left).

For t > t*, we have x*(t) = u*(t) = 0, so x*(¢) remains constant, x*(¢) = x*(#*) = 1 + t*, and

p(t) = —2x*(t) = =2 —2t*,s0 p(t) = —2(1 +t*)t + Cy, where C; = p(2) +2(1 + )2 = 4(1 4+ t¥).

Now, p(+*) must equal 2, so —2(1 +*)t* +4(1 +1*) = 2, or (t*)> —t* — 1 = 0. This quadratic equation
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givest* = (1+ V/5)/2, and since t* must be positive, t* = (1 + V/5)/2. We know that for 7 > r* we have
p(t) = =204+t +C1 = =21+t +4(1 +1*) =21 + )2 — 1) = 3 +2/5)(2 —1). We also
know that there is a constant Cy such that p(t) = —2t —t> 4+ Cq for t < t*. To determine the constant Cy,
we use the equation p(t*) = 2, which gives Co — 2t* — (t*)> =2, or Cg = 2+ 2t* + (t*)? = % + %\/5
The only possible solution is spelled out in the answer in the book.

9.5

9.5.1 With F(¢, x, X) = 2xe™" —2xx — %? we get F| = 2¢~' — 2% and F; = —2x —2x. The Euler equation
is then 2¢™" — 2x — %(—2)6 —2x) =0,0r2e”" —2x 4+ 2x + 2¥ = 0, which reduces to ¥ = —e . It
follows that x = ¢~" + A and x = —e™" + At + B for suitable constants A and B. From the boundary
conditions x(0) = 0 and x(1) = 1 we get A = e land B = 1, so the only admissible solution of the
Euler equation is x* (1) = —e™" 4+ et + 1.

The associated control problem is

1
max/ (2xe " —2xu — uz) dt, x=u, x(0)=0, x(1) =1, u e (—00,00)
0
The Hamiltonian (with py = 1)isthen H (¢, x, u, p) = 2xe™" —2xu — u?+ pu. (Incidentally, if pg = 0,
then the Hamiltonian would simply be pu. If p(¢#)u has a maximum for some u in (—oo, 00), then
p(t) = 0, but p(r) = 0is impossible when py = 0.) We have H = —2x —2u+ p and H, = 2¢~" —2u.
Since the control region is open, H, (t, x*(t), u*(t), p(t)) = 0, so (i) u*(t) = %p(t) — x*(t). Moreover
(i) p(t) = —H[(t, x* (1), u* (1), p(t)) = —2e7" + 2u*(t) = —2e~" + 2x*(¢). From x*(¢t) = u*(r) we
get X*(t) = u*(t) = %p — x*(t) = —e™', using (i) and (ii). Hence x*(¢#) must be a solution of the
Euler equation that we found in (a). As we found in (a), there is precisely one solution that also satisfies
the boundary conditions on x*(z). Now that we know x*(¢), the control function u*(¢) and the adjoint
function p(t) are given by the equations above.

9.5.2 With F(z, x, Xx) = 3—x2—2%2, F| = —2x and F| = —4x, so the Euler equation F, — (d/dt)F; =0

reduces to X — %x = 0. The characteristic equation r? = % has solutions r; = %ﬁ and rn, = —%ﬁ

So if x*(¢) solves the problem, then we must have x*(¢) = Ae2V2t 4 Be=3V21,
Since x*(0) = 1, wehave A+ B = 1,0r B = 1—A, and, moreover, x*(2) = Ae¥24(1—A)e V2 > 4
requires

A> @ —e V) —e V) = @deV? = 1)/ = 1) ~ 0.97 (%)

We now invoke the transversality condition (8.5.3):
(F))i_, = —4x*(2) <0, with —4x*(2)=0 if x*(2) >4

Equivalently, x*(2) > 0, with x*(2) = 0 if x*(2) > 4. Since x*(¢) = %ﬁ[Ae%ﬁ’ - (1= A)e*%ﬁ’],
we have x*(2) = %«/Q[Aeﬁ - - A)e‘ﬁ] = 0 provided A = e“/i/(e‘/i + e‘ﬁ) ~ 0.06, contra-
dicting (). We conclude that x*(2) = 4 and thus A = (4€ﬁ — 1)/(€2ﬁ — 1). The function F is (for ¢

fixed) concave in (x, x), so we have found the solution.
The control problem is

2
max/(3—x2—2u2)dt, x=u, xO0)=1, x2)>4
0
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The Hamiltonian is H = 3 — x? — 2u? + pu, so H. = —2x and H, = —4u + p. If (x*(¢), u*(t)) is
optimal then (i) u™(t) = ‘—ltp(t); @ii) p(r) = 2x*(t); (i) x*(tr) = u*(¢). Differentiating (iii) yields
X*(t) =u*(t) = }L pt) = %Zx*(t) = %x*(r), which is the same differential equation as before. The rest
is easy.

9.53 With F(t,x,%) = (—2% — x%)e” /1% F/ = 0 and F. = (—2 — x)e"/1%, so the Euler equation is

—i(—Z — %)e 1% = 0. See the answer in the book. The function F is (for 7 fixed) concave in (x, x),
so we have found the solution.

The Hamiltonian for the control problem is H = (—2u —u*)e™"/1° + pu. Here p(t) = —(H))* =0,
so p(t) = p, a constant. Moreover, (H,)* = (-2 — 2u*(1))e 1% + p(t) = 0, and thus u*(t) =
%ﬁe’/m — 1. Since £*(t) = u*(t), integration gives x*(¢) = 5pe'/'% — t + A. The boundary conditions
yield p = 0 and A = 1, so we get the same solution.

9.6

9.6.1 (a) The Hamiltonian H (¢, x, u, p) = x — % u> + pu is concave in (x, u), so according to Theorem
9.2.2 (see (9.2.7)), the following conditions are sufficient for optimality:

() H,(t, x*(t),u* (1), p(t)) = —u*(t) + p(t) = 0;
(i) p(t) = —H,(t,x*(t), u*(1), p(t)) = —1 with p(T) = 0;
(i) x*(r) = u* (@), x*(0) = xo.
From (i) and (ii) we have u*(¢) = p(t) = T —t. Since x*(¢) = u*(t) = T — t and x*(0) = xo, we get
x*(t) =Tt — 5% + x.

(b) The optimal value function is

T T
Vxo, T) = / (x*(t) — Su*(1)?) dt = / (Tt — 1% + xo — (T — 1)?) dt (%)
0 0

Integrating we find V (xo, T) = \;zg(%th — %t3 + xot + %(T -1 = %T3 +xoT,s00V/dxg=T =

p(0). (If we were asked only to find dV /dxg, it would be easier to differentiate () with respect to xg
under the integral sign: 0V /dxg = fOT dt=T.)

The value of the Hamiltonian “along the optimal path” is H*(t) = H(t,x*(¢),u™(t), p(t)) =
X*(t) — sur ()2 + put(t) = Tt — 312 +x0 — 2(T — )2 + (T — )%, and so H*(T) = $T? + xo. We
see that 9V /0T = 3T* 4+ xo = H*(T).

9.6.4 (a) The Hamiltonian is H(t, x, u, p) = 2x%e % — ue' + pue' = 2x%e™ 2 + (p — Due'. (Recall
that x(7') is free.) Suppose that (x*(¢), u™(¢)) is an admissible pair with adjoint function p(¢). Since
H| = 4xe~%, the differential equation for p(t) is p(t) = —4e > x*(t). For all ¢ in [0, T], we have
x*(t) = u*(t)e' > 0, and hence x*(r) > x*(0) = 1 for all ¢ in [0, T']. Therefore, p(r) < 0, so p(t) is
strictly decreasing. From the maximum principle, for every ¢ in [0, T], ™ (¢) is the value of u in [0, 1] that
maximizes H (¢, x*(t), u, p(t)) = 2(x*(t))?e™> + (p(t) — Due'. Since 2(x*(¢))>e~% does not depend
on u, u*(t) is the value of u in [0, 1] that maximizes (p(¢) — l)u. Thus, u™(r) = 1if p(¢t) > 1,u*(t) =0
if p(#) < 1. Since p(T) = 0, we have p(t) < 1 for ¢ close to T. There are two possibilities:

Case A: Suppose p(0) < 1. Since p is strictly decreasing, we get p(t) < 1, and hence u*(¢) = 0 for all
t > 0. It follows that x*(¢) = u*(t) = 0 and x*(¢) = x*(0) = 1 forall 7 in [0, T].
It remains to determine p(z). We have p(t) = —4de 2 x*(t) = —4e™?, and so p(t) = 2¢ % + C,
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where the constant C is determined by p(7) = 0, and hence C = —2¢72T . Tt follows that p(t) =
2(e7 2 —e7 ) =272 (1 —e2T'=1), Since we have assumed p(0) < 1, we musthave 2(1—e27) < 1.
This gives e >” > 1/2, and so —2T > In(1/2) = —In2,0r T < $1n2.

Case B: Suppose p(0) > 1. Then there exists a point t* € (0, T) with p(¢+*) = 1. In this case p(t) > 1
fort < t*and p(t) < 1 fort > r*. This gives

1 if0<¢t<rt*
u*(t) =

0 ifr*<r<l1
Since X*(1) = u*(¢) and x*(0) = 1, we get x*(1) = €' if 0 < ¢ < r* and x*(¢) = ¢" if t* <t < 1. Thus,
p(t) = —4e 2 x*(1) = —4e ' if 0 < 1 < t*, and p(r) = —4e’ ~2 if t* < 1 < 1. Integration gives

4e”! + C if0<t <t*

p(t)z{ .
e 4 C, iftf <t <1

Since p is continuous, both expressions for p(¢) are valid for ¢t = ¢*. Moreover, p(T) = 0, so we get the
equations

(i) pt) =1=4e™" +C; (i) pt") =1=2e¢" +Cy (iii) p(T) =0=2¢" 2T 4,
From (i) and (iii) we get C; = 1 —4e™"" and C, = —2¢" 2T Hence,

de™t —4e )Y+ 1 ifO<r<t*

¢ (e —e 2Ty ifrr <t <1

It remains to determine #*. From (ii) and (iii) we get 1 = 2¢™" — 2¢ —27. Multiplying this equation by
e yields
e =222 (iv)

2T _ 2

Multiplying with %eZT and rearranging gives (¢’ )2+ %e e?T = 0. This is a second degree equation

for determining ¢’*, and we find

.
e =—1 + /et + 2 andso t*=In (,/ et 4 2T — L—IleZT)

(Since ¢! is positive, we must take the positive square root.) This solution makes sense if and only if

L
16

%ezT +1)? = %e“ + %eZT +1,andsoe?’ =2 = T > %ln 2. For the summing up see the book.

t* > 0, i.e. if and only if e*T + 2T — 1T > 1. This inequality is equivalent to 11—664T + 2T >

(b) We have to consider two cases A and B. Note that in both cases u*(T) = 0 (and p(T) = 0), and so
H*(T) = H(T, x*(T), u*(T), p(T)) = 2x*(T)?e~?".

Case A: If T < 31n2, then x*(T) = 1, H*(T) = 2¢?, and

T T
V<T)=/ (2(x*(z))2e—2’—u*(z)ef)dzzf 2 dt =
0

0
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This implies V/(T) = 2¢=%T = H*(T).

Case B: For T > %ln 2, we have x*(T') = x*(t*) = ¢' . This gives H*(T) = 2¢* 2T Furthermore,

T
V(D) = f *)*e™ —u*(t)e') dt
0
t* T . ) )
=/ (2—et)dt—|—f 2022 gy — ok ot 4] — QX2 4
0 -

Note that * depends of 7. Hence we get

dt* Ldt* . dt* . . dt* .
V/(T) — 2d_T _el‘ d_T _ezt 72T(2d_T _ 2) — (2 _et —2€2t 72T)d_T +2€2t —2T

Equation (iv) shows that 2 — ¢/ — 2¢2"~2T = 0, and therefore
V(T) =0+ 2% 21 = H*(T)

as expected. (Alternatively we could have inserted the expressions found for #* and e’~ into the expression
for V(T), and found V (T') in terms of 7. The algebra required is heavy.)

9.7

9.7.1 (a) The Hamiltonian H = 100 — x — %uz + pu is concave in (x,u) and u € (—o00, ©0), so the
following conditions are sufficient for optimality:
() (H)* = —u*(t) + p(t) = 0;
(i) p@) =1,
(iii) x*(t) = u*(1), x*(0) = xg, and x*(1) = x;.
From (ii) we get p(t) = t + A, and (i) and (iii) give x*(t) = u™(t) = p(t) = t + A. Integrating and
using the two boundary conditions gives B = xg, A = x; — xg — %, so the solution is as given in the book.

1
(b) V =V (x0, x1) =f (100 — x*(1) — Lu*()?) dt
0

1 1
:/ [100—%t2—(x1 —x0— )t —xo— 5(t +xy —xo—i)z] dr.
0

Differentiating w.r.t. xo under the integral sign yields
1 1 1
3V /dx0 :/ (t—1+14x —x9— ) dt :/ Qt — 3 +x1 —xo)dt = | (17 — 3t + (x; —x0)1) =
0 0 0

1
X| — X0 — % = p(0), as it should be. In the same way, 0V /dx; = / [t — (t +x1 —xp — %)]dt =
0
1

1
f (=2t —x1 +x0+ 3)dt = | (=1* —x1t + xot + 31) = —x1 + x0 — 5 = —p(1), as it should be.
0 0

9.7.2 (a) The Hamiltonian is H = (1 — s)vk + psvk = vk + Vk(p — 1)s. (In (b) we use the Arrow
theorem, so we assume pg = 1.) The maximum principle (Theorem 9.4.1) gives the conditions:

(1) s = s*(¢) maximizes k*(t) + Vk*(t)(p(t) — 1)s fors € [0, 1];
EERG / * * _ 1 * _ — 0
(i) p@t) = —H(t, k™ (1), s7(t), p(t)) = 2Jk*_a)[1 + 57 () (p@) — D], p(10) =05
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(i) k*(t) = s*(OVE@), k*(0) = 1.
Since s*(¢) > 0, it follows from (iii) that k*(¢) > 1 for all r. Then we see from (i) that

$*(1) = { Lot (iv)
0 if p(r) <1
By studying (ii) and (iv) we see that p(r) < O for all 7. (If p(r) > 1, then s*(r) = 1 and from (ii),
p(t) = —p(t)/2/k*(t) < 0. (What if p(t) < 1?) Thus p(t) is strictly decreasing.

Suppose p(t) < 1forallzin [0, 10]. Thens*(¢) = Oand k*(¢) = 1. From (ii) this gives p(t) = —1/2,
and with p(10) = Owe get p(¢) = 5—¢/2. Butthen p(t) > 1fort < 8, acontradiction. We conclude that
there must exist a t* in (0, 10) such that p(r*) = 1. Then s*(¢r) = 1 on [0, t*] and s*(¢) = 0 on (¢*, 10].
But then k*(r) = +/k*(7) on [0, t*] and k*(r) = 0 on [0, *]. By integrating the differential equation for
k*(¢) on [0, t*], we find 2/k*(t) = t + C. With k*(0) = 1 we get C = 2, so k*(t) = (%t + 1)2. On
(t*, 10] we have k*(t) = (%t* + 1)? since k*(¢) is continuous. Thus,

1 if [0, %] (3t +D? if [0, 7]

’ k* =
0 if (t*, 10] ® A+ D2 if (%, 10] W

sH(1) = {

On (¢*, 10] we get from (i) that p(t) = —1/2/k*(t) = —1/(t*+2),andso p(t) = —t/(t*+2)+D. Since
p(10) = 0, this implies that p(r) = (10—¢)/(t*+2) on (¢*, 10]. But p(t*) = 1,50 (10—1¢)/(t*+2) =1,
from which it follows that t* = 4. It remains only to find p(¢) on [0, #*]. On this interval p(t) =
—p(t)/2/k*(t) = —p(t)/(t +2). The solution of this separable equation is p(t) = E/(t +2), for some
constant E. But p(4) = 1, so E = 6. We have found the only possible solution. See the answer in the
book.

(b) See the answer in the book.

9.7.3 (a) The Hamiltonian H (¢, x, u, p) = e P u + p(ax(t) — u) is concave in (x, u), so according to

Theorem 9.7.1, the following conditions are sufficient for optimality:

(i) u = w*(t) maximizes H(t, x*(t), u, p(t)) = e P'/u + p(t)(ax*(t) — u) foru > 0;

(ii) p(t) = —H(t, x*(1), u* (1), p(1)) = —ap(t);

(i) x*(t) = ax™(t) —u* (), x*(0) = 1,x*(T) = 0.
From (ii) we get p(t) = Ae~%. Define the function g by g(u) = e #'\/u — Ae *'u. Then g'(u) =
e P1(1/2/u) — Ae™, and we see that g’(u) > O when u is slightly larger than 0. This means that
u*(t) = 0 cannot maximize g, or the Hamiltonian, for any 7. Hence u*(¢) > 0 and g’(u*(¢)) = 0, so

_ﬁ[ 1
e
= Ae_at or I,t* 1) = —ez(a_ﬂ)t
2y/u*(1) 0= a2
From (iii) we get the following linear differential equation for x*(¢):
(1) = ax™ (1) — L62(0’_’3” with solution x*(¢) = Ce* — ;eﬂa—ﬂ)t
442 4A2(a — 28)

The two constants A and C are determined by the boundary conditions in (iii). The explicit expressions
for x*(¢), u*™(t), and p(t) can be found in the answer in the book. (There is a misprint in the formula for
x*(1): the first fraction must be multiplied by ¢*’.)
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(b) If x(T) = 0 is replaced by x(T)) > 0, the only change in the conditions (i)—(iii) is that (ii) is
augmented by p(T) > 0, with p(T) = 0if x*(T) > 0. Again p(t) = Ae~*, so p(T) = 0 would imply
Ae™®T = 0,50 A =0and p(¢) = 0. The maximum condition (i) would then imply that u*(¢) for u > 0
would maximize e~ # J/u, which has no maximum. Hence x*(T') = 0, and the solution is as in (a).

9.8

9.8.1 (b) In this problem we use Theorem 9.8.1 and we try to find the only possible solution to the problem.
The Hamiltonian H = po(—9 — Z—lluz) + p(t)u is concave in (x, u), but this does not guarantee that a
solution to the necessary conditions is optimal. (See Note 9.8.1.)

