Problem 39

(a) At stationary points, we must have

$$f_1'(x,y) = \frac{1}{x+y} - 2x + 1 = 0$$
$$f_2'(x,y) = \frac{1}{x+y} - 2y = 0$$

Subtracting the second equation from the first to cancell out 1/(x + y):

we get
$$2y = 2x - 1 \rightarrow y = x - \frac{1}{2}$$

Substituting this into the first FOC:

$$\frac{1}{2x - \frac{1}{2}} = 2x - 1 \to 1 = 4x^2 - 3x + \frac{1}{2} \to 4x^2 - 3x - \frac{1}{2} = 0$$

$$\to 8x^2 - 6x - 1 = 0.$$

$$x = \frac{6 \pm \sqrt{36 + 32}}{16} = \frac{6 \pm 2\sqrt{17}}{16} = \frac{3 \pm \sqrt{17}}{8}$$

since x > 0 and $\frac{3 - \sqrt{17}}{8} < 0$, we must have $x^* = \frac{3 + \sqrt{17}}{8}$, then $y^* = x^* - \frac{1}{2} = \frac{\sqrt{17} - 1}{8}$

so we find one stationary point $(x^*, y^*) = (\frac{3+\sqrt{17}}{8}, \frac{\sqrt{17}-1}{8})$.

(b) Simply put if we have

$$f_{11}''(x,y) \le 0$$
, $f_{22}''(x,y) \le 0$, and

$$f_{11}''(x,y)f_{22}''(x,y) - (f_{12}''(x,y))^2 \ge 0 \text{ for all } x > 0, y > 0$$

Then (x^*, y^*) is global maximum,

if

$$f_{11}''(x,y) \ge 0$$
, $f_{22}''(x,y) \ge 0$, and

$$f_{11}''(x,y)f_{22}''(x,y) - (f_{12}''(x,y))^2 \ge 0 \text{ for all } x > 0, y > 0.$$

Then (x^*, y^*) is global minimum.

Let's first look at the second-order derivatives:

$$f_{11}''(x,y) = -(x+y)^{-2} - 2 < 0, \quad f_{22}''(x,y) = -(x+y)^{-2} - 2 < 0$$

$$f_{12}''(x,y) = f_{21}''(x,y) = -(x+y)^{-2},$$

$$f_{11}''(x,y)f_{22}''(x,y) - \left(f_{12}''(x,y)\right)^{2} = (-(x+y)^{-2} - 2)^{2} - (-(x+y)^{-2})^{2}$$

$$= ((x+y)^{-2} + 2)^{2} - ((x+y)^{-2})^{2} = (x+y)^{-4} + 4(x+y)^{-2} + 4 - (x+y)^{-4}$$

$$= 4 + 4(x+y)^{-2} > 0 \text{ since } x > 0, y > 0.$$

So we have $(x^*, y^*) = \left(\frac{3 + \sqrt{17}}{8}, \frac{\sqrt{17} - 1}{8}\right)$ which is an interior point for function

f(x,y) defined in a convex set x > 0, y > 0.

We also know that for all x > 0, y > 0, one has:

$$f_{11}''(x,y) \le 0$$
, $f_{22}''(x,y) \le 0$, and

$$f_{11}^{"}(x,y)f_{22}^{"}(x,y) - (f_{12}^{"}(x,y))^2 \ge 0.$$

then (x^*, y^*) is a global maximum point of f.

Problem 138

(a)

x+y+z=1 and $x^2+y^2+z^2=1$ form an nonempty, closed and bounded set through which f(x,y,z) is continuous, so according to the Extreme Value Theorem there must exist both a maximum and a minimum in this set.

$$\mathcal{L}(x, y, z) = e^{x} + y + z - \lambda(x + y + z - 1) - \mu(x^{2} + y^{2} + z^{2} - 1)$$

$$\mathcal{L}'_{1}(x, y, z) = e^{x} - \lambda - 2\mu x = 0$$

$$\mathcal{L}'_{2}(x, y, z) = 1 - \lambda - 2\mu y = 0$$

$$\mathcal{L}'_{3}(x, y, z