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University of Oslo / Department of Economics English only

ECON3120/4120 Mathematics 2
Compulsory term paper, autumn term 2016.

There are 3 pages of problems to be solved, not counting this page.

Justifying answers:

• You are required to state reasons for all your answers.

• You are permitted to use any information stated in an earlier letter-enumerated
item (e.g. “(a)”) to solve a later one (e.g. “(c)”), regardless of whether you managed
to answer the former. A later item does not necessarily require answers from or
information given in a previous one.

Minimum requirements to pass this assignment:

• You will pass if each of problems 1, 2, and 3 is scored as good enough to pass, if
it were judged to be one exam stand-alone.
(The commonly applied pass mark in mathematics is forty percent, and this
course by default uses uniform weighting over letter-enumerated items.)

• If you fail one problem despite a decent attempt at it, we may still let you pass
upon judging the overall quality of the paper.

The paper does not count towards your final course grade!

• Passing the term paper is required in order to sit in on the exam (see the Depart-
ment’s rules). Other than that, it does not in any way count towards your grade,
and the exam grading committee will not see your term paper.
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Problem 1

(a) Let h(x) = xe · [esx + es
3x] and g(x) = ln(1+h(x))

h(x)
. Consider for each s 6= 0 the limits

lim
x→0+

g(x) and lim
x→+∞

g(x)

For each s 6= 0: what does l’Hôpital’s rule tell you about each of these limits?

(b) For s in a certain range, the function h(x) of part (a) will have a global maximum
point x∗ > 0. The maximum value V = h(x∗) depends on s. Find an expression for
V ′(s).

(c) Let u(x) = x+ xx and v(x) = logx(1 + u(x)). Find v′(x).
(Hint: xv(x) = 1 + u(x).)

(d) An account accumulates interest as eρt continuously compounded, where t is time
measured in years.

• Suppose first that ρ = 0.025. Find p so that the annual interest rate is p%.

• Suppose instead that the annual interest rate is e % (where e is the constant
≈ 2.71828). Convert this to a continuously compounded ρ.

(e) Let f be a twice continuously differentiable function defined on (0,∞), and assume f
is convex and that limx→0+ f(x) < 0. Use proof by contradiction to establish that f
cannot have two (nor more) zeroes.
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Problem 2 Let f(x, y) = ex
3y2 − xy2 − 1.

(a) f has the following properties: (I): f(x, y) = 0 when xy = 0; (II): f ′x(x, 0) = f ′y(x, 0) = 0
for every x; (III): f ′x(0, y) < 0 for all y 6= 0.

i) Use the properties (I)–(III) to classify the stationary point (0, 0) without invoking
the second-derivative test

ii) Can the second-derivative test classify the stationary point (0, 0)?

Let from now on t > 0 be a constant, and consider the problem

max f(x, y) subject to (tx+ 1)y ≤ 1, x ≥ 0 and y ≥ 0 (P)

(b) i) State the Kuhn–Tucker conditions associated with problem (P).

ii) Do we know already, without further calculations, that there will be at least one
point which satisfies these conditions?

(c) Consider the points such that x = 0 and 0 < y < 1. Which of these points – if any –
will satisfy the Kuhn–Tucker conditions?

(d) It can be shown – but you are not asked to do so – that if the Kuhn–Tucker conditions
hold with x > 0 and (tx+ 1)y = 1, then

x2ex
3/(tx+ 1)2 =

tx+ 3

tx+ 2

Show that there exists a positive x satisfying this equation.
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Problem 3 Let r, s, t, u, v be real constants with s > 0, t > 0, u > 0. Define the matrices

L =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

 , U =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 and D =


s 0 0 0 0
0 t 0 0 0
0 0 u 0 0
0 0 0 t 0
0 0 0 0 s


and denote by I the identity matrix and by 0 the null matrix of order 5× 5.

(a) Calculate U2 and (rL+D+ uU)L.

(b) Which of the determinants |L|, |L′ + L|, |D| and |(2DULL′)4(I+ L′ +U)2016| will be
zero? (The prime (′) denotes transpose; recall that s, t and u are all > 0.)

(c) Put s = t = 1. In this part, you shall solve for the inverse of (D+ uU) or show that it
does not exist, for every u > 0. That is, you shall solve the equation system AX = I,
where A = D+ uU. Note that the unknown X is 5× 5.

• For full score: write down the augmented coefficient matrix (A
... I) and perform

Gaussian elimination on this until you have found the solution or shown that no
solution exists.

• For up to 2/3 score (usually corresponding to a near-middle-of-the-road “C”):
solve the three equation systems Ax =

(
1, 0, 0, 0, 0

)′, Ay =
(
0, 1, 0, 0, 0

)′ and
Az =

(
0, 0, 1, 0, 0

)′ and explain then where/how x, y and z enters the inverse
and how you would solve the rest.

(d) (This part involves concepts outside Mathematics 2 but you should be very well able to
solve it using only Mathematics 2 curriculum. Note also that the requirement to pass
every problem is applied to problems 1, 2 ... and not to each letter-enumerated item.)

In Mathematics 3 – as well as in the first-semester bachelor course MAT1001 which is
counted as eighty percent overlapping with ECON2200 – one introduces the concepts
of eigenvectors and eigenvalues of square matrices: v 6= 0 is an eigenvector of M if
there exists some number λ such that Mv = λv. This λ is then called the eigenvalue.

• If v is an eigenvector of M with corresponding eigenvalue λ, how many solutions
will then the equation (M− λI)x = 0 have? Zero, one or infinitely many? (Note
that x is the unknown, and λ is the fixed number.)

• Which of the above matrices L, U and D has/have w = (0, 0, 1, 0, 0)′ as eigen-
vector? (Hint: What do you get when you calculate Lw?)
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