Suppose (x*(¢), u*(¢)) is an optimal pair defined on [0, #*]. Then there exists a continuous function
p(t) and a number pg, which is either 0 or 1, such that for all 7 in [0, £*] we have (po, p(t)) # (0, 0) and

(i) u = u*(t) maximizes H (¢, x*(t), u, p(t)) = po(—9 — Ju?) + p(H)u foru € R;

(i) p(t) = —H.(t, x*(t), u*(1), p(1)) = 0;

(iii) x*(t) = u™(t), x*(0) =0, x*(T) = 16;

(iv) H(*, x*(t*), u*(t*), p(t*) = po(—=9 — Ju* (1)) + p()u*(t*) = 0.
Since H is concave in (x, u), condition (i) is equivalent to (H,)* = —po%u*(t) + p(t) =0. Thenpy =0
implies p(t) = 0, which contradicts (pg, p(t)) # (0,0). Hence pg = 1, and u*(¢) = 2p(t). From (ii)
we have p(tr) = p for some constant p, and so u*(¢t) = 2p. Moreover, x*(t) = u*(t) = 2p. Integrating
and using x*(0) = O this gives x*(¢) = 2pt, and x*(¢+*) = 16 yields p = 8/¢*. Finally, (iv) implies
-9 — }1(213)2 + p2p =0, 0r p> =9. Here p = —3 gives t* = 8/p < 0. So the only possible solution
is p = 3, Then t* = 8/3, u™(t) = 6, and x*(t) = 6¢.

9.8.2 Consider the case B > aT?/4b. Then from Problem 9.4.7, u*(t) = a(2t — T)/4b+ B/T and x*(t) =
at(t —T)/4b + Bt/ T and p(t) = 2bu*(t). To determine the optimal 7*, the condition is H(T*) = 0,
or ax*(T*) 4+ b*(T*))? = p(THu*(T*) = 2bu*(T*))>. This reduces to aB/b = (u*(T*))?, or
u*(T*) = y/aB/b, thatis aT*/4b + B/T* = \/aB/b. Solving this equation for T* gives the unique
solution T* = 2./bB/a. (Note that this is the positive solution T of B = aT?/4b.)

If B < aT?/4b, we find that the equation H*(T*) = 0 does not determine 7*. (To save on storage
costs, the firm waits until # = T — 2./Bb/a to start production, and then produces at an optimal rate until
delivery time 7'. Note that no discounting is assumed, so waiting costs nothing.)

9.9

9.9.2 The current value Hamiltonian H¢ = 10u — u®> — 2 — Au is concave in (x, u), so the following

conditions are sufficient for optimality:

(i) u = u*(t) maximizes HE(z, x*(¢), u, A(¢)) = 10u — u®> — 2 — A(t)u foru > 0;

(i) A(r) = 0.10 = —(HO) (¢, x*(1), u* (1), A(1)) = 0;

(iii) A(5) = 0, with A(5) = 0 if x*(5) > 0;

(iv) x*(t) = —u*(t), x*(0) = 10, x*(5) > 0.
From (ii) we have A(t) = Ae”!" for some constant A. Suppose u*(¢) > 0 for all ¢ in [0, 5]. Then (i) is
equivalent to (H€)! (¢, x*(t), u™(t), A(t)) = 10 — 2u™(t) — A%t = 0, that is,

V) u(t) =5— F AN
Then x*(t) = —5 + %Aeo'“, and integration gives x*(t) = —5t + 5A¢%!" + B, where B is a new
constant. The initial condition x*(0) = 10 yields B = 10 — 5A, so x*(t) = 541 — 1) — 5¢ + 10.
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Next look at condition (iii) which reduces to A > 0, with A = 0 if x*(5) > 0. But A = 0 would imply
x*(t) = —5¢ + 10, which for r = 5 yields the contradiction x*(5) < 0. Thus A > 0 and x*(5) = 0. But
then 0 = 5A(%> — 1) — 15,50 A = 3/(¢"> — 1), and the same solutions for x*(¢) and u*(¢) as in Problem
9.4.6 are found. Since all the conditions (i)—(iv) are satisfied by the admissible pair (x*(¢), u*(t)), with
the given A(t), we have found the solution.

9.9.3 The current value Hamiltonian H¢ = —2u — u? + Au is concave in (x,u),and u € R, so the following
conditions are sufficient for optimality:
(i) (HY, =-2-2u*(t)+ X1 =0;

(i) A(t) — 0.1h = —(H), (1, x* (1), u* (), A(1)) = 0;

(i) x*(r) = u*(@), x*(0) =1, x*(1) =0.
From (ii) we have A () = Ae%!" for some constant A. From (ii) we have u*(¢) = %A(t) —1= %Aeo'“ —1.
Then x*(t) = %Aeo'” — 1, with solution x*(t) = 5A¢%!" — ¢ + B. The constants A and B are determined
from the boundary conditions, and we get the same solution as in Problem 9.5.3.

9.10

9.10.2 With A as the state variable, the Hamiltonianis H (¢, A, u, p) = U(rA(t) +w —u(t))e ' + pu, and
the scrap value function is S(T, A) = e *T ¢(A). (We assume that 1o = 1.) Moreover, w is a constant.
With the assumptions in Example 8.5.3, the utility function U has U’ > 0 and U” < 0. This implies
that H(¢, A, u, p) is concave in (A, u). Since ¢(A) is also concave, a set of sufficient conditions for
optimality is then (assuming interior solution in (i)):

() Hy(t, A*(1),u*(t), p(t)) =0, or p@)=U'(rA* () +w —u*())e ",
(i) p=—H(t, A1), u*(t), p(t)) = —rU'(rA*(t) + w — u*(t))e ™ "";
(i) p(T) = S, (T, AX(T)) = e "T¢/(A*(T));
(v) A*(t) = u*(r), A*(0) = A,.
In the answer in the book we go a little further. We differentiate the expression for p(¢) in (i) w.r.t. # and
equate it to the expression for p(¢) in (ii). Using u*(t) = A* (1), this gives

U'(rA* +w — A" (rA* — A%e ™ — pU' (rA* + w — A%e ™ = —rU'(rA* + w — A¥)e "

Multiplying by —e”" and rearranging gives A* — rA* 4+ (p — r)U’/U” = 0. Combining (i) and (iii), we
also see that ¢’ (A*(T)) = U'(r A*(T) + w — u*(T)).

9.10.3 Compared with Problem 9.7.2 the only difference is that instead of the condition “x (10) free”, we
have now included a scrap value in the objective function. The scrap value function is S(k) = 104/k, with
S'(k)y =5/ Vk. Conditions (1)—(iv) in the answer to Problem 9.7.2 are still valid except that p(10) = 0
in (ii) is now replaced by

p(10) = (i1)’

5
VE#(10)
Again p(t) is strictly decreasing, and p(¢) < 1 for all ¢ in [0, 10] is again easily seen to be impossible.
Suppose p(¢) > 1 for all ¢ in [0, 10]. (This was not an option when we required p(10) = 0.) Then
s*(t) = Land k* (1) = /E* (1), with k*(0) = 1. It follows that 2/k*(7) = t +2, ork*(t) = (3t + 1)*. In
particular, k*(10) = 36. Then (ii)’ gives p(10) = 5/6 < 1 a contradiction. We conclude that there must
exist a t* in (0, 10) such that p(#*) = 1, and (v) in the answer to Problem 9.7.2 is still valid (although
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with a different ¢*).

On (t*, 10] we again get p(t) = —t/(t* +2) 4+ D and 1 = p(t*) = —t*/(t* + 2), which implies
that D = (2t* +2)/(t* + 2), and thus p(t) = —t/(t* +2) + 2t* + 2)/(¢t* 4 2). In particular, p(10) =
(2t* — 8)/(t* + 2). We now use (ii)’ to determine 7*:

2t* — 8 5 10

Fr2 I pl 2

from which it follows that * = 9. The rest is routine, see the answer in the book. (Again the Arrow
condition is satisfied, and it is valid also in this case.)

9.10.4 (a) Thisisaproblem with scrap value function S(x) = %x. Weuse Theorem 9.10.1. Let (x*(¢), u™*(t))
be an admissible pair. With pg = 1, the Hamiltonianis H (¢, x, u, p) = x —u+ pu = x+(p—1)u. (Note
that the scrap value function is not to be included in the Hamiltonian.) If (x*(¢), u*(¢)) is an optimal pair
in the problem, and p(¢) is the adjoint function, then according to (B) in Theorem 9.10.1,

oH*
0x

p() =— =—1 and p()=S5@E"1) = % )
Moreover, u*(t) = 1 if p(r) > 1 and u*(¢) = 0 if p(r) < 1. From (i) we get

p) =3 —1
We see that the strictly decreasing function p(¢) is equal to 1 at# = 1/2. Hence

1 if t €[0,1/2]

w) = {0 it e /2, 1]
Since x*(¢) = u™(¢) and x(0) = 1/2, we get

t+1/2 ifte[0,1/2]

* <t):{1 ifre(1/2,1]

We have found the optimal solution because H (¢, x, u, p(t)) and S(x) = x /2 are concave (in fact linear)
functions of (x, u).

(b) The scrap value function is now S(x) = —}‘(x — 2)2, but the Hamiltonian is as in (a). Condition (i)
is replaced by

p)=—1 and p(1) =5 @E* (1) =—30*1) —2) =1—3x*(1) (i)
From (ii) we see that p(¢) = —¢ + C and since p(1) =1 — %x*(l), we have
p(t) = —t+2— 3x*(1) (iii)
Since x*(0) = 1/2 and 0 < x* < 1, itis clear that 1/2 < x*(1) < 3/2. Condition (iii) therefore gives
1/4 < p(1) <3/4
Since p(t) = —1 for all ¢, we have p(t) = p(0) — . Hence, p(0) = p(1) + 1 and

5/4=p0) =7/4
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Condition (ii) is still valid, so there exists a unique number ¢* between 0 and 1 such that p(#*) = 1, and

1 ifr €0, "],
0 ifre(t* 1],

1/24+1t ifr € [0, t*]

u(t)={ 1/24+1t* ift e (%, 1]

x*(t) = {

To determine * we use the transversality condition. We know that p(r) = p(0) — ¢ = p(1) + 1 — ¢,
so p(1) = p(t) +t — 1 forall z. Since p(t*) = 1, we get p(1) = t*. The transversality condition then
gives t* = p(1) =1 —3x*(1) =1— %(% +1*) = % — %t*, which means that t* = % The optimal pair
(x*(t), u™(t)) is therefore exactly as in (a), but this is accidental. A different scrap value function would
usually have given another solution.

9.10.5 (a) The Hamiltonian H (¢, x, u, p) = —u? — px + pu is concave in (x, #) and the scrap value
function S(x) = —x? is concave in x. The following conditions are therefore sufficient for optimality:

() Hy(t,x*(t),u*(t), p) = =2u*(t) + p(t) =0, so u*(t) = %p(t);
(i) p(t) =—0H*/dx = p(t) and p(T)=—-S'(*(T)) = —2x*(T);
(iii) £*(t) = —x*(t) + u*(1), x*(0) = xo.

From (ii) we get p(t) = Ceé' for an appropriate constant C, and since p(T) = —2x*(T), we get
p(t) = —2x*(T)e'~T and also u*(t) = 1 p(t) = —x*(T)e'~T. The differential equation

() = —x* () + ut(t) = —x* (1) — x*(T)e' T
has the general solution

x*(t) = De™" — %x*(T)e’*T
From x*(T) = De™ T — %x*(T) we get D = %x*(T)eT. The initial condition x*(0) = x( gives

D — %x*(T)e_T = %x*(T)eT - %x*(T)e_T = %x*(T)(3eT —eTy=1x

SO
2x0 2xpe! 3 T 3xpe*T
YD =R T T aar M P e =y
Thus the optimal solution is
2xpe! x0(3e2T—1 — ¢t 4xpe’
* 1) = — ) * ) = ) ) =—
w=—sar e ¥ 0 3e2T _ | P =55
(b) We have
! 2 2 4x(% ! 2t 27
_ * * _
V(XO,T)——L (l/t (t)) dt—(x (T)) ——m |:/0 e dt+e ]
Z_Lg Tle2t+eZT =_L§ %eZT_l Z_Lg
Be?T — 12 ||, 2 3e2T —1)2 |2 2 3e2T — 1
It follows that
v 4x0 © and v 12x3e*T
—_— —_— = an _— =
oxo 3T —1 7 0T — (32T — 1)

We see from the solutions in (a) that p(7) = —2x*(T) and u*(t) = —x*(T), so H*(T) = —u*(T)* +
p(T)(—x*(T) + u™(T)) = 3x*(T)> = 9V/aT.
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9.10.6 The current value Hamiltonian H¢(z, x, u, A) = —(x — u)? + A(u — x +a) is concave in (x, u). The
scrap value function S(x) = —x? is concave in x. The following conditions are therefore sufficient for
an admissible pair (x*, u™) to solve the problem:

1) a(H)*/ou =0, ie. A(@)=-2x*©E)—u*@));
(i) A(t) —ra = —3(H)*/ox = 2(x*(t) — u*(t)) + A(¢), and A(T) = —2x*(T);
(i) x*(r) = u*(@) —x*(t) +a, x*(0) = 0.
From (i) and (ii) it follows that A(f) = ri, so A(r) = Ae'’, where A is a constant. Then (i) yields
x*(t)—u*(t) = —LAe"". Butthen #*(t) = u*(t)—x*(t)+a = §Ae'' +a,sox*(t) = (A/2r)e" +at+B.
The initial condition x*(0) = 0 gives B = —A/2r, so

x*@) = ;;r(e” — 1) +at (iv)

From (ii), x*(T) = —3A(T) = —3 A’ andso (iv) with = T yields —3 Ae'T = (A/2r)(e'T —1)+aT.
Solving for A yields
B 2arT

T T +r)—1

The expressions for A(¢), x*(¢), and u*(¢) follow easily. See the answer in the book.

9.1

9.11.1 The current value Hamiltonian H¢ = Inu — A(0.1x — u) is concave in (x, u), and u > 0, so the
following conditions are sufficient for optimality:

1) (HO, (t, x*, u*, A1) = 1/u*(t) + 1 = 0;
(i) A(r) —0.2x = —(H (t, x*, u*, A(t)) = —0.1A;
(ili) (a) lim;_ o A(1)e™ 02 (—x*(1)) > 0;
(b) There exists a number M such that [A(t)e 92| < M forall t > 0;
(c) There exists a number ¢’ such that A(z) > 0 for all r > ¢/;
(iv) x*(@) = 0.1x*(t) — u*(r), x*(0) = 10, lim,_, o x*(¢) > 0.
From (ii) we get () = 0.1x(¢), and thus A(r) = Ae®!, for some constant A. Condition (i) yields
u*(t) = 1/x(t) = e % /A. Then from (iv), X*(r) = 0.1x*(t) — e~*!" /A. The solution of this linear
differential equation, with x*(0) = 10, is easily seen to be x*(r) = (10 — 5/A)e%!" + 57017 /A,
Condition (iv) requires lim;_, o x*(t) = lim;_,5[(10 — 5/A)e%!" + 5¢7017/A] > 0. This obviously
requires 10 — 5/A > 0. From (iii)(c) we see that we must have A > 0, and so A > 1/2. However,
referring to (iii)(a),

)\’(t)efo.zt(_x*(t)) — Aeo.ltefo.zt(_(lo _ S/A)eo.lt _ Sefo.lt/A) — _(10A _ 5) _ 5670.22

The limit of this expression can be > 0 only if 104 —5 < 0,i.e. A < 1/2. Thus we must have A = 1/2.
Then u*(t) = 2%, x*(r) = 10e~%1, with A(r) = %eo‘”.

It remains to check that the conditions in (iii) are satisfied. First, (iii)(a) is satisfied because we
have lim—. o 3¢%!7e02 (=10 1) = —51lim,_, e~ ** = 0. Since [A(1)e 0| = |Je011e=02| =
%6*0'“ < % for all # > 0, (iii)(b) is also satisfied. Finally, A(t) = %eo'“ > ( for all + > 0. We have
therefore found the solution.
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9.11.2 The current value Hamiltonian (with Ao = 1) is H® = x(2 — u) + Auxe™’, and the following
conditions must be satisfied for (x*(¢), u*(¢)) to be optimal:
(1) u = u*(r) maximizes HC(t, x*(t), u, A(t)) = 2x*(t) + x*(t)(e”"A(t) — Du for u € [0, 1];
(i) A(t) — A(1) = —0(H)*/dx = —=(2 — u* (1)) — A(Du*()e™";
(1ii) x*() = u*@Ox*@®)e™", x*(0) = 1.
Since x*(r) > 0 and x*(0) = 1, x*(¢) > 1 for all t. Looking at (i) we see that
1 if M@)e ' > 1

u*(t) = {
0 if M) <1

We guess that p(r) = A(t)e™" — 0 ast — oo. Then A(t)e™" < 1 on some maximal interval (¢*, 00).
On this interval u*(f) = 0 and A(t) — A(f) = —2, and so A(t) = Ce' +2, or A(t)e™" = C + 2!, which
tends to 0 as r — oo only if C = 0. Then A(r) = 2. Note that A(r)e™" = 2¢~" = 1 when 1* = In2,
and we propose that u*(¢) = 1 on [0, In2], u*(r) = 0 on (In2, 00). Then x*(¢) = x*(¢t)e~" on [0, In 2],
x*(t) = 0 on (In2,00). On [0,In2], [dx*(t)/x*(t) = [e"dt, so Inx*(t) = —e™" + A, and with
x*(0) = 1 this gives x*(t) = !¢ On (¢*, co) we have x*(¢) = e!=¢ """ = e171/2 = ¢1/2,

On [0, In 2] we have )l(t) + (e7" — DA(t) = —1. We use formula (5.4.6) with a(¢) = e~ — 1 and
b(t) = —1. Then [a(t)dt = [(¢e" — 1)dt = —e™" —t and

MO = et e / e T (=lydt = Cet T — e f e el dt = Cet T — ¢

because the last integral is obviously equal to e, Since A(In2) = 2 we find that C = 2¢~ /2. We have
obtained the same answers as in the book, keeping in mind that p(z) = A(t)e".

It does not change the problem if x(co) > 0 is added as a restriction in the problem. Then (B) and
(C) in Note 9.11.3 are trivially satisfied, and the expression in (A) reduces to lim,_, o, 2¢~(0 — el’?),
which is clearly 0. The Arrow concavity condition holds in this problem and this yields optimality also

in the infinite horizon case.

9.11.4 The current value Hamiltonian H = (x — u) + Aue" is concave in (x, u). The problem is not
affected by introducing the requirement that lim,_, o, x*(#) > 0. So the following conditions are sufficient
for optimality:

(1) u = u*(r) maximizes x*(t) +e " (A(t) — e")u for u € [0, 1];
(i) A(t) — A(1) = —(HO) (t, x*, u*, A1) = —1;
(i) (a) lim;— 00 A(t)e™" (—x*(1)) > 0;
(b) There exists a number M s.t. |[A(t)e™'| < M forallt > 0;
(c) There exists a number ¢ s.t. A(z) > 0 forall r > ¢/;
@iv) x*(t) =u*@®)e™!, x*(—=1) =0.
From (ii) it follows that A(1) = Ae’ + 1. We guess that p(t) = e 'A(t) = e "(Ae' + 1) = A+e " = 0
ast — 00,0 A = 0. From (i) we see that u*(r) = 1if ¢’ < 1, and u*(t) = 0 if e’ > 1. It follows that
u*(t) = 1in [—1,0] and u*(¢r) = 0 in (0, 00). Then from (iv), we get x*(r) = ¢ — ¢~ " in [—1, 0] and
x*(t) = e — 1 in (0, 00). The conditions in (iii) are obviously satisfied, so we have found the optimal
solution. (The answer in the book is wrong.)

9.12

9.12.1 (a) The current value Hamiltonian H¢ = ax — %uz 4+ A(—=bx + u) is concave in (x, u), so the
following conditions are sufficient for optimality:

© Arne Strgm, Knut Sydsater, Atle Seierstad, and Peter Hammond 2008



80

9 CONTROL THEORY: BASIC TECHNIQUES

(1) (H), @, x* (@), u™(t), A1) = —u*(t) + 1(t) = 0;
(i) A(t) —ra(t) = —(H), (¢, x*(t), u*(t), A(t)) = —a + bA(t);
(ii1) lim;— o0 A(H)e " (x(¢) — x*(¢)) > 0 for all admissible x(7);
(iv) x*(t) = =bx*(t) + u*(t), x*(0) = 10.
From (i) we get u*(t) = A(t), and thus x*(t) = —bx™*(t) + A(¢), and x = x™ and A must satisfy
¥=—bx+r=Fx,2), A=0b+rr—a=G(x,N) (*)
The equilibrium point is (x, ) = (a/bb+71), a/(b+r).
(b) The Jacobian matrix of () is ( P K ) = (_b !
G, G| 0 b+r
they are real and of opposite signs, the equilibrium point is a saddle point. To prove sufficiency, we can

restrict attention to admissible x (7) satisfying lim,_, o, x(¢)e~"" > 0, because if the limit is < 0, then the
value of the criterion is —oo. For such x(¢), condition (iii) is evidently satisfied.

), with eigenvalues —b and b +r. Since

o0 o0
(c) V= / [ax™(t) — %(u*(t))z]e_” dr = / axpe” P! dt 4 terms that do not depend on x,. But
0 0

o0
then 9V /dxo = f ae” " dr = a/(b +r) = 1(0).
0

9.12.2 From the answer to Problem 9.9.1 with x(0) = 1, we find x* = Ae1+V2) 4 1- A)e(l_ﬁ)t. and

A= A2 eWV2HDr _ 1- A)ﬁe(]_ﬁ)’. The adjoint variable p(f) = A(t)e™> tends to 0 as t — 00
if and only if A = 0. Then x* = e =V2) and A(t) = —+/2e1=V2)" (with p(t) = —+/2 1=V, To
prove sufficiency, note that if lim,_, o x%(t)e ™ # 0, then the objective function
is —oo. We can therefore restrict attention to admissible solutions for which lim;_, o, x(¢)e™" = 0. Then
condition (iii) is satisfied and we have found the optimal solution.

= lim, o (x(1)e™")?

9.12.3 (a) With H® = InC + A(AK% — C), 3(H)*/dC = 0 implies 1/C* — A = 0, or C*A = 1. Taking

In of each side and differentiating w.r.t. ¢ yields C*/C* + A/A = 0. Also, A — rA = —3(H)*/dK =
—AaA(K*)*~! or, equivalently, A/A = r — a A(K*)*~". It follows that if K = K*(t) > 0 and C =
C*(t) > 0 solve the problem, then the second equation in (x) holds. (The first equation is part of the
problem.)

120 -1

(b) The Jacobian matrix evaluated at (400, 40) is J = <_ 1/400 0

) and |J| = —1/400 < 0, so the
equilibrium point is a saddle point.

(c) If Ko = 100 and T = oo the solution curve converges towards the equilibrium point. For sufficient
conditions, see Note 9.11.3.

9.12.4 (a) The current value Hamiltonian H¢ = —(x—1)%>— %u2+k(x —u)isconcavein (x, u). Sinceu € R,

the maximum conditionreducesto (i) (H€), (¢, x*, u*, A(t)) = —u*(t)—A = 0. The differential equation
for Ais (ii) A7) — A(F) = —(H (t, x*, u*, A(t)) = 2x*(t) —2 — 1. Of course, X*(¢) = x*(¢) — u*(¢).
It follows that the optimal pair x*(¢), u*(z)) must satisfy

X=Fx,\)=x—-u=x+X
. ()
A=G(x,A)=2x—-2

/ /
The Jacobian matrix of (x) is <gz g?\ ) — (; (1)

(1, —1) is a saddle point. The eigenvalues are —1 and 2.

>. The determinant is —2, so the equilibrium point
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(b) Solving the first equation in () for X yields A = x — x, and then A = ¥ — x. Inserted into the second
equation in (x) yields ¥ — X —2x = —2. The general solution of this equation is x (1) = Ae™ 4+ Be* +1,
and x(0) = 1/2yields B=—-A —1/2, s0

x(t) = Ae' — (A+1/2)e* + 1
Using A = x — x, we find the corresponding solution for A,
At) = —2Ae7 — (A+1/2)e* — 1

If A # —1/2 we see that x(¢) and A(¢) both diverge as t — oo. For A = —1/2, it follows that
x(t)=—(1/2)¢e"+1 — land A(t) = e ' —1 — —last — oo. Note that from x () = —(1/2)e”" +1
and A(z) = ¢~ — 1 we find that (x, A) = (x(¢), A(¢)) satisfies A = —2x + 1.

It remains to prove that condition (d) in Theorem 9.11.1 is satisfied. Note that the integrand in the
objective function can be written (—x24+2x —1— %uz)e_t , so we need only consider admissible x (¢)
for which lim,_, o x(#)e™" > 0, because if lim,_, o, x(r)e™" < 0 the objective function is —oo.

10 Control Theory with Many Variables
10.1

10.1.3 To prove that g is concave, let X1, X, A € (0, 1) and choose uy, u; in Uy such that g(x;) = F(x1, uy),
g(x2) = F(x2,up). Then g(Ax) + (I — A)x2) > F(Ax; + (1 — )%z, Auy + (1 — M) > AF (X1, up) +
(1 —=A)F(x2,up) = Ag(x1) + (1 — X)g(x2). Note that Au; + (1 — Muy € UXX1+(1—)»)X2'

10.2

10.2.2 Suppose T < 2/a. If t € [0, T — 2/al, then u*(¢) = 1 and then X} (t) = ax{(¢) with x{(0) = x?.
If follows that x () = x?ea’. In particular, x{ (T — 2/a) = x?e”T_z. Moreover, we have x5 (1) =
a(l —u*(2))x;(t) = 0, and so x3(t) = xJ.

Ift € (T—2/a, T],thenu*(t) = Oand %} (t) = O withx} (T —2/a) = xVe*T =2, sox7(t) = xVe4T 2,
Moreover, x5 (1) = ax?e“T_z, so integration gives x5 (t) = ax?e“T_zt + B, with the boundary condition
x5 (T —2/a) = xg determining B. In fact, we get x5 () = xg + ax?e“T*Z(t — (T —2/a)).

10.2.3 (a) There are two state variables x; and x,, so we introduce two adjoint variables p; and p,. There are
also two control variables | and u,. The Hamiltonian H = %xl + %xz —uy—uy+ piuy + pouy is linear
and hence concave. The following conditions are sufficient for the admissible quadruple (x}, x5, uy, u3)
to be optimal:

(1) (w1, u2) = (uy(t), u3(¢)) maximizes (p1(t) — Duy + (p2(t) — Dus foru; € [0, 1], uz € [0, 1];
(i) p1(t) = —(Hy)* = —1/2, p1(T) =0, pa(t) = —(H;)* = —1/5, pa(T) = 0;
We see immediately from (ii) that p (1) = (T — ) and p,(t) = L(T — ). Note that p;(0) = 1T > 1
since T > 5. Thus p;(¢) strictly decreases from a level higher than 1 at# = 0 to 0 at + = T. Looking
at (i) we see that uj () = 1 for pi(t) > 1 and O for p;(¢) < 1. Since p;(t*) = 1 when %(T —t*) =1,
we get t* = T — 2. In the same way, p>(0) = %T > 1 since T > 5. Thus p,(¢) strictly decreases from
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alevel higher than 1 at# = O to 0 at # = T'. Looking at (i) we see that u5(t) = 1 for p(t) > 1 and 0 for
p(t) < 1. Since pr(t**) = 1 when %(T — ™) =1, we get ™ =T — 5. We conclude that

1 if te[0,T —2]
0 if te(T—2,T]

1 ifrel0, T —5]

ul(t)={ 0 if te(T-5T]

us(t) = {

The corresponding values for (x}(¢), x5 (t)) are easily worked out. See the answer in the book.

(b) The scrap value function is S(x, xo) = 3x; 4+ 2x,. The Hamiltonian and the differential equations

for p; and p, are the same as in (a). The transversality conditions are changed. In fact, according to

Theorem 10.1.5 (C)(c’), we have pi(T) = Sj(x{(t), x2(t)) = 3 and po(T) = S5(x{ (1), x2(2)) = 2.

Then p(t) =3 + %(T —t)and po(t) =2+ %(T —t). Fort € [0, T] we see that p;(¢) and p,(¢) are

both greater than 1, and condition (i) in (a) implies that u}(t) = u5(t) = 1 for all t € [0, T'], and thus
* — * —

xy (1) = x5(t) = 1.

10.2.4 The Hamiltonian H = xp + c(1 — u; — us) 4+ prau; + p>(aus + bxy) is linear and hence concave.
The control region is U = {(uy,uz) : 0 < u1,0 < up,u; + uy < 1}. The following conditions are
sufficient for a quadruple (x{, x5, u}, u3) to be admissible and optimal:

(1) (w1, u2) = (uy(t), u3(¢)) maximizes (api(t) — c)ui + (ap2(t) — c) for (uy, uz) € U;
(i) p1(t) = —(Hg )" = =bpa(t), p1(T) =0, p2(t) = =(Hy)* = =1, po(T) = 0;
(i) x7(1) = aul(t), x7(0) = x¥,  X5(t) = au3(t) + bx} (1), x3(0) = x9.

From (ii) we see that py(t) = T — t. Therefore p;(t) = —b(T — t). Integrating and using p(T) = 0,
we get p1(t) = %b(T —1)%. To find the optimal controls we must for each ¢ in [0, 7'] solve the problem

max @(uy, up) = max {[%ab(T —1)? — c]u1 + [a(T —t) — c]uz s.t. (up,ur) € U} ()

The control region U is the closed triangular region with corners at (0, 0), (1, 0), and (0, 1). Since ¢ is
a linear function it will attain its maximum over U at one of those corners. (In some cases there may be
more than one maximum point, but even then at least one corner will be a maximum point.) Note that
©(0,0) =0, ¢(1,0) = %ab(T — 1% —¢, and ¢(0,1) = a(T — t) — c. In the chains of equivalences
below it is understood that either the top inequality holds all the way or the bottom inequality holds all
the way. We see that (witht < T)

9(1,0) 2 ¢(0,1) <= tab(T —1)* —cza(T —t)—c <= t<T —2/b
90,1) 2 ¢0,0) <= a(T —1)—c20 < ST —c/a

9(1,0) 2¢0,0) < T —t =2 /2c/ab < t < T —/2c/ab

Putting all this together (note that the assumption 7 — c¢/a > T — 2/b in the problem implies c/a < 2/b,
and then c/a < /2c/ab < 2/b), we find that a set of optimal controls are

(1,0) if t [0, T —2/b]
(ui@),us@) =13 ©,1) if te(T —-2/b,T —c/al (k)
0,0) if te(T —c/a,T]
(For values of ¢ in the corresponding open intervals, the optimal values of u; and u; are uniquely

determined; fort =T —2/b,t =T —c/a,and t = T we choose the values so that the control functions
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become left-continuous.) The corresponding values of x; (¢) and x3 (¢) follow from (iii) and (*), but the
expressions on the interval (T — c¢/a, T — 2/b) get very messy.

10.2.5 There are two state variables x; and x;, so we introduce two adjoint variables p; and p;. The
Hamiltonian is H(t, x1, x2, u, p1, p2) = X1 — cx2 + u —u + piu + p2bxi. (We have pg = 1, since
p1(T) = p»(T) = 0.) The Hamiltonian is concave in (xi, x2, u), so according to Theorem 10.1.2 the
admissible triple (x}, x5, u*) is optimal provided for each ¢ in [0, T'],

(1) u = u*(t) maximizes H (¢, x{(t), x5 (), u, p1(t), p2(t)) = x{(t) —cx5(t) + u® —u+ pr(Hu +

p2()bxi(t) =T + p2(t)bx(t) + (p1(t) — Du for u in [0, u°] (where I" does not depend on u).

(i) p1(t) = —dH*/dx; = =1 = bpa(t), p1(T) =0 and py(t) = —0H"/0xy = ¢, p2(T) =0

From (i) we see that p;(r) > 1 = u*(t) = u®, pi(t) < 1 = w*(t) = 0. Moreover, from (ii),

p2(t) =c(t—T),and p1(t) = —1—bps(t) = —1—bc(t—T), which gives p;(t) = T—t—%bc(t—T)2 =

—%bct2 + (beT — Dt +T — %bcTz, since p1(T) = 0. Note that p;(¢) is a quadratic polynomial in ¢,

with p1(0) = T(1 — %bcT) and maximum at t; = T — 1/bc (since pi(t;) = 0). The maximum value of
pris pi(t)) = 1/2bc.

We restrict our attention to the main case bcT > 2 and 2bc < 1. (The other cases are much simpler.)

We then get p;(0) =T — %bcT) <0, pi(t;) =1/2bc > 1, pi(T) = 0. The graph of p is shown in

Figure 10.2.5.

Figure 10.2.5

There will be two points ¢, and 7., such that 0 < t, < t,, < T and p;(t,) = p1(t.) = 1. Now,

1 1
pr@®) = gbet® = (beT =t =T+ 3beT? +1=0 = 1 =T — — & /1= 2bc
C C
This gives
1 1 1 1
t,=T—— — —+/1—-2bc, tiw =T — — + —+/1—2bc
bc  bc bc  bc
The optimal control #™* and the corresponding x| (¢) are given by
0 forzin [0, 7], xy for 7 in [0, 2],
u*(t)y=11 fort in (te, tiel,  xf(O) =3t —t,+x)  fort in (t, fu]
0 fort in (fyy, T Lo — bx + x? for ¢t in (tuy, T']
The expression for x5 (¢) is somewhat messy:
bx)t + x3 for 7 in [0, #,],
() = 3017 + b(xY — 1)t + x9 + 1b(1,)? for ¢ in (fy, f4x]

bty — 1)1 + bx?t + %b[(l‘*)z - (t**)z] + x(z) for 7 in (fy, T']
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10.2.7 There are two state variables and one control variable. We shall use Theorem 10.1.2. The Hamiltonian
is H(t,x,y,u, p1, p2) =x+(p1+ p2— %)u. Suppose (x*, y*, u*) is an admissible triple which solves
the problem. Then:

(i) Foreach in [0, 2], u = u™(¢t) maximizes
H(t,x*(t), y*(1), u, p1(t), p2(1)) = x*(t) + (p1(t) + p2(t) — $)u for u in [0, 1];
(i) p1(t) = —9H*/ox = —1, pa(t) = —0H"/dy = 0;
(i) (a) p1(2) =0,
() p2(2) <0, and p2(2) =0 if y*(2) < 13
@iv) x*() = u™(t), x*(0) =1, y*(t) = u*(t), y*(0) =0.
From (ii), p; = —1, and since p;(2) = 0, we have p(t) = 2 — t. Because py = 0, p2(t) = pa, where
P> is a constant. Hence, p(t) + p2(t) — % =2—t+py— % = t* —t, where t* = 3/2+ p, is a constant.
Condition (i) gives
1 ifr <t*
0 ifr>¢*
Ift* =2, then u™(¢) = 1 and y*(¢) = t, and then y*(2) > 1, which is impossible.

Ift* =0, then u*(t) = 0 and y*(r) = 0, which gives y*(2) = 0 < 1. In this case p» = p2(2) =0
because of (iii). Hence, t* = 3/2, contradicting * = 0.

u*(t) = {

Thus we must have 0 < * < 2, and then x*(¢) — 1 = y*(¢t) =¢ fort <t*andx*(t) — 1 = y*(t) = t*
for ¢ > r*. In particular, y*(2) = t* = 3/2 + p,. It remains to determine p, and ¢*. Since y*(2) < 1,
we must have 3/2 4+ p, < 1,1.e. pp < —1/2 < 0. From (iii), y*(2) = I, and so p, = —1/2 and * = 1.
The Hamiltonian is concave in (x, y, u#) (in fact linear), so we have found a solution:

1 ifr<1
0 ifr>1

t ifr <1

*(1) =
u(0) { 1 ifr>1

L rO-1=y0 = Lo =2—1 pat) =1

10.3

10.3.1 The Hamiltonian H = (x —u)e "' + p(t)ue" is concave in (x, u). If (x*(¢), u*(t)) is optimal, then
(1) u = u*(t) maximizes (e ' p(t) — e "")u foru € [0, 1];
(i) p(t) = —H (t,x*(1), u*(1), p(t)) = —e";
(1ii) x*() = u*@®)e !, x*(0) = x9 > 0.
From (ii) we get p(t) = (1/r)e™"" + C. There is no restriction on x(7) as t — 00, so we guess that
p(t) — 0ast — oo. Then we must have C = 0, so p(r) = (1/r)e”"". With this choice of p(t), we see
that u = u*(r) maximizes (1/r)e " (e™" —r)u foru € [0, 1]. Thus, u*(t) = life™" > rand u*(r) =0

ife™ < r. Wehave e™!" = r when r* = — Inr, and then we see that (draw a picture!)
1 if tel0,—Inr]
u*(t) = ,
0 if te(—Inr, o0)

From (iii) we find that x*(¢) = xo +1 — e~ " in [0, — Inr], while x*(#) = xo+ 1 —r in (— Inr, 00). Note
that since x > 0 for all t > 0 and x(0) > 0, we have x(¢) > xq forall t > 0.

We have p(r) = e ""/r > 0, so according to Note 10.3.2 it remains only to verify (10.3.10a). In
fact, we see that lim,_, oo p(t)(xo — x*(¢)) = lim; 5o (e " /r)(xg —x0 — 1 +7r) = 0.
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10.3.2 (a) The model is closely related to the model in Example 10.2.2. The Hamiltonian is H = xye™"" +
prauxy + pra(l —wu)xy. If (x{(¢), x5 (¢), u*(t)) is optimal, then

(1) u = u*(t) maximizes ax{(t)(pi(t) — p2(t))u foru € [0, 1];
(i) p1(t) = —ap1@u*(t) —ap2()(1 —u* (1)), p2(t) = —e7';
(iii) X7 () = au™()x{ (1), x{(0) = x? >0, x3() =a(l—u*)x;), x5(0) =0.
From (ii) we get p,(t) = e~ "'/r 4+ C. There is no restriction on x,(z) as t — 00, so we guess that
p2(t) — 0 ast — o0o. Then we must have C = 0, so pp(t) =e " /r.
From (i) we see that
1 if py(t) > e " /r

= {O if pi(t) <e/r

Suppose p1(0) > p>(0) = 1/r. Then u*(t) = 1 to the immediate right of r = 0 and p;(t) = —ap;(t), so
p1(t) = p1(0)e ™ > (1/r)e " > (1/r)e”"", since r > a, and we see that we must have p;(t) > p>(¢)
for all # > 0. Then u*(t) = 1 and from (iii) we have x;(t) = 0, and the objective function is 0. This is
not the optimal solution. (In the terminology of Example 10.2.2 the total discounted consumption is 0.)
If p1(0) = p2(0), then p1(0) = —ap>(0) = —a/r > —1 = p>(0), and again we see that p;(t) > pa(t)
for all + > 0. Suppose p1(0) < 1/r. Then u*(z) = O for  close to 0. Let us see if we can have u*(¢) =0
for all £. Then pi(t) = —ap>(t) = —(a/r)e”" and so pi(t) = (a/r>)e”" + D. Again we must
have D = 0 and then p(¢) = (a/r?)e™"" < (1/r)e”™"" = py(1). Finally, using (10.3.10(a)), we have
pl(t)(x? —x{()) =0and p2(1)(0 — x5 (1)) = (l/r)e_”(—ax?) — 0ast — oo. As in Example 10.2.2
the Arrow condition is satisfied, so we have found the optimal solution. Note that using the interpretation
in Example 10.2.2, in this case the discount factor r is so high that it is optimal with no further investment
in the investment sector, which leads to consumption increasing at a constant rate.

(b) Choose the control u(t) = b/a, with0 < r < b < a. Then u(t) € [0, 1] and we seek corresponding
admissible state variables. From ¥ (t) = a(b/a)x (t) = bx|(t), with x1(0) = x?, we find x; (t) = xVe’".
Then x2(1) = (a — b)xVe®, s0 x2(t) = (a — b)x)(1/b)e” + C. With x,(0) = 0, we find that C =
—(a—b)(1/b)x), s0 x2(1) = (a — b)(1/b)x} (e"" — 1). Then the objective function is [~ x2(1)e " dt =
Jo U@ = b)(1/b)x e — e 1dt = | [(a — b)(1/b)xV[(1/(b — r)]e®™" + ¢7""/r]. By using
0 < r < b < a we see that the integral diverges.

10.4

10.4.2 First we apply Theorem 10.4.1. The control region U = [0, 1] is convex and the condition in Note
10.4.2 is satisfied because |ux| < |x| since |u| < 1. The set N(t, x) = {((1 —u)x*>+y,ux) :y <0,u €
[0.1]} is convex (a rectangle) by the same argument as in Example 10.4.1. Thus there exists an optimal
control.

The Hamiltonian is H = (1 — u)x? + pux = x> + ux(p — x), and if (x*(¢), u*(¢)) is optimal then:
(i) u = u*(r) maximizes x*(¢)(p(t) — x*(¢))u foru € [0, 1];

(i) p(t) = —(H)* = =2(1 —u*(O)x* () — pOu* (1), p() =0;

(iii) x*(t) = u*(@)x*(@), x*(0)=x9 > 0.

From (iii) we see that x*(#) > 0 so x*(¢) > x¢ > 0. Thus (i) implies that

1 if p(t) > x*(t)

A = {0 if p(t) < x*(t)
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We claim that p(¢) is strictly decreasing. In fact, for those r where p(t) > x*(t) we have u™(t) = 1 and
p(t) = —p(t) < 0. For those t where p(t) < x*(t) we have u*(t) = 0 and p(r) = —2x*(t) < 0. Since
x*(t) is increasing from the level xo > 0 and p(¢) is strictly decreasing and is O at # = 1, we have to have
p(t) < x*(¢) in some interval (¢*, 1]. Then #*(¢) = O in this interval.

Ift* =0, then u*(r) = 0, x*(r) = x9, and p(tr) = —2xp. Since p(1) = 0 we get p(¢) = 2xo(1 —1).
But then p(0) = 2x, contradicting p(0) < x(0) = xo. With t* > 0,

1 ifr<t* xpe!  if t <1t*

u*(t):{
0 if t>r¢*

and x*(1) =
o *
xpe if t >t

In (t*, 1] we have p(f) = —2x*(1) = —2xp¢’ and p(1) = 0, so p(t) = 2xpe’ (1 —1). But at * we
have p(t*) = x*(t*), so 2xpe’ (1 — t*) = xge' , from which it follows that r* = 1/2. We find that
p(t) = xpe'~"in [0, 1 /2]. We have found the optimal solution.

10.4.3 The Hamiltonian is H = pox? + p(1 — u?). According to the maximum principle, if (x*(¢), u*(t))
is an optimal pair, there exist a continuous and piecewise differentiable function p(z) and a constant py,
either O or 1, such that (pg, p(t)) # (0, 0) and

() u = u*(t) maximizes po(x*)> + p(t)(1 — u?) foru € [—1,2];
(i) p(t) = —H(t, x*(t), u*(t), p(t)) = —2pox*(1);
(i) x*(1) =1 — W* (1)), x*(0) = x*(1) = 4.

Suppose po = 0. Then from (ii), p(t) = p # 0, and u*(¢) maximizes —pu’ foru € [—1,2]. If p > 0,
then u*(z) = 0 and x*(z) = 1, so with x*(0) = 4, x*(¢) = ¢t + 4, and then x*(1) # 4. On the other hand,
if p <0, then u™(¢t) = 2 and x*(tr) = —3, so with x*(0) = 4, x*(t) = —3¢ + 4, and then x*(1) # 4.
Thus, assuming pg = 0 leads to contradictions, so pg = 1.

An optimal control ©*(¢) must maximize p(t)(1 — u?) foru € [—1, 2]. Then we see that if p) >0,
one should use u*(¢) = 0, and if p(¢) < 0, then one should use u#*(¢) = 2. (In neither case should one
use u*(t) = —1!) From (iii) and u € [—1, 2] we see that x*(¢) is never less than —3. Since x*(0) = 4,
it means that x*(¢) is always > 1. (Formally, x*(t) — x*(0) = fol x*(r)dt > fot(—3) dt = =3¢, so
x*(t) > x*(0) — 3t = 4 — 3¢, which is > 1 in [0, 1].) From (ii) it follows that p(r) = —2x*(¢) < 0, so
p(t) is strictly decreasing.

Suppose p(t) < 0 for all # € [0, 1]. Then u*(¢) = 2 and we get a contradiction to x*(1) = 4. If
p(t) > Oforall z € [0, 1], then u*(¢) = 0 and again we get a contradiction to x*(1) = 4. We conclude
that the strictly decreasing function p(¢) is > 0 in some interval [0, t*] and < O in (¢*, 1]. Then

0 if r €0, "]
u(t) = _
2 if e (t*, 1]
In [0, t*] we have x*(t) = 1 and since x*(0) = 4, x*(t) = t + 4. In (t*, 1] we have x*(¢r) = —3, and
since x*(1) = 4, we have x*(t) = —3r + 7. Now p(¢) is continuous at t*, so t* +4 = —3¢t* + 7, so
t* =3/4.

It remains to find p(z). On [0, 3/4] we have p(t) = —2x*(t) = —2t —8, and so p(t) = —t>—8t+C.
Since p(3/4) = 0, C = 105/16. In (3/4, 1] we have p(t) = —2x*(t) = 6t — 14, and so p(t) =
3t> — 14t + D. Since p(3/4) = 0, D = 141/16. The answer is summed up in the answer in the book.
(Note the misprint in line 3 of the answer to Problem 10.4.3 in the book: ...Whenu =2,x = -3 ...)
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10.6

10.6.1 (a) H = —%uz —x—puand L = H+g(x —u). Hisconcavein (x,u) and h(t,x,u) = x —u is
linear and therefore quasiconcave. The conditions in Theorem 10.6.1 are
(1) 0L /0u = —u*(t) — p(t) —q@) =0;
(i) g(t) =0 (=0if x*(r) > u*™(1));
(iii) p(r) =1 —¢q(t), with p(2) = 0.
(b) In [0, #*] we have x*(t) = u™*(t), so x*(t) = —u™(t) = —x*(¢), and with x*(0) = 1 we get x*(¢) =
u*(t) = e '. From (i) we have g (t) = —u*(t) — p(t) = —e~" — p(t), so (iii) gives p(t) = 1 — q(t) =
I+e~ "+ p(¢). This linear differential equation has the solution p(r) = Ae’ —1— %e". From the argument
in the problem, ¢(t* ) = 0. Thus g(t* ") = —e™" — p(t*) = 0,50 p(t") = —e™" = Ae'" — 1 — 17",
or Ae!" =1 — %e*’*.
In (¢*, 1] we have ¢(t) = 0 and p(¢t) = 1, and since p(2) = 0, we get p(¢t) = ¢t — 2. Then from (i),
u*(t)y = —p() =2 —t,and so x*(t) =t — 2 and then x*(¢) = %tz — 2t + B. In particular, since x*(t)
is continuous at t*, x*(t*) = %(r"‘)2 —2t*+ B = ¢ " This gives B = ¢~ — %(l*)2 + 2¢*. Finally,
since p(¢) is continuous at t*, we have t* — 2 = Ae’” — 1 — %e‘t* =1- %e‘t* —-1- %e"* =—e 1,
" = 2 — t*. By using this relationship you will see that the values of A and B are the same as in
the answer in the book.

10.6.2 This s a problem of the form (10.6.1)—(10.6.4). The Lagrangian (10.6.5)ishere £ = H+¢g(x —u) =
X — %uz + pu + g(x — u). Note that the Hamiltonian H = x — %xQ + pu is concave (in fact linear)
in (x,u) and that 1 = x — u is quasiconcave (in fact linear) in (x, ). According to Theorem 10.6.1,
the following conditions are sufficient for (x*(¢), u*(¢)) to be optimal: There exist a continuous function
p(t) and a piecewise continuous function ¢(¢) such that

(i) 9L /0u = —u*(t) + p(t) —q@) =0;

(i) g(t) = 0, with g(t) = 0if x*(t) > u™(1);

(i) p(1) = —9L*/0x = —1 —q(1), p(2) =0;

(iv) x*(t) = u*(t), x*(0) = 1.
We guess that u*(¢) = x*(¢) on some interval [0, ¢*], and then (iv) gives x*(¢) = x*(¢), with x*(0) = 1,
s0 x*(r) = ¢’ = u*(t). Then from (i) we have ¢(r) = p(t) — €', and (iii) gives p(t) = —1 — g(t) =
—1—p@)+ €, or p(t)+ p(t) = —1 + €. The solution of this linear differential equation is p(r) =
Be™ ! + %e’ — 1, and then ¢ (1) = Be " + %et —1—e =Be™ ! — %e’ —1.

On (t*, 2] we guess that x*(¢) > u*(¢). Then from (ii) we have ¢(t) = 0, and so (iii) gives p(t) =
2 —¢t. Then from (i) u*(t) = p(t) —q(t) =2 —t,and (iv) gives x*(¢t) =2 —t,s0x*(¢) = —%tz +2t+A.
Since x*(¢) is continuous at ¥, we have —%(t*)2 +2t"+A=¢",50A=¢" + %(t*)2 — 2t*. Since
p(1) is also continuous at t*, we get Be™"" + %e’* —1=2—1*soBe " = —%et* + 3 — r*. Finally,

so e~

since ¢ (+*) = 0 (see the argument in the previous problem), we get Be™" = %e’* + 1. From the last

two equalities we get e’ =2 —1t* ie. t* ~ 0.44. To confirm that all the conditions (i)—(iv) are satisfied,
we should verify that g (¢) = (%ezr* +ee ! — %et — 1 is nonnegative in [0, *]. This is the case because

we find that ¢ () < 0 and ¢ (*) = 0. The solution is summed up in the answer in the book.

10.6.3 Note that there are two constraints, #; = u — ¢ > 0 and h, = ax — u > 0. The Lagrangian is
L=H+q(u—c)+qax —u) =u—+ plax —u) + q1(u — c¢) + g2(ax — u). The Hamiltonian is
concave (in fact linear) in (x, #) and & and h; are quasiconcave (in fact linear) in (x, u#). According to
Theorem 10.6.1, the following conditions are sufficient for an admissible pair (x*(¢), u*(¢)) to be optimal:
There exist a continuous function p(¢) and piecewise continuous functions ¢g;(¢) and g» () such that
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(1) 0L*/ou =1— p(1) + q1(t) — q2(t) = 05
(i) g1(t) = 0, with g1 () = 0if u™(¢) > c;
(iii) g2(r) = 0, with g2(t) = 0 if ax™(t) > u*(¢);
(iv) p(t) = —0L*/0x = —ap(t) — aqa(1);
V) p(T) = 0with p(T) =0if x*(T) > xp;
(vi) x*(t) = ax*(t) — u*(t), x*(0) = x°, x*(T) > x7;
(vil) ¢ <u*(t) < ax*(t)

In the similar model in Example 10.6.2 it was optimal to start out with #*(¢#) = ¢ in an initial interval,
and then keep x* () constant, so let us try the same here:

c if 1 €[0,1] . (x% —c/a)e +cja if t €[0,1]
) , then x™(t) = , (viil)
ax*(t) if t € (t',T] x* —c/a)e™ +cja if t e (', T]

u*(t) = {
In the interval [0, #'] we have u*(¢) < ax*(¢) because ¢ < (ax® —c¢)e™ + ¢, and then (iii) gives g» () = 0,
so we have p(t) = —ap(t). In the interval (¢/, T we have u*(t) = ax*(t) = (ax® — 0)e" +¢ > ¢, 0
according to (ii), g1 (r) = 0. Then (i) gives ¢2(t) = 1 — p(¢), which inserted into (iv) gives p(f) = —a.
We claim moreover that p(¢') must be 1. In fact from (i), since ¢>(t'~) = 0, we have 1 — p(¢'7) =
—q1(t'7) < 0 and since ¢;(#'t) = 0, we have 1 — p(t'") = g»(¢'T) > 0. Because p(t) is continuous,
p(t") = 1. Then we get

—ap if t €[0,1]
—a ifte, T]

—a(t—t") if 7 0,1
and p()=1 = p(t)::e trel0.rl gy

p) = { .
al’ —t)+1 if te (', T]

The corresponding values of g1 (¢) and ¢, (¢) are

—a(t—t") __ . ’ if /
Q1(t)={e 1 if t €[0,1] {O if + €[0,1t] ©

) (1) =
if te@,T] © a(t—t) ifte,T]

Case A: x*(T) > xr. Then p(T) =0 andthusa(t’ — T) +1=0,s01 = 1y, wherety =T — 1/a.
The optimal solution is given by (viii), p(¢) by (ix), and ¢;(¢) and ¢»(¢) by (x), all with ¢’ replaced by
T — 1/a. It is a useful exercise to check that all the conditions in (i)—(vii) are satisfied. In particular,
check that ¢; () and ¢, (¢) are both > 0. We must also check that x*(7T') > xr. We see from (viii) that
this is equivalent to (x — ¢/a)e* T~V 4 ¢/a > xr, or t4 > tg, with r5 defined in (xi) below.

Case B: x*(T) = xr. Then from (viii) we get (x° — ¢/a)e™ + ¢/a = xr, which solved for ¢’ gives

t' = tp, where
1 xr —cja .
tp = E In (m) (x1)

Note that from (v) we need to have p(7T) > 0. The formula for p(¢) in (ix) gives a(t, — T) +1 > 0, or
tp > ta. The solution with ¢’ = 75 is valid if the last inequality is satisfied.

The final conclusion is given in the answer in the book. (In line 2 of the answer to Problem 10.6.3,
replace x, by x* and ¢* by t'.)
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10.6.4 The Lagrangianis £ = H +q1(1 —u) + ¢2(1 +u) + 32 —x —u) = x + p(x +u) +q:(1 —
u)+qo(14+u)+q3(2—x —u). The Hamiltonian H = x 4+ p(x 4+ u) is concave (in fact linear) in (x, u)
andh; =1—u,hy =1+ u,and h3 =2 — x — u are quasiconcave (in fact linear) in (x, ). According
to Theorem 10.6.1, the following conditions are sufficient for (x*(¢), u*(¢)) to be an optimal pair: there
exist a continuous function p(¢) and piecewise continuous functions ¢ (¢), g2(¢), and g3(¢), such that

(i) 0L*/du = p(t) — q1(t) + q2(t) — q3(t) = 0;
(i) g1 (t) = 0, with g1 () = 0if u*(r) < 1;
(iii) g2(¢) = 0, with g2 (1) = 0 if u*(¢) > —1;
(iv) g3(t) = 0, with g3(¢) = 0if u™(¢) + x*(t) < 2;
(v) p(t) = —9L*/dx = =1 — p(t) + q3(1), p(1) =0;
(vi) x*(t) =x*(t) +u*(t), x*(0) =0, i.e. (x*, u™) is admissible.

If we disregard the constraint x +u < 2, this is the problem solved in Example 9.4.1, whose solution was
(x(2), u(t)) = (¢' — 1, 1). Note that in this case x(¢) + u(t) = ¢’ < 2 aslong as t < In2. We guess that
this is the optimal solution on the interval [0, In 2] in the present problem too. In fact, we will try to guess
the optimal solution and then verify its optimality by checking that all the conditions (i)—(vi) are satisfied.
So we start out with (x*(¢), u*(#)) = (¢’ — 1, 1) on [0, In2]. At¢ = In2 we have x*(In2) = "2 —1 =1,
and, looking at the objective function, for# > In 2 it seems optimal to increase x (¢) as fast as the constraint
x +u < 2 allows, i.e. putting x*(t) = u*(t) + x*(t) = 2, as long as the &, and &, constraints are not
violated. Now, with x*(#) = 2 on [In2, 1], and x*(In2) = 1, we get x*(t) = 2t + 1 — 2In2. Then
u*(t)y =2 —x*@) = 14 2In2 — 2¢, and it is easy to verify that u™(z) = 1 + 21n2 — 21 takes values
in (—1, 1) when ¢ € (In2, 1]. The suggestion we have for an optimal solution is therefore: In [0, In 2],
(x*(@),u*(t)) = (' —1,1),in (In2, 1], (x* (@), u*(t)) = 2t +1—-21In2,1 +21In2 — 21).

We know that the suggested solution is admissible. It remains to find appropriate multipliers satisfying
D)-().

In the interval (In2, 1], u*(¢) € (—1, 1), so from (ii) and (iii), g1 (#) = ¢2(¢) = 0. Then (i) gives
p(t) = g3(t) and from (v), p(t) = —1 with p(1) = 0, so p(t) = 1 — ¢. In particular, p(In2) = 1 —In2.

In the interval [0,1n2), u*(t) = 1 > —1 and x*(t) + u*(t) = ¢’ < 2. Then from (iii) and (iv),
q2(t) = q3(t) = 0. Then (v) gives p(t) = —1 — p(¢). Solving the linear differential equation on [0, In 2]
with p(In2) = 1 — In2 gives p(t) = (4 — 2In2)e~" — 1. Then from (i), g; (r) = p(t). The complete
suggestion for an optimal solution is therefore:

u*(t) x*(1) p(t) q1 () q2(t) q3(t)
t €[0,In2] el —1 1 4—=2In2)e " =1 4—-2In2)e " —1 0 0
te(n2,1] 2t 4+1—2In2 1+2In2—2¢ 1—1¢ 0 0 1—1¢

Having checked that (x*(¢), u*(t)) satisfies all the conditions (i)—(vi), we conclude that (x*(¢), u*(¢)) is
optimal. Note that ¢; (#) and g3(¢) have jump discontinuities at ¢ = In 2.

10.7

10.7.1 We maximize fos(—u — x)dt, so the Lagrangianis £ = H +gx = —u — x + p(u — t) + gx. Here
H is concave in (x, u) and h(¢, x) = x is quasiconcave, so by Theorem 10.7.1, the conditions (i)—(vi)
below are sufficient for (x*(¢), u*(¢)) to be optimal:

© Arne Strgm, Knut Sydsater, Atle Seierstad, and Peter Hammond 2008
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(i) u = u*(t) maximizes —u — x*(t) + p(t)(u —t) = —x*(@) — tp(t) + u(p() — 1) foru > 0;

(i) g(¢) = 0, with g(¢) = 0if x*(r) > 0;

(iii) p(t) = —9dL"/dx =1—¢q (1), p(5) =0;

(iv) p(57) — p(S) = B;

v) B=0,withg =0if x*(5) > 0;

(vi) x*(t) =u*@) —1t,x*(0) = 1.

Since we want to keep x*(#) down, we put u*(f) = 0 in some interval [0, r*]. Then x*(tr) = —t with
x*(0) =1,s0 x*(t) = —%tz + 1. We see that x*(¢) is decreasing and is O at t* = V2. In [0, v/2) we
have by (ii), ¢ () = 0. Then (iii) gives p(¢) = 1, and thus p(t) =t + A, for some constant A.

In order still to keep x*(z) down, we try u*(¢) = ¢ in (+/2, 5]. Then x*(r) = 0 and thus x*(r) =
x*(\/i) = 0. For u™(t) = t to be the maximizer in (i) one has to have p(¢) = 1, in particular p(57) = 1.
Since p(t) is continuous at t = V2, wehave vV2+ A =1,30 A = 1 — +/2. From (iii) we get g () = 1.
Finally, since p(5) = 0, (iv) gives 8 = 1. Now all the conditions (i)—(vi) are satisfied, so (x*(¢), u*(¢))
is optimal.

10.7.2 The Lagrangianis £ = H +¢gx = 1 —x + pu+¢gx. Here H is concave in (x, #) and h(z, x) = x is
quasiconcave, and the conditions (i)—(vi) below are therefore sufficient for (x*(¢), u*(¢)) to be optimal:
(i) u = u*(t) maximizes 1 — x*(¢) + p(t)u foru € [—1, 1];

(i) ¢g(¢) = 0, with g(¢) = 0if x*(r) > 0;

(iii) p(1) = —9L*/dx =1—¢q(1), p(2) =0;

(iv) p27) = p(2) = B

(v) B>0,with g =0ifx*(2) > 0;

(vi) x*(¢t) = u*(t), x*(0) = 1.

We start by putting u*(r) = —1. Then x*(t) = 1 — ¢ is decreasing and is 0 at r* = 1. In [0, 1) we have
by (ii), ¢ (t) = 0. Then (iii) gives p(¢) = 1, and thus p(t) = ¢ + A, for some constant A.

In order still to keep x*(¢) down put u*(#) = 0in (1, 2]. Then with x*(1) = 0 we get x*(¢) = 0. For
u*(t) = 0 to be the maximizer in (i) for r € (1, 2), one has to have p(¢) = 0, in particular p(27) = 0.
Then since p(2) = 0, we get from (iv) that 8 = 0. Since p(¢) is continuous att = 1, p(1) =1+ A =0,
so A = —1. Finally, from (iii) we get g(¢) = 1. Now all the conditions (i)—(vi) are satisfied, so the
optimal solution is:

1—-t,-1,t—=1) if t €[0, 1] {0 if t+e[0,]1]

0,0, 0) ifre,2]’ q() =

(x* (@), u*(t), p(t)) = { 1 if re(l,2]

with g = 0.

10.7.3 The Lagrangianis £ = H 4+ gx = —u®> — x + pu+qx. Here H is concave in (x, u) and h(t, x) = x

is quasiconcave, so the conditions (i)—(vi) below are therefore sufficient for (x*(¢), u*(¢)) to be optimal:

(i) u = u*(t) maximizes —x*(¢) + p(t)u — u® foru € R;

(i) ¢g(¢) = 0, with g(¢) = 0if x*(z) > 0;

(iii) p(t) = —0L*/ox =1 —¢q(t), p(10) = 0;

@iv) p(107) — p(10) = B;

v) B =0, with 8 =0if x*(10) > 0;

(vi) x*(t) = u*(t), x*(0) = 1.
Since H is concave in u and u € R, (i) is equivalent to (H,))* = p(t) — 2u*(t) = 0, so u™(t) = %p(t).
We have x*(0) = 1. Let [0, *] be the maximal interval where x*(¢) > 0. Then from (ii), g(t) = 0,
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and (iii) gives p(t) = 1, and thus p(t) = t + A. Then u*(¢t) = %(t + A) and x*(t) = %(t + A), so
x*(t) = 3(t + A)? + B. Since x*(0) = 1, B = —1A? + 1. If t* = 10, then p(t) = t — 10 since
p(10) = 0, and u*(t) = %(l — 10) < 0 for t < 10, contradicting u*(t) > 0. Thus t* < 10 and
x*(t*) = 0, and so x*(t*) = %(t* + A)? — %Az + 1 = 0. The function x*(¢) must have a minimum at
t* so x*(t*) = %(t* + A)=0,andso A = —* < 0. Hence x*(t*) = 1 — %AZ =0,s0 A = —2. With
p(t) =1t —2 we have u*(t) = 3(t — 2), and x*(t) = ;(t — 2)? in [0, 2].

Looking at the objective function, when x*(¢) has become 0, it is obvious that we need to keep
u*(t) = 0on (2, 10]. So u*(t) = x*(t) = 0, and then p(r) = 0. Then from (iii), g () = 1 and (iv) gives
B = p(07) = 0since p(10) = 0. Now all the conditions (i)—(vi) are satisfied, so the optimal solution is

Teo 92 1o, _ i 0 if 0,2
(Ot py = | 30 P72 =) el 2] ,q(r>={ el
(0,0,0) if te(2,10] 1 if r€(2,10]

with g = 0.

10.7.4 (a) The Hamiltonian H = (4 — t)u + pu is concave in (x, u), so the following conditions are
sufficient for (x*(¢), u*(¢)) to be optimal:

(i) u = u*(t) maximizes (p(t) — (t — 4))u for u € [0, 2];

(i) p(t) = —0H*/dx =0;

(i) x*() = u™(t), x*(0) =1, x*(3) = 3.
From (ii) we get p(t) = p for some constant p. Condition (i) implies that we must have u*(t) = 2 if
p>t—4andu*(t) =0if p <t —4.1If p <t —4forall fin [0, 3], then u*(t) = 0, and from (iii)
we have x*(t) = 1, contradicting x*(3) = 3. In the same way we see that p > ¢t — 4 for all 7 in [0, 3]
is impossible. Hence we have to choose u*(f) = 2 in some interval [0, t*] and u*(¢) = 0 in (¢*, 3], with
t* —4 = p. Now from (iii) we have x*(t) = 2t + 1 in [0, ¢*], and x*(z) = 2¢* 4+ 1 in (¢*, 3]. Since
x*(3) = 2t* 4+ 1 = 3, we see that t* = 1, and then p(tr) = p = t* — 4 = —3. It is clear that we have
found the optimal solution, since all the conditions (i)—(iii) are satisfied.

(b) The Lagrangianis £L = H +q(t+1—x) = @4 —t)u + pu+ q({ + 1 — x). Here H is concave in
(x,u)and h(t,x) =t + 1 — x is quasiconcave, so the conditions (i) and (iii) in (a) in addition to
(i) g(@) = 0, withg(¢r) =0if r + 1 > x*(¢),
(i)’ p(t) = —9L*/dx = q (1),
(iv) p37) —pB3) = -5,
(v) B>=0,withg =0if4 —x*(3) > 0,

are sufficient for (x*(¢), u*(¢)) to be optimal.

The objective function indicates that we should keep u*(¢) as large as possible, especially at the
beginning. But having u*(¢) larger than 1 will cause x*(¢) to violate the constraint x < 7 4 1, so we
suggest u*(t) = 1, and then x*(¢) = ¢t + 1 in some interval [0, r*]. Note that according to (i), u*(t) = 1
can only maximize the Hamiltonian in [0, #*] provided p(z) = t — 4. From (iii)’ we further get ¢ (z) = 1
in [0, t*]. Withx*(¢) = r4+ 1 we get x*(2) = 3, and since x*(3) = 3 and x*(¢) > 0, we must have t* < 2.
In fact, we suggest t* = 2 and then u*(z) = 0 in (2, 3]. From x*(¢) > 0, we get x*(¢) < x*(3) = 3 and
then h(z, x*(t)) = t+1—x*(¢t) >t —2. It follows that a(¢, x*(z)) > Ofor¢in (2, 3]. Butby (ii)’ we have
q(t) = 0in (2, 3]. Then (iii)’ yields p(z) = p for some constant p. Since p(¢) is continuous at 7 = 2,
p(27) =2 —4 = -2 = p. It remains to determine 8. We see that #(3, x*(3)) =3+1—-3=1> 0, so
from (v) we get 8 = 0, and (iv) gives p(37) = p(3) = —2.
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The optimal solution is spelled out the answer in the book. It is a useful exercise to check carefully
that all the conditions (i), (i), (iii)’, (iv), and (v) are now satisfied. Note in particular that for ¢ in (2, 3]
the expression (p(¢) — (t —4)u = (=2 — (t —4))u = (2 — t)u is maximized by u = u™(¢) = 0, since
2 —t is negative in (2, 3].

11 Difference Equations

11.1

11.1.2 In parts (a)—(f) the solution is given by x, = a’(xo — x*) + x*, cf. formula (11.1.5). In (g)—(i) the
solution is x; = xo + tb.

(a) Since 0 < a < 1, the power a’ decreases monotonically towards 0 as a limit as 1 — oo. Because
xo — x* < 0 it follows that x; will increase monotonically towards the limit x*.

(b) a' alternates between negative and positive values and tends to 0. We get damped oscillations around
the limit x*.
(c) x; increases monotonically and faster and faster towards oo.

(d) Since a < —1, the powers a’ alternate between negative and positive values, while |a’| tends to oo
as t — oo. Thus we get explosive oscillations about x*.

(e) The solution is constant, x;, = x™* for all ¢.

(f) Oscillations around x* with constant amplitude.

(g) x; = xo + tb increases (linearly) towards co.

(h) The solution is monotonically (linearly) decreasing towards —oo.

(1) x; = x¢ for all z.

11.2

11.2.3 (a) Let the remaining debt on 1 January in year n be L,,. Then Ly = L. Since the payment on the
principal in year n is L,,—; — L,, and the interestis rL,_;, we have L,y — L, = %an_l, n=1,2,....
The solution is L,, = (1 — %r)”L.

(b) (1 —3r)'°L = L implies that r =2 — 2 - 271/10 ~ 0.133934
(c) The payment in year n willbe L,y — L, +rL,—1 = %rL,,,l = %r(l — %r)”_lL. The loan will
never be completely paid since L, > 0 for all n (but it does tend to 0 in the limit as n — ©0).

11.2.4 Let r, be the interest rate in period 7, a, the repayment, and b, the outstanding balance. Then b, =
(1 + r)b; — as41, where by = K. We get
by =0 +ro)bp —a; =1 +r))K —a
bh=0+r)bi—a=04+r)d+r)K — (1 +rpa; —ay
b3 = (1 + rz)bz — a3z = (1 + rz)(l + }"1)(1 + r())K — (1 + I‘Q)(l + r1)a1 — (1 + r2)a2 — a3

The pattern is clear, and it can be shown by induction that

t—1 1—1

t—1
bo=[]a+r0K - Z[]‘[(l + rk>as] —ay
s=0 k=s
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It is reasonable to suppose that if the interest rate changes, then the repayments also change to ensure
that b, < by, i.e. a;41 > r:b;. If the repayment in period ¢ + 1 is less than the interest accrued during
period 1, i.e. if a;+1 < r;b;, then the outstanding debt will increase, and if this situation continues, the
loan will never be paid off.

11.3

1131 () x,;01 =A+B2"' = A+2B2 and x40 = A+ B2'7? = A+4B?2',50 x40 — %141 +2x; =
A+4B2' —3A —6B2' +2A +2B2' =0 forall ¢.
(Section 11.4 shows how to find this solution, in the form x; = A1’ + B 2'))

(b) Withx, = A3+ B4 we get x;41 = 3A3" +4B4", x, ., = 9A3' +16B4',and x;  , — Tx; 41+ 12x, =
9A3" 4+ 16B4" —21A3" —28B4" + 12A3" + 12B4"' = 0.

11.3.5 We shall prove that

u(()l) u(()z)

ugl) uiZ)

(€Y

u,” and ugz) are linearly dependent <= =0

Proof of =: If the solutions u ,(1) and u,(z) are linearly dependent, then there exist constants c¢; and c;, not
both equal to 0, such that cluﬁl) + c2u§2) = 0 for all z. This holds, in particular, fort =0 and ¢ = 1, and

so the columns of the determinant above are linearly dependent, and the determinant must be 0.

Proof of <: If the determinant is zero, the columns are linearly dependent, so there exist constants ¢
and ¢;, not both 0, such that

cu” + cuP =0 ()
for t = 0 and for + = 1. Now suppose that (x) holds fort =0, 1,..., T — 1, where T is some integer
greater than 1. Then
1 2 1 2 1 2
clu(T) + czu(T) = —a,[clu(T)_l + czu(T)_l] — b,[clu(T)_z + czu(T)_2] =0

so () holds for r = T also. It follows by induction that () holds for all # > 0. Hence, ut(l) and uﬁz) are
linearly dependent.

11.3.6 (a) From Problem 2 we can find the linearly independent solution u,(l) = 1 and u,(z) = t of the
homogeneous equation x;1p — 2x;42 + x; = 0. Then D, = ufl)ufi)l — ufi)lut(z) =(@t+1)—t=1for

all ¢, and we get

1 t t t
1 2 2 1
u; = —u§ ) E ck,lu,(( ) +u§ ) E ck,lu,(() = - E kep_1 +t E Ci—1
k=1 k=1 k=1 k=1

as a particular solution of x; 2 — 2x;41 + x; = ¢;. The general solution is then x, = A 4+ Bt + u}.

(b) With ¢, = ¢, the particular solution u} in part (a) becomes
t t
up ==Y kk—D+1Y (k=1 =—3¢—Dr@t+ 1)+ 3¢ - 1) = g1t — Dt —2)
k=1 k=1

The necessary summation formulas Z;c:l k(k—1) = %(t —Dt(@+1)and Z;c:l(k -1 = %t(t — 1) are
easily proved by induction. It is also easy to check that u} really is a solution of the difference equation.
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11.4

11.4.2 (a) The characteristic equation m> 4 2m + 1 = (m + 1)*> = 0 has the double root m = —1, so the
general solution of the associated homogeneous equation is x!! = (A + Bt)(—1)". We find a particular
solution of the nonhomogeneous equation by inserting u* = P2’. This yields P = 1, and so the general

solution of the given equation is x;, = (A + Br)(—1)" + 2'.

(b) By using the method of undetermined coefficients to determine the constants P, Q, and R in the
particular solution u; = P5' + Q cos 5¢ + Rsin 5, we obtain P = %, 0 = 1—30, and R = %. So the
general solution to the given equation is x, = A + B2' + %5’ + 13—0 cos 5t + % sin 7.

11.4.4 Since 1l +a+b =0, we have b = —1 —a, so we are looking for a particular solution of the equation
Xi42 +axi41 — (a+ 1)x; = c. A constant function will be a solution of the corresponding homogeneous
function, so that will not work (unless ¢ = 0). Let us try a function of the form u; = Dt. We get

Ui, +auf  —(a+ Duf =D +2)+aD(t+1) —(a+1)Dt = D(a+2)

Thus, D = c¢/(a+2) canbe used unlessa = —2. I[fa = —2, the difference equation is x; 42 —2x;41+x; =
¢, and we look for a particular solution of the form u} = Dt?. In this case we get

Ui, —2ul, +uf = D(t+2)* —2D(t + 1)* + Dt* =2D

and the desired value of D is D = ¢/2.

1146 1Ifb = iaz and x; = u,(—a/2)", then the left-hand side of equation (11.4.1) becomes

X2+ axpe + gatxe = ua(=a/D)™? + aui (=a/2) + jatu (—a/2)

= 1a*(=a/2) (Urs2 — 2upq1 + uy)

which is O if u;40 — 2us41 + u; = 0. The general solution of this equation is u; = A + Bt, so
x; = u(—a/2)' = (A + Brt)(—a/2)", which is the result claimed for case II in Theorem 11.4.1.

11.4.9 (a) It seems natural to try a function of the form ¥;* = C(1 + g)’. We get
Fa = (bR +kY] = CA+) [(1+8)* = (b+k) (1+8) +kl = C(1+8)[(1+8)* —b(1+g) —kg]

1 13
This shows that ¥;* = 3 all +8) (if the denominator of this fraction is nonzero).
A+ -0+ +g +k
(b) The equation m? — (b + k)m + k = 0 has two complex roots if and only if (b + k)> — 4k < 0.
(c) Part(IIl) of Theorem 11.4.1 shows that the growth factor of the oscillationsis r = Vk. The oscillations

are damped if and only if » < 1, i.e. if and only if k < 1.

11.4.11 Claim: If }Ta2 > b, then both roots of the equation f(m) = m? 4+ am + b = 0 lie in the interval
(—1,1)ifand onlyif |a| < 1 +band b < 1.
Proof: Both roots belong to (—1, 1) if and only if f(—1) > 0, f(1) > 0, f'(—1) < 0, and f’'(1) > 0.
(Draw a picture!) These four inequalities are equivalenttol —a+b >0,1+a+b >0,-2+a <0,
and a + 2 > 0, which in turn are equivalent to |a| < 1 + b and |a] < 2.
If |a] < 2,thenb < %az < 1. On the other hand, if |[a| < 1 + b and b < 1, then |a| < 2.
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11.5
11.5.3 The points (a1, ay) that satisfy the three inequalities in (x:x) are the points that lie above each of the
lines given by a, = —1 — a; and a = —1 + a; and below the line a; = 1. These points are precisely

the points lying in the interior of the triangle formed by those three lines, i.e. the triangle with corners at
(-2, 1), (0,—1),and (2, 1).

11.5.5 The characteristic equation is m? + (oB/a —2)m + (1 —aB) = 0. A necessary and sufficient
condition for the roots of this equation to be complex (more precisely: not real) is

2 202
(2—’3—2) <4(l-o0p) < Gaf —g+4<4—4a,8 & 0’p* < 4daop —4a’op

— 0B < 4o —4a® =4a(l —a)

The difference equation is globally asymptotically stable if and only if the inequalities (x*) in Section
11.5 are satisfied when a; = 08/a — 2 and a; = 1 — o 8. This gives the conditions

1+(ﬁ—2)+1—0ﬁ>0 and 1—<ﬁ—2>+1—0,3>0 and o >0
o o

ﬁ—crﬂ>0 and 4>ﬁ+oﬁ
o o

<— o<1l and (I1+w)opf <4d«

(Remember that «, 8, and o are all positive.)

11.6
11.6.1 (a) From the given equations we get x;42» = 2y;1; = X;, and the initial conditions give xo = 1,
x1 = 2y = 2. The characteristic equation of x,4y, — x; = 0 is m? — 1 = 0, which has the roots m; = 1,
my = —1.
The general solution of x; 4, —x; = 0isx, = A+ B(—1)", and the initial conditions imply A+ B =1,
A—B =2,50A = %andB = —%. Thus, x;, = %—%(—l)t. This, in turn, gives y; = %Xz+1 = %+JT(—1)’.

(b) We first eliminate z. The first equation yields z; = —x;4+1 — y; 4+ 1. Using this in the second and third
equations, we get

D yy1=—x+x41+y —1+1t and () —xpp2—yip1 +1=—x—y +2t
Equation (ii) implies (iii) y;4+1 = —x;42 + 1 + x; + y; — 2¢, and then (i) and (iii) imply
X+ x+y—1+t=—x0+14+x+y —2t, andso (iv) x40 + x01 —2x, =2 — 3¢
By a stroke of good luck y does not appear in (iv). The characteristic equation of (iv) is m? + m — 2
with the roots m; = 1 and m, = —2, and so the homogeneous equation corresponding to (iv) has the
general solution x!! = A + B(—2)". For a particular solution u} of (iv) itself we try with a quadratic
polynomial u* = Dt + Et>. We get u} = %t — %tz, so the general solution of (iv) is x, = x4+ u* =

3 1.2
A+ B(=2) + 5t — 51°.
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The initial conditions yield xo = 0 and x; = —yp — z0 + 1 = 0, so we must have A + B =

0, A—2B + 3 — =0, which implies, A = —1, B = 1. Hence,

X=-3+3=2" +3r-3r
From equation (i) we get y, 1 —y; = x;4+1—X;+t—1 = —(—2)" with the general solution y, = A+%(—2)’.
The initial condition yp = 0 yields A = —%, so

y=—3+3(2)
Finally,
2= =X =Y+ 1= 34 3(=2) — g1 + 517

11.7

11.7.2 (a) Let f(x) = ¢* — 3. Then f(x) — x is convex, and it is easy to see from the intermediate

value theorem that the equation f(x) = x has two solutions, one in (—oo, 0) and one in (0, co). Since
|f/(x)] = e* < 1 forall x < 0, the negative solution is a stable equilibrium of the difference equation
Xx:+1 = f(x;). The solution of the difference equation starting at xo = —1 gives the values (rounded to
5 decimal places) x; = —2.63212, x, = —2.92807, x3 = —2.94650, x4 = —2.94748, x5 = —2.94753,
x¢ = —2.94753, ..., converging to the equilibrium value x* ~ —2.94753.

(b) See the answer in the book.

12 Discrete Time Optimization
12.1

12.1.1 (a) To solve the problem by dynamical programming we first find

J(x) =max(l — (x* +2u?) =1—-x%, ui(x)=0
u
The fundamental equation (Theorem 12.1.1) then gives
Ji(x) = max(1 — (x? + 2u?) + J(x — u))
u
=max(l — x> —2u> +1— (x —u)?)
u

= max(2 — 2x% + 2xu — 3u2)
u

g(u)

Let g(u) be the expression in the last parenthesis. Then g’(u) = 2x — 6u, so g attains its maximum for
u = uj(x) = x/3. That gives Ji(x) = g(x/3) =2 — %xz. We continue with

Jo(x) = max(1 — (x> + 2u®) + J; (x — u))

38,2, 10 LIS

=..-=max(3 — -x —XU — —U

u 3 3 3
h(u)
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Here h'(u) = 10x/3 — 22u /3, which implies that u(x) = 5x/11, and therefore Jo(x) = h(5x/11) =
3 —21x2/11.
Thus the desired maximum value is Jy(xg) = Jo(5) = —492/11 and, further,

upy = up(5) = 25/11, x{ =xo—ujy=30/11
uy = ui(xy) =x7/3=10/11, Xy =x{ —uj =20/11

(b) Wehave x; = xg —up =5 —upand xop = x; —u; =5 — up — u;. This gives

S(uo, up,uz) =1 — (x3 +2ud) +1 — (xF +2u?) + 1 — (x3 +2u3)
=35 —2ud — (5—up)® —2ut — (5 —up — u1)* — 2u3

= o= =724 20ug + 10u; — 4ud — 2uou; — 3u} — 2u3

It is clear from the second expression for S that S is a concave function. The first-order partial derivatives

of § are
BS/auo =20 — 8u0 - 2141

aS/al/t] =10 — 2140 — 6141
35/81/!0 = —4u,

and it is easily seen that the only stationary point is
(uo, uy, u2) = (25/11, 10/11, 0)

Since S is concave, this is a global maximum point for S. The maximum value is Spax = —492/11,
which fortunately agrees with the result from part (a).

12.14 (a) Jr(x) = 3x? with u3(x) = 0, Jr_i(x) = 5x? with u}_(x) = 1, Jr_o(x) = 7x? with
up_,(x) =1.
(b) We claim that Jr_,(x) = (2n + 3)x? with uy(x) =0and uj_,(x) = 1forn =1, ..., T. The
formula is valid for n = 1. Suppose it is valid for n = k. Then Jr_g41)(x) = max,e0,11[(3 — u)x? 4+
Jr—k(ux)] = maxyepo.11[(3 — u)x? + (2k + 3) (ux)?] = x> max,c(o.1[3 — u + (2k + 3)u?]. The function
g(u) = 3—u~+(2k+3)u?is convex in u and has its maximumat ¥ = 1, and then Jr—e(x) = x2(5+2k),
which is the proposed formula for n = k 4 1, so the formula follows by induction.

12.1.6 (a) Jr(x) = max,cgr(x — u?) = x for uk(x) = 0. Jy(x) = max,er[x — u? + Js41(2(x + u))] for
s =0,1,..., T — 1. In particular, J7_1(x) = max,cp[x — u? + Jr(2(x + u))] = maxyerlx — u® +
2(x +u)] =3x + 1foruj_,(x) = 1.

(b) The formula is valid for n = 1. Suppose it is valid for n = k. Then Jr_41)(x) = max,cr[x — u>+
QM D(2x +2u) + Zj;o(zf — 1)?]. We see that the maximizer is u = Wy _eqry () = 2k+1 1, and
then J7_ sy (x) = x — 21 = 12 4+ 20241 — Dx 4225 — 12 + Y527 — D2 = (1 42442 —
2)x + @ — 12+ 320 — ) = @D — x + 3727 — 12 This is the given formula for
n = k+ 1, so the formula follows by induction. Since u’}_(kﬂ)(x) = 2K _ 1, we get uf(x) = 2=t 1

fort=0,1,...,T,and V = Jo(xo) = Jo(0) = 3[_o(2/ — 1)2.

12.1.7 (a) It is immediately clear that Jr(x) = —ae V*7. The result in part (b) shows immediately that
Jr_1(x) = =2/ae 7 and Jr_o(x) = —2¢/2/ae™"* = 2321 /477,
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(b) We know from part (a) that the formula J;(x) = —a; = —o;e™ V" holds for t = T with o; = «.
Suppose that it holds for a positive integer + < 7. The fundamental equation then gives J;_(x) =
max,cr ¢ (1), where

o) = —e 7"+ J,2x —u) = —e V" — eV F W
The function ¢ is concave and

PU)=0 < ye " —aye P =0 —= —yu=Ino, —2yx +yu
< yu=yx —In /o

This shows that ¢ has a unique stationary point u* = x — (In ,/o; ) /y, which is a maximum point for ¢.
It follows that

—yu* _ * — —yx— _
J,_l(x)=<p(u*)=—e yu — e 2yx+yu :_eln\/oT, yx_ate yx 1n‘/07'=—0l[_1€ yXx

where o; | = Jo; + (a;//a;) = 2,/a;. It follows by induction that the formula J;(x) = —a,e™7*
holdsfort =T7,T —1,..., 1,0, with «; determined by the difference equation above and a7 = «.

12.3

12.3.1 The equation a = 2/af + % can be written as (a )> — 2/BJa — % = 0. This is a quadratic

equation for /o with the solution \/a = /B + /B + 1/2. (We cannot have /o = /B — /B + 1/2,
because /& cannot be negative.) Hence, a = (/B + /B + 1/2)>.

To show optimality, we can use Case B in Note 12.7.3. We first solve the corresponding finite horizon
problem

T
sup Zﬁ’(—e‘“’ — %e_)"), Xee1 =2x —uy, t=0,1,...,T —1, xpgiven
u

t=0

With the optimal value function J (¢, x, T) = sup ZST:, B (—e M — %e‘xS) we get J(t,x,T) =
—ae” ", with ay = % and o, = 2/Bo; + % fort < T.Forafixed T, o, — o ast — —oo. Hence,
JO,x,T) > —ae *as T — oc.

12.3.2 (a) The Bellman equation is J(x) = maxue[p\q[—%x2 —u?+ BJ(x + u)]. If J(x) = —ax?isa

solution, then

—ax? = max[—%x2 —u? 4+ BJ(x + u)] = max ¢ (u) (%)
uelR uelR
where ¢ (1) = —%xz —u? — Ba(x 4 u)?. The function ¢ is strictly concave, and has a unique maximum

point given by ¢'(u) = —2u — 2Ba(x + u) = 0. Hence, u*(x) = —Bax/(1 + Ba) and x + u*(x) =
x/(1 + Ba). Equation () now gives

a2, B, a5 2, PP+ pa,
ax” =" (x)) = 37 T 01802 T U+ T 3 T (U +Bar”
a2, BeBatl) 2 p

3 (I+Bw)? 3 14«
— 3a(l + Ba) =2(1 + Ba) +3Ba < 3Ba’+ (3 —5)a—2=0
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5 —3+(58 —3)2+248
6/

The last equation has a exactly one positive solution, « = , and the optimal

control is

wy = P SPTIRVORZIAUS P34V A2
1+ Ba 58+3+4/(58 —3)2 + 248 6p

(b) Itis clear that the value function Jo(x) is finite: for any xg, let ug = —xg and u, = 0 for all t > 0.
Then Zt —0 B! ——x, — uz) = ——xO is finite. Also, for any sequence of controls ug, uy, ..., the sum is
bounded above by 0. Hence, the value function exists, if not in the “max sense”, then at least in the “sup
sense”. It is also clear that Jy(x) < O for all x.

Further, let Vy(x, 7r) be the sum that results from x = xg and the control sequence m = (ug, uy, ...).
Then for any number A we get Vo(Ax, Ar) = 22V (x, 1), and it follows that Jo(Ax) = A2 Jo(x)—that is,
J = Jy is homogeneous of degree 2, so we really do have J(x) = —ax? for a suitable « > 0. It is also

clear that ¢ # 0, and from the arguments above it follows that o < %

Now let x be fixed, and consider the problem of finding a u that maximizes
o) = —%xz —u’+ J(x 4+ u)
If |x + u| > |x]|, then J(x +u) < J(x) and
o) = —gx —ul+ BI(x+u) < —%xz —ur+ BJI(x) < —%xz + BJ(x) = ¢(0)

Hence, such a u cannot be optimal. Also, if |u| > |x|, then J(x 4+ u) < 0 and

o) = ——x u2+,BJ(x+u) < —%xz—u2 < —%xzzgo(—x)

so this u cannot be optimal either. It follows that an optimal # must be such that |x + u| < |x| and
lu| < |x|. Then Note 12.3.2 applies with X (xg) = [—|xo], |xo!].

12.4
1242 (a) I:ZzTO(ut 2xt)_Zt =0 u; +MT_2x0 ZZz | X7 —”T+Zz =0 U; _2Zt =0 up =
Zt -0 u, (Remember, xo = 0.) Hence, / is maximized when uj = u} = --- = u}_, = 0 and
uT—:I:I.

(b) (The reference in the problem should be to Theorem 12.4.1, not 12.4.2.) The Hamiltonian is

2 9,2
H(t,x,u,p):{” 2x*+pu fort <T

u? —2x? fort =T
and 2u + fort <T
H(t, x, u, ={” POt =2 HI(t,x,u, p) = —4x foralls
ull . p) 2u fort =T x(t %0 p) *
Since xj = xf = --- = xj = 0and u§ = uf = --- = uj_, = 0, the difference equation (4) in

Theorem 12.4.1 implies p;, = O0fort =0, 1,..., T — 1, and we already know that pr = 0. It follows
that H(t, x;", u, p;) = u? — 2()c;“)2 = u?. Hence, fort < T, u = uf = 0 is not a maximum point of
H(t,x},u, py) foru in [—1, 1], but actually a minimum point.

12.5

1251 (¢) H(t,x,u,p)=1+x—y—2u> — 0>+ p'(x —u) + p*(y+v) fort =0, 1, H(t, x,u, p) =
1+ x —y —2u? — v? for t = 2. Condition (3) yields for t = 0, 1: —4u, — p! = 0 and —2v, + p? = 0.
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For t = 2 it yields —4u, = 0 and —2v, = 0. Hence, ug = —%p(l), up = —%p}, u, = 0, v9 = %pg,

v = 3p3, v2 = 0. From (4) and (6)(¢), p} = 1+ p}, p) = 0, p3 = —1 + p}, p3 = 0. Moreover,
from (5), p} = 1+ pi, p} = —1 + p3. Finally, x; = xo — 1o = 5 — uo, X2 = X1 — uy, y1 = Yo + vo,
y2 = y1 + v;. From these equations we find the same solution as before.

12.6
12.6.6 T?ere are two misprints in the objective function: the expression inside the square brackets should
be TX_: u,l 2 +ax IT/ ?_ There is also a misprint in the answer in the book.
tflghe optimality equation (12.6.5) boils down to

1/2

Jr(x) = ax and Ji(x) = muax[ul/2 + %J,H(O) + %J,H(x — u)] for t<T

With J, (x) = 2a,x'/? this gives ar = a/2 and

2a,x1/2 =max ¢(u), where ¢(u)= u/? + arr1(x — u)l/2
u
for t < T. The function ¢ is concave and
¢'(u) =0 < ! = ditl @u—u(x)—L
2 T 2(x —u)'2 ! 1+ad2,
Hence, max, ¢(u) = ¢(x/(1 +a?,,)) = -+ = (1 +a?, D"*x"? and so g, = 5(1 + a?,,)"/%. This

implies 1 + atz+1 = 4a,2, and therefore u,(x) = x/4at2.

12.6.8 The first printing of the book contains a couple of embarrassing misprints in connection with this
problem and with the stochastic Euler equation. Formula (12.6.10) on page 454 should be

E[Fz/(t, Xy Xe1(xe, Vi), Vi) | Utfl] + F3(t — 1,1, %, v-1) =0 ()

and the objective function in the current problem should be
2
max E[Z[l Vit X — X0+ (4 Vst X3)]
t=0
Now define F by
F(2,x2,x3,v2) = 1 = (v +x3 = x2)” + 1 + v3 + x3
F(tvxtyxt—l—lvvt):1_(Ut+xt+l_xt)29 t=0,1

Fort = 1, 2, equation () becomes
E[Z(Vz + X1 (X, Vi) — x0) | Ut—l] = 2(W—1 +x —x-1) =0

1.€.
L+ 2E[x 1 (xr, V)l = 20 = 201 + 2% — 2x,9 (k)

Equation (12.6.9) becomes
Fi(2,x2,x3, 1) = =2( +x3 —x2) + 1 =0
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which gives x3 as a function of x; and v:

1
x3 =x3(x2, 12) =x2 — V2 + 3
Now use (k%) fort = 2:

1+ 2E[x; — Vo4 31— 2x = 201 + 230 — 2x) &= 14+2(x; — 1 4+ 3) — 2x = 2v; + 2x; — 2x3
= nm=xx,v)=x —v+3

Then for ¢t = 1:

1+ 2E[x; — Vi 4 3] — 2x1 = 209+ 2x1 —2x0 &= 14+2(x; — 1 4+ 3) — 2x1 = 209 + 2x; — 2x9
<:>x1=x0—vo+%

Since x¢ = 0 is given, the final answer is

1 3
Xp=35—v, X2=1—-vo—vi, XxX3=35—v)—v—V

12.7
1271 @) J(x)=ax2+b,a=—[1-28—/1+4B21/28, b=aBd/(1 — B). (With J(x) = ax> + b,

the Bellman equation is
ax’>+b = max{—u2 — x>+ BE[a(x +u+V)* + b]} = max{—u2 —x% + Ba(x + u)* + Bad + ,Bb}
u u

Maximizing this concave function yields u = Bax/(1—pBa). Thus, ax*>+b = —p%a’x*/(1 — Ba)>—x>+
Bax?/(1 — Ba)*+Bad+pb = x*(2Ba—1)/(1—Ba)+Bad+pbforall x. Hence,a = (2Ba—1)/(1—Ba)
and b = Bad + Bb. This quadratic equation gives a = [1 — 28 — /1 +4B21/28, and then b =
apd/(1—pB). We have to choose the negative solution for a, because J (x) = ax’>+b = a[xz—i-ﬁd/(l—ﬂ)]
must be negative.)

(b) J(t,x) = B'(ax> + b)), a1 = —1— pa; /(1 — Ba,)* + Ba; /(1 — Ba)* = =1+ Ba, /(1 — Bay),
ar = —1, b1 = Bb, + Ba;d, by = 0. To find limy_, o J(0, x9, T) we need to find limy_,  ag
and limy_, » by (for any ¢, a, and b, depend on T'), write in particular ¢y = aOT , by = bg . Finding
these limits is the same as finding the limits lim,_, _ a;, lim;_, _~ b; when T is fixed. The function
¢(x) = —1 + Bx/(1 — Bx) is increasing (calculate its derivative), and, since ar_; < ar and this
continues backwards, we get a;—; < a, for all . Letting t — —oo in the difference equation for a;, we
find thata = lim,_, _ a; satisfiesa = —1 4+ Ba/(1 — Ba) = 2Ba —1)/(1 — Ba) (soa > —o0), in fact
a has the same value as in part (a). In a similar way, b, decreases when ¢ decreases, and taking limits in
the equation for b;_;, we find that b = lim,_, _, b, satisfies b = b + Bad, i.e. b is also as in part (a).
Then, evidently, J(0, x, T) = agx2 + bg — ax>+b=Jx)as T — oo.

12.7.2 The optimal control is u,(x) = x/(1 4+ aa), and the value function is J(x) = alnx + b, where
a=2/(1—-a),b=[ad+ aaln(xa) — (1 + aa) In(1 + aa)](1 — o)~ !,andd = E[In V].
We can show optimality at leastin arestricted problem: Assume V' € [0, §] for some (perhaps large) 4,
and restrict u to belong to [¢, x;] for some small positive €. Note that X; > xo. Then | f| = |(x —u) V| <
8x. Choose b > 0 so small that @8? < 1. For x > xo, g=Inu+InX € [Ine +Inxp,2Inx] C
[Ine + Inxp, Ina + x”], where a is chosen so large that In x/xb < 1 when x > a (by ’Hopital’s rule
lim, _ o Inx/x” = 0). Now apply Note 12.7.2.
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13 Topology and Separation

13.1

13.1.9 (a) Ifx € int(S), then there is an open ball B around x such that B C §. Butthen B C T as well, so
X is an interior point of 7. If y € cl(S), then every open ball around y has a nonempty intersection with
S. Obviously any such ball also meets 7', and so y belongs to the closure of 7.
(b) Let y be a point in the closure of cl(S). We want to show thaty € cl(S). In order to show this, it is
sufficient to show that every open ball around y intersects S. Thus, let B be an open ball around y. Since
y is in the closure of cl(S), the intersection B Ncl(S) is nonempty. Let z be any point in this intersection.
Since z € B and B is open, there is an open ball B’ around z such that B’ C B. And since z € cl(S),
there is at least one point win B'N S. Thenw € BN S, and so B N S # #. Hence, cl(S) is closed.

13.1.15 (a) False. Since S C S, it is clear that int(S) C int(S). But we do not always have equality, as
we can see from the following example: Let § = {x € R" : 0 < ||x|]| < 1}. This set (a “punctured”
open ball) is obviously open, so int(S) = S. But its closure is S = {x € R" : ||x|| < 1} whose interior,
int(S) = {||Ix]| € R" : ||Ix|| < 1}, also contains the centre of the ball, so int(S) # int(S). (Draw a picture
for the case n = 2!)

(b) True. Every set is contained in its closure, so S € Sand T C T. Therefore, SUT € SUT. By
Theorem 13.1.2(c), the set S U T is closed. Therefore, SU T C SU T (cf. Problem 10(b)). On the other
hand, S € SUT, so by Problem 9(a), SCSUT. Similarly, TCSUT,andsoSUT C SUT. Since
each of the sets SU T and S U T is a subset of the other, they must be equal.

(c) False. Consider, for example, the punctured open ball S in part (a). The boundary, 95, of that set
consists of the origin and all the points on the sphere ||x|| = 1, so 9§ is not a subset of S. In fact, for any
set T, we have 0T C T if and only if T is closed.

(d) True. Letx € SNT. We shall show thatx € SN T. Let U be an arbitrary open ball centred at x. It is
enough to show that U intersects SN 7. Since x € S and S is open, there exists an open ball V centred at x
suchthat V C §. Then W = U NV is also an open ball centred atx and W C S. (In fact, W is the smaller
of the two balls U and V.) Now, WNT # @ sincex € T. Moreover, WNT =UNVNT CUNSNT,
so it follows that U N (S N T') is indeed nonempty.

13.2

13.2.5 Suppose for a contradiction that the sequence {x;} does not converge to x’. Then there exists an open
ball B = B, (x%) around x° such that x; ¢ B, (x%) for infinitely many k. These x; form a subsequence
{xy, } of the original sequence, and they all belong to the set A = X\ B = X N(R"\ B). Since X is closed
and B is open, A is closed. Because A is contained in the bounded set X, A is also bounded. Hence A is
compact. Therefore {xy; } has a convergent subsequence, converging to a pointy in A. But this convergent
subsequence is also a subsequence of the original sequence, and so it should converge to x’. But that is
impossible because y # x°. This contradiction shows that {x;} must converge to x" after all.

13.2.6 There is an obvious way to identify R™ x R" with R™*": we let the point (X,y) = ((x1, ..., Xu),
(Y1, - .., yn)) in R™ x R" correspond to the point (xi, ..., X, Y1, ..., yn) in R Now let A and B be
compact subsets of R” and R", respectively. We shall use the Bolzano—Weierstrass theorem (Theorem
13.2.5) to show that A x B is compact.
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Let {(ak, by)}x be a sequence in A x B. Since A is compact, the sequence {a;}; has a convergent
subsequence {ay, };, and since B is compact, {by; }; has a convergent subsequence {bk_,.l, Ji. Leta) = ay;,
and b} = by, . Then {(a},b)}; is a subsequence of {(ax, bx}x, and the sequences {a;}; and {b}; are
both convergent. Since a sequence in R? converges if and only if it converges componentwise (Theorem
13.2.1), it follows that {(a;, b})}; is convergent. Hence, A x B is compact.

13.3

13.3.7 Let A C S € R", and consider the following two statements:
(a) A isrelatively closed in S.
(b) Whever a sequence {x;} in A converges to a limit xy € §, then xg € A.
Claim: (a) < (b).
Proof of =: Since A is relatively closed in S we have A = SN F, where F is closed in R". Let {x;} be

a sequence in A that converges to xgp € S. Since all x; belong to A, they also belong to F', and because
F is closed, Theorem 3.2.3 tells us that Xy € F. Hence,xg € SN F = A.

Proof of < : Suppose that (b) is satisfied. We want to show that A = SN F for some closed set F' in R".
In fact, we shall show that A = S N A, where A is the closure of A in R”. It is clear that A € SN A, so
what we need to show is that SN A € A. Let xg € SN A. Since xo € A there exists a sequence {x;} of
points in A converging to Xo. Since X € S, we have xg € A by assumption. It follows that SN A C A.

Now that we have proved the equivalence of (a) and (b) above, let us use it to prove part (b) of Theorem
13.3.5: Let S € R" and let f be a function from S to R™. Then

f: S CR"— R” iscontinuous <= f~'(F) is relatively closed in S for each closed set F in R™

Proof of =: Suppose that f is continuous and let F be a closed set in R”. We want to prove that £~ (F)
is relatively closed in S. By the equivalence (a) <= (b) above it suffices to show that, if a point X¢ in
S is the limit of a sequence {x;}; in f=1(F) then xo € f~1(F). If we have such a point Xy and such a
sequence {Xx}, then all f(x;) € F, and because f is continuous, (xo) = limg (x¢). Thus, f(x¢) the limit
of a sequence in F', and since F is closed, f(xg) € F. Therefore xy € f —1(F).

Proof of < : Suppose that = (F) is relatively closed in S for every closed F in R”, and let xo be a point
in S. We want to show that f is continuous at Xg. In other words, we want to show that f(x;) — f(xq)
for every sequence {x;} in S that converges to X.

Suppose (x) X — Xo but X /4 f(x¢). Then there is an ¢ > 0 such that ||[f(xz) — f(xg)|| > ¢ for
infinitely many k. Let F = {y € R™ : |ly — f(x0)|| > €} be the complement in R™ of the open &-ball
around f(x(), and let {X}} = {x; } be the subsequence of {x;} where k; < ks --- run through all those k
for which ||f(xz) — f(Xg)|| = &. The set F is closed in R™, and {x}} is a sequence in f=1(F), the inverse
image of F, with lim;_, xj’. = Xo € S. By assumption, f~!(F) is relatively closed in S, and by the
equivalence (a) <= (b) above we must have xo € £~!(F). But then f(xo) € F, and by the definition
of F we must have ||f(xo) — f(x¢)|| > ¢ > 0, which is absurd. This shows that the assumption () must

be false, and so f is indeed continuous.

13.3.8 Assume first that f is continuous at x’. We shall prove that the defender can always win in this case.
Let the challenger choose ¢ > 0. Since f is continuous at x° the defender is able to choose a § > 0 such
that ||f(x) — x%)|| < & whenever |x — x°|| < &, and then the challenger will be unable to find an x that
lets him win. Thus the defender wins.

© Arne Strgm, Knut Sydseater, Atle Seierstad, and Peter Hammond 2008



104 13 TOPOLOGY AND SEPARATION

Now assume that f is discontinuous at x°. Then there will exist at least one ¢ > 0 that cannot be
matched by any §. So let the challenger choose such an e. Then no matter what § > 0 the defender
chooses, the challenger will be able to find an x with ||x — x°|| < & and ||f(x) — f(x")|| > &. Thus, in this
case, the challenger wins.

13.4

13.4.3 For a fixed x, the maximum of f(x, y) with respect to y for y in [—3, 3] must be attained at a point
where f,(x, y) = 0ory = %3. Since f,(x, y) = —12xy3—12(x = 1)y?+12y = —12xy(y—1/x)(y+1),
f(x, y)isstrictly increasing with respect to y when y € (—o0, —1], strictly decreasing in [—1, 0], strictly
increasing again in [0, 1/x], and strictly decreasing in [1/x, 0c0). Hence the only possible maximum

points are y = —land y = 1/xifx > 1/3and y = —land y = 3if 0 < x < 1/3. Simple
calculations give f(x,—1) = x +2, f(x,1/x) = 2x + 1)/x3, and f(x,3) = 162 — 351x. It follows
that f(x,1/x) — f(x,—1) = (x — 1)(x + 1)3/x>, so for x > 1 the maximum occurs for y = —1, if

x = 1 the maximum occurs for y = #£1, and if 1 /3 < x < 1 the maximum occurs for y = 1/x. Finally,
if 0 < x < 1/3, the maximum occurs for y = 3. The value function V is given by

162 —351x if0<x <1/3
Vix) =1 @x+1/x* if1/3<x<1
x+2 ifx>1

It is clear that V is continuous, because the one-sided limits of V (x) at x = 1/3 are equal, and so are
the one-sided limits at x = 1. Figures M13.4.3(a)—(c) shows the graph of the function y — f(x, y) for
three different values of x, Fig. M13.4.3(d) shows the set M (x) of maximizers as a function of x. Except
at x = 1, the graph is the graph of a continuous function, as it should be because the maximizer is unique
for each x # 1.
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13.5

13.5.7 Let S be a compact set in R". Carathéodory’s theorem (Theorem 13.5.1) tells us that every point in
co(S) can be written as a convex combination of at most n 4 1 points in S. We claim that every point in
co(S) can be written as a linear combination of exactly n + 1 points in S. Indeed, if x = A1X] 4+ - - - A,y Xy,
withm < n 4 1, we just add n 4+ 1 — m terms that are all equal to 0x;.
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Now let T = A" x §"*! where A" = {(A1, ..., App1) € R"T1in; > 0fori=1,...,n4+1; A1+
o4 g1 = 1}and $"T! = § x - -+ x S is the Cartesian product of n + 1 copies of S. Define a function
f:T —>R"by f(r1, -y g1, X1y - s Xk 1) = M1X1 + -+ + Apt1Xp41- Then f maps every point in
T to a point in co(S). On the other hand, the argument above shows that every point in co(S) belongs to
the image f(7) of T under f, so in fact co(S) = f (7). The set A" is obviously a compact (i.e. closed
and bounded) subset of Rt 5o if S is also compact, then sois 7'. (It follows from Problem 13.2.6 that,
if A and B are compact subsets of R and R”, respectively, then A x B is a compact subset of R"*7.
This immediately extends to the Cartesian product of a finite number of sets.) Since f is continuous,
Theorem 13.3.3 shows that co(S) = f(T) is compact.

What we have shown here is that, if S is closed and bounded, then so is co(S). If S is closed but
unbounded, then co(S) need not even be closed. Consider, for example, the closed set S = {(x, y) € R2 :
x>0,y >0,xy >1}U{(0,0)}. The convex hull of S is co(S) = {(x,y) : x > 0,y > 0} U {(0, 0)},
i.e. the open first quadrant together with the origin. This set is not closed. (Draw a picture!)

13.6

13.6.3 If x is not an interior point of the convex set S (S R"), then by Theorem 13.6.2 there exists a nonzero
vector a in R" suchthata-z < a-xforeveryzin S. Then § € H_ = {z :a-z < a - x}. Since the half
space H_ is closed, we also have S € H_. Every open ball around X contains points that do not belong
to H_, for instance points of the form x + ra for small positive numbers ¢. Hence, no open ball around x
is contained in S, and so S is not an interior point of S.

14 Correspondences and Fixed Points

Proof of Theorem 14.1.5(c): We will use the result in (14.1.8) to prove that H = G o F is lower
hemicontinuous. Let z0 € H(x?) and let U be a neighbourhood of 2°. Then 2° € G(yo) for some yO in
F(x°). Since G is Lh.c. at y°, there exists a neighbourhood V of y° such that U N G(y) # @ for all y in
V. Moreover, since y0 e F(xY), there is a neighbourhood N of x" such that V N F(x) # (forallx € N.
Letxe Nandy € VN F(x). Then U N G(y) # @,andifz € U N G(y), thenz € G(y),y € F(x), so
z € H(x).

14.1

14.1.4 We shall use the characterization of lower hemicontinuity in (14.1.8) on page 506 to show that if F
and G are Lh.c. at xg, then so is H. Let U be an open neighbourhood of a point (y°, z°) in H(x"). Then
there are open neighbourhoods U; and U, of y* and z° in R! and R, respectively, such that U; x U, € U.
Since F is l.h.c., there are neighbourhoods N and N; of x" such that F(x) N U, # @ forallxin NyNX
and GxX)NU; @ forallxin NyNX.Let N =Ny NNp. Then Hx) NU 2 H(x) N (U x Up) =
(Fx)NU)) x (Gx)NUy) #@forall xin N N X. It follows that H is L.h.c.

For the result about upper hemicontinuity we need to assume that F(x°) and G(x") are compact.
Then H(x%) = Fx% x Gx) is also compact. Suppose that F and G are u.h.c. at x". Since F(x?)
is compact, it is closed, and Note 14.1.1 then says that F has the closed graph property at xo. Because
F(x?) is bounded there exists a bounded and open set U in R’ that contains F (x"), and since F is upper
hemicontinuous at x° there is a neighbourhood N of x" such that F(x) C U forallxin Np. Similarly, G
has the closed graph property at Xy and there exists a bounded and open set V in R™ and a neighbourhood
Ng of x such that G(x) C V for all x in Ng.
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Since F and G have the closed graph property at x°, so has H. This is an easy consequence of
the definition (14.1.4). We are now all set to use Theorem 14.1.2 to prove that H is u.h.c at xY. Let
W=UxV CR* andlet N = Ny N Ng. Then W is bounded in R'*", N is a neighbourhood of x°,
and H(x) = F(x) x G(x) € W for all x in N, so H is locally bounded near x". The desired conclusion
follows.

14.1.6 We shall use the characterization of lower hemicontinuity that is given in (14.1.8) to prove that G

is Lh.c. Let y° € G(x"). Then y” is a convex combination y° = Zle )»,-y? of points y? in F(x"). If
U is a neighbourhood of y°, then U contains an open ball B = B(y; ) for some ¢ > 0. For each
i =1,...,k, there is a neighbourhood N; of x such that F(x) N B(y?; g) # @ forall xin N; N X. Let
N = NjN---N N be the intersection of these neighbourhoods. Then for any x in NV and every i there is
at least one point y; in F(x) N B(y?; e). If welety = ), A;yi, theny € co(F(x)) = G(x). Moreover,
dy,yo) = lly — yoll = I, yi — Myl < X dillyi — ¥l < Y; hie = e,s0y € B(yos ) C U. It
follows that G(x) N U # @. Hence G is lLh.c.

14.1.10 Every constant correspondence is both L.h.c. and u.h.c. But even if a(x) and b(x) are constant

functions, complications may arise if one or both of the endpoints of the interval (a((x), b(x)) sometimes,
but not always, belong to F'(x). Consider for example the correspondences C; and C, given by

[0,1] ifx <O,
[0,1) ifx > 0,

[0,1] ifx <O,

€1t = { [0,1) ifx >0.

Cr(x) = {

C is u.h.c. everywhere, while C; is not u.h.c. at x = 0. (But both of them are l.h.c. everywhere.)
Every correspondence F that satisfies the conditions in the problem is l.h.c., provided only that its
effective domain is open—i.e., if F'(xo) # ¥, then F(x) # @ for all x sufficiently close to x.
With non-constant a (x) and b(x) many complications arise in connection with upper hemicontinuity.
A detailed study would take us too far afield, so let us concentrate on the four possibilities

F(x) =la(x),b(x)], G(x)=[alx),b(x)), H(x)=(alx),b(x)], K(x)=(a(x),Db(x))

(for all x). F has a closed graph and is locally bounded, so Theorem 14.1.2 implies that F is u.h.c.
The other three are usually not u.h.c., except in the constant case. For example, the correspondence
F(x) = (=1 —x2%, 14+x?)isnot u.h.c. at x = 0, since the openset U = (—1, 1) contains F(x) forx =0
but not for any other value of x, no matter how close to 0 it may be. In fact, F is not u.h.c. at any other
point either.

14.1.11 The set F (x) is compact for each x in X. By Problem 13.5.7, G(x) = co(F'(x)) is also compact for

each x. If G(xo) is contained in an open set U, there exists an o > 0 such that G(XO) C U’ C U, where
U’ is the open “a-neighbourhood” of G (x?) defined as

U'=B(Gx";a)={yeR" thereisay in G(x°) with |y —y'|| <«

This follows from the technical result below, with § = CU = R™ \ U and K = F(x%). Since F is u.h.c.
and F(x") € G(x") C U’, there exists a § > 0 such that F(x) € U’ for every x in N = B(x’; §). It is
not hard to see that U’ is convex, and therefore G(x) = co(F (X)) is also contained in U’ (and so in U)
forall xin V.
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A little technical result:

If S and K are disjoint closed subsets of R” and K is compact, then there exists a positive number o
such that d(x,y) > « for all x in § and all y in K. In other words, the distance between a point in .S and
a point in K is never less than «.

Proof: Let y be a fixed point in R” and let x be a point in S. By Problem 13.3.5, h(x) = d(x,y)
attains a minimum at some point x° in S. Let us call 4(x") the distance between the point y and the set
S, and denote it by d(y, S). If y’ is another point in R”, then

dy,S) <d(y,xo) <d(y,y) +d(y,x°) =d(y,y) +d(y,S)

so d(y',S) —d(y,S) < d(y',y). By symmetry, d(y,S) —d(y’,S) < d(y,y) = d(y',y). Hence,
ld(y', S) —d(y, S)| < d(y',y). It follows that g(y) = d(y, S) is a continuous function of y. (In the
definition of continuity in (13.3.1), every ¢ > 0 can be matched by § = ¢.) Since K is compact, g attains
a minimum value « over K. Then o = g(y*) = d(y*, x*) for a point y* in K and a point x* in §, so
a > 0. (]

14.2

14.2.3 By Example 14.1.6, the budget correspondence B(p,m) is lower hemicontinuous and has the
closed graph property at any point (p°, mo) where mo > 0. It is also locally bounded near (p°, m),
so by Theorem 14.1.2, 8 is also upper hemicontinuous at (p°, mg). What if mo = 0? In that case
B(°, my) = B(p°, 0) consists of a single point, namely the origin 0 in R". If U is an open set in R"
that contains 0, then it will obviously contain B (p, m) for any (p, m) close to (p°, 0), and it follows that
B is upper hemicontinuous at (p°, 0). Lower hemicontinuity at that point follows easily from the result
in (14.1.8).

Thus, B(p, m) is continuous at every point (p, m) in X = R | x R,.

The maximum theorem (Theorem 14.2.1) then implies that the demand correspondence &(p, m) is
upper hemicontinuous and the indirect utility function V (p, m) is continuous. (Note that X — F(X) in
Theorem 14.2.1 corresponds to (p, m) + B(p, m) in this problem, while y and f(x,y) in the theorem
correspond to X and U (x) in the problem.) The demand correspondence will not always be lower hemi-
continuous.

Suppose that U is quasiconcave. Then, if x! and x> are distinct points in £(p, m) (i.e. maximum
points for U over B(p, m)), Theorem 2.5.1 implies that Ax! 4+ (1 — 1)x? also belongs to & (p, m) for every
A in [0, 1]. In other words, & (p, m) is a convex set.

A Sets, Completeness, and Convergence
A1

A.1.3 The answer in the book has been pared down to the bone, with a function defined on a set with only
two elements in it. For an example with a little more flesh on it, consider the following:

Let f(x) = x? for all x in R, and define two intervals S; = [—4,2] and S, = [—1, 3]. The
intersection of S} and S, is S; N S, = [—1, 2]. The images of S} and S, under f are f(S;) = [0, 16] and
f(82) = [0, 9], and the image of 1 N S is f(S; N S2) = [0, 4]. Here, then, is a case where f(S; N S»)
is a proper subset of f(S1) N f(S2).
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A.1.4 A relation is a linear ordering if and only if it is (i) reflexive, (ii) transitive, (iii) anti-symmetric, and
(iv) complete. For each of these four properties it is easy to see that if a relation R has that property, then
so has R~!. Let us just see how to handle (ii):
We are assuming that R is transitive relation in a set S. Let x, y, and z be elements in S such that
xR~'y and yR~'z. We want to show that xR ~'z. We have yRx and zRy, and since R is transitive,
zRx. Therefore xR ~!z, as promised.

A.2

A.2.2 Itis shown in the answer in the book that s < r, and since s is positive and s > 2, wealso have s > 2.
Thus the rational number s is closer to /2 than r is. But how did anyone come up with the expression
s = (24 r?)/2r in the first place? The answer is Newton’s method, which is a famous procedure for
finding and improving approximate solutions to an equation f(x) = 0, where f is a differentiable
function.
Given one approximate solution, xo, we let x; = xo — f (x9)/f’(x0), and then we construct x; from
x1 in the same fashion, and so on. If the initial approximation x¢ is good enough, the sequence x1, x2, . . .
will usually converge to a root of f(x) = 0. (A brief discussion of this method can be found in EMEA,
for instance.) Now apply this procedure to the equation f(x) = x> —2 = 0. If xo = r is a positive
number, then x; =r — f(r)/f'(r) =r — (r> — 2)/2r = (r> + 2)/2r is precisely the number s.

A3

A.3.4 For the solution of this problem we need the fact that, if two convergent sequences have infinitely

many terms in common, they must have the same limit. (This is an easy consequence of Theorem A.3.3.)

Consider the particular subsequences {wy} = {xpr—1} and {zx} = {x2«} of {xx}. They converge to 0

and 2, respectively. Together, these two subsequences contain all the terms of the original sequence, so

any subsequence of {x;} must have an infinite number of terms in common with at least one of {wy;} and
{zx}. Hence, any convergent subsequence of {x;} must converge to either O or 2.

The six subsequences {yet}, {Vok+1}s {Yor+2}s {Vor+3}> {Vek+4}, and {yeris} converge to sin0 = 0,
sin(r/3) = 1+/3, sin(27/3) = 1+/3, sin(37/3) = 0, sin(47/3) = —1+/3, and sin(57/3) = —1+/3,
respectively, and they contain all but the first five elements of {y;}. In the same way as for {x;}, it follows
that any convergent subsequence of {yx} must converge to 0, % 3, or _%ﬁ

Figures MA.3.4(a) and MA3.4(b) illustrate the behaviour of {x;} and {y}.

X y
A A
2’ ”””” . ”;";”.”.’”.”6”.”"""”
L] L]
14 %ﬁ ,,,,,,,,, bl B oo oo eo _
a—o—o—o—o—b—o—g—o—‘—&%ﬁ;—o—‘—o—‘—o—*—o—ﬁ—o—*—b k — et tei el toiibiioitoitolie»k
. * 10 20 10 20
1
—1le —jﬁ ””” ;; ””” e T Tee - L%
MA.3.4(a) MA.3.4(b)

A.3.5 (b) (i): Foreach natural number n, let M,, = sup{x; : k > n}and N,, = sup{y, : k > n}. Then for all
k > n,wehavex; < M, and y; < N,,andsoxx+yx < M,+N,. Thussup{xx+yx : k > n} < M,+N, <
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lim;, 0o (M, + Np) = lim,, oo M;, + lim,,_, oo Ny, OF mk»oo(xk + ) < mkﬁoo Xi + ﬁk%oo Y-
The proof of (ii) is similar and is left to the reader.

A.3.6 Letn and m be natural numbers with n > m, and let p = n — m. Then

Xy — Xm| = |xm+p — Xm|
= |(xm+p - xm-i—p—]) + (xm-i-p—l - xm+p—2) + oo 2 — Xmp1) + (1 — X)) |
= |xm+p - xm+p—l| + |xm+p—l - xm+p—2| + o X2 = Xt |+ X — Xl
1 1 1 1
< gttt gt
:i(1+l+...+ ! ):iﬂ<i b1
om 2 2r-1 om 1 _ % om o _ % 2m—1

which obviously becomes arbitrarily small for m sufficiently large.

B Trigonometric Functions
B.1

B.1.4 cos(y — m/2) = sin y follows directly from Problem 3. Then, from the hints in the question, as well
as (B.1.8) and the result of Problem 3 again, it follows that

sin(x +y) =cos(x +y —m/2) = cosxcos(y —mw/2) —sinx sin(y — 7w /2)

= cosxsiny + sinx cosy = sinx cosy -+ cos x siny

Substituting —y for y then yields sin(x — y) = sin x cos(—y) 4 cos x sin(—y) = sin x cos y —cos x sin y.

B.1.6 Itis clear from the definitions of sin x and cos x that sin(x + ) = — sinx and cos(x +7) = —cos x
for all x. This also follows from Problem 4 and formula (B.1.8) together with the fact that sinw = 0 and
cosm = —1. The formula for sin(x — y) in Problem 4 also shows that sin(w — x) = sin x for all x. These

results come in handy in this problem.
(a) sin(wr — 7 /6) = sin(;wr/6) = 1/2.
(b) (cos(rr + 7/6) = — cos(/6) = —3+/3.
(c) By Problem 2(a), sin(—37/4) = —sin(37/4) = —1/2.
(d) cos(5m/4) =cos(wr/4+ ) = —cos(wd) = —% 2.
(e) By formula (6), tan(77/6) = tan(;w/6) = %«/g
(f) sin(rr/12) = sin(rr/3 — /4) = sin(rr/3) cos(rr /4) — cos(r/3) sin(r/4) = 1(+/6 — /2).
B.1.7 (a) The formula for sin(x + y) in Problem 4 gives V2sin(x + 7 /4) —cosx = /2(sin x cos(m /4) +
cosx sin(mwr/4)) —cosx = «/E(sinx . %ﬁ—i— cos X - %ﬁ) — COosXx = sinx

(b) Since sin(w — x) = sinx and cos(2m — x) = cos(—x) = cos x, we have

sinfr — (¢ + B)] _ sin(e + B)
cos[2 — (@ + B)]  cos(a + B)

= tan(a + B)
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(c) Formula (B.1.8) and the formulas in Problems 3 and 4 give

sin(a + x) — sin(a — x) sina cos x 4+ cosa sinx — sina cos x 4+ cosa sin x

cos(a +x) —cos(a —x) COSacosx — sinasinx — COSa COSX — sina sin x

2cosasin x cosa
= N " _ — = — COt a
—2sinasinx sina

B.1.8 With x = %(A + B)and y = %(A — B) we get sinA —sinB = sin(x + y) — sin(x — y) =
A+B G, A—B
2 2

sinx cosy +cosxsiny —sinxcosy 4+ cosxsiny = 2cosx siny = 2cos
B.1.12 (a) Thisis a sine curve y = A sin(ax) with A =2 and a(87) = 2w, i.e.a = 1/4.
(b) y =2 4 cosx. (A cosine curve with amplitude 1 and period 2 shifted 2 units upwards.)
(c) y = 2e~*/7 cos x. (An exponentially damped cosine curve with amplitude 2=/ )
B.1.13 Since the lengths of the line segments AC and BD are equal, we have (cosx — cos y)> + (sinx +
sin y)? = (cos(x + y) — 1)? + sin?(x + y). The left-hand side is
LHS = cos? x — 2cosx cos y 4 cos? y + sin® x + 2sinx sin y 4 sin® y
=2 —2cosxcosy-+2sinxsiny
and the right-hand side is
RHS = cos?(x 4+ y) — 2cos(x + y) + 1 +sin’(x + y) =2 — 2cos(x + y)

where we have repeatedly used that sin?u 4+ cos>u = 1. The equation LHS = RHS implies that
cos(x + y) = cosx cosy — sinx sin y.

B.2

B.2.1 (b) (xcosx) = x'cosx + x(cosx) = cosx — xsinx.
du 1 2x

d d
) 2\y
(c) Letu = x~. Then T (tan(x?)) = o (tan u)dx o 2x = o2 (:2)

2x

(d) (€** cosx) = (e**) cosx + e**(cosx) = 2e* cosx — e** sinx = ¢**(2cos x — sinx).

B.2.4 (c) All you need is the chain rule and a steady hand.

.1 —cost “0” . sint 1 . sint 1 . a1
B.2.5 (¢ tlgr(l)t—z = 0 = th_I)I(l)z—t = Etl—%T = 3 by (B.2.10) (or just use ’Hopital’s rule
again).
B.2.6 The derivative of f/(x)is f'(x) = 3(sinx —x — 1)2(cosx —1). Itis easy to see that sinx < x + 1 for
all x > 0, because sinx < 1 < x + 1. Moreover, cos x < 1 for all x in the open interval J = (0, 37 /2).
It follows that f'(x) < Oforall x in J. Thus, f is strictly decreasing in the closed interval I = [0, 37/2],
and attains its maximum value —1 at x = 0 and its minimum value —(2 + 371/2)3 ~ —302.43 at

x =3m/2.

B.2.8 You can read all these values off from Table B.2.1.

d d d 2 2
B.2.9 (a) Letu = 2x. The chain rule yields — (arcsin 2x) = — (arcsin «) a_ = .
dx du dx 1 —u?2 J1—4x2

(b) (d/dx)(arctan v) with v = 1 4 x2.
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d d d
(c) Let w = /x. Then — (arccos /x ) = — (arccos w)—w =
dx dw dx

B.2.10 (c) Integration by parts yields

I = /sinzx dx = / sinx(—cos x) dx = sinx(—cos x) — /(sinx)'(— cosx)dx

= —sinxcosx+/c032xdx = —sinxcosx—l—f(l —sinzx)dx

Hence, ] = —sinxcosx +x — I + C, and we get | = %(x —sinx cosx) + Cy, where C; = %C.
Note: When integrating trigonometric functions it is very easy to get wrong signs here and there, and
integration by parts also often leads to such mistakes, so it is a good rule to check the results by finding
the derivatives when that is possible.

(d) Integration by parts here too.

d
B.2.11 (a) Let u = cosx. Then du = —sinxdx and /tanxdx - [ —Injul + C =
u

—In|cosx|+ C.

(b) With v = sin x, we get dv = cos x dx and / cos xe'" dx = /e” dv=e¢"+C=¢e"" 4+ C.

(c) Asin part (a), let u = cos x. Then/cossxsinx dx = / —udx = —%u6 +C = —%cos6x + C.

B.3

B.3.3 To simplify a complex fraction (a 4 bi)/(c 4+ di), where a, b, c, d are real, it is usually a good idea to
multiply both the numerator and the denominator by ¢ — di, the conjugate of the original denominator.
This has the effect of making the denominator real (and positive) because (c —di)(c+di) = 2 —(di)? =
2 — d%i? = ¢ + d?. Thus,

(3+2i)(1+i)_3+5i+2i2_1+5i 1 5 (4-=30)(=i) —3—-4i

@ T harn - 1-e T 2 atah O oy T
3 —20)(2 - i)

(—1-)B+20)
6-7i+2i>  4—T7i _ (4—T)(—1+50)  —4+27i—35> 31 27

=—3—4i.

(c) Simplify the numerator and denominator before making the denominator real:

RS2l —1-5 (-G 1-252 26 26"
1—i (- 1-2i+i® =2i 1—i\’

(d) l.=( l.) _ 1+1 _ i — i, so l =(—i)3 — 3= 2=
1+ 1—i2 2 2 14
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Corrections to FMEA 2nd edn (2008), first printing

(Spelling and grammatical mistakes are not included.)

Page 26, line 12 from the bottom. ... (See Example B.3.2.)

Page 59, Theorem 2.3.5: In parts (b) and (c) the conclusion should be that U (x) = F(f(x)) is convex!
Page 117, Theorem 3.3.1(b): Add the assumption that S is convex.

Page 124, Problem 3.3.10: Replace the inequality in (x) with equality.

Page 132, Theorem 3.5.1, line 1-2: Assume that f and gy, ..., g, are defined in a set S and that x* is an
interior point of S.

Page 164, Problem 10, line 5: The function f must also be continuous.

Page 192, Problem 6: The differential equation has no solution defined over the entire real line. We must be
satisfied with a function x that satisfies the conditions in the problem in an open interval around 0.

Page 199, Problem 6, line 2: ... allt > 0.

Page 225, Problem 6, line 3: ..., provided x # 0, we have

Page 352, Theorem 9.11.2, line 2: ... that ft;)o | f(t, x(@),u())|e'dt < ooforall...

Page 357, Problem 9.12.3(c), line 2: ... with K(¢) > 0O for

Page 382: The entries in the first column of the table should be “z € [0, t*]” and “t € (¢t*, T']".
Page 444, Problem 12.4.2(b): ... in Theorem 12.4.1 are . ..

Page 454, formula (10): E[F5(t, x¢, xe41(xr, Vi), Vo) vt ] + F5( — 1, X1, %, v—1) = 0
Page 455, line 5: .... Next, fort =T,

Page 455, line 8: %vr_l should be %VT_l .

Page 457, Problem 12.6.6: The summation goes from ¢ = 0, and the scrap value is X ;/ 2,

Page 508: See SM (not Problem 11) for the proof of Theorem 14.1.5(c).

Page 566, Problem 2.6.1(c): f(x,y) & x + 2y — 1x? — 2xy — 2)?

Page 566, Problem 2.6.4: z~ 1 —x +y + %xz —2xy + %yz

Page 566, Problem 2.7.3, line 2: ..., w, = 1/2.

Page 570, Problem 3.7.3, line 2: f*(r,s) = %rz. ... to find the squares of the largest

Page 570, Problem 3.8.3, line 2: Replace (c) by (b).

Page 570, Problem 3.8.5, line 1: Drop the labels (a) and (b).

Page 571: New Problem 3.11.1: See SM.

Page 574, Figure A5.2.2: The integral curve through (0, 2) is only the semicircle above the ¢-axis.
Page 576, Problem 5.6.1: Delete “and x = 0”. (We require x > 0.)
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Page 577, Problem 5.7.3, line 2: .... See Fig. A5.7.3(b).
Page 582, Problem 6.9.6: Drop the references to (a) and (b).
Page 583, Problem 7.2.3: Remove (b) from line 2.

Page 586, Problem 9.4.2: ... where A = 2¢/(e*> — 1).

e(a72ﬁ)T+at e2(a7ﬁ)t (e(a—Zﬂ)T _ e(a—Zﬂ)t)eat
c@=2PT _ 1 o@=2pT _1 e@=2pT _ | ’

Page 588, Problem 9.7.3: (a) ..., x*(t) =

(e—e7t, 1) ifte[-1,0]
(e —1,0) if t € (0, 00)

Page 589, Problem 9.12.3, line 1: ..., and so C*/C* + i/k =0....

t

Page 589, Problem 9.11.4: (x*(¢), u*(t)) = { , p(t) =e .

Page 590, Problem 10.4.3, line 3: .... Whenu =2, x = —3and...
Page 591, Problem 10.6.3, line 2: Replace x, by x* and * by ¢'.
Page 593, Problem 11.7.2, line 1: (a) x*™ ~ —2.94753.

Page 595, Problem 12.6.6: u,(x) = x,/4a? = x,/(1 + a?,)), ar =a/2, a; = $(1 +a? )"/*fort < T.

Page 595, Problem 12.6.8: x| = % — vy, X2 =1—vy — vy, x3 = % — V9 — V] —

Page 599, Problem 14.2.3: The demand correspondence & is upper hemicontinuous, but it need not be lower
hemicontinuous.
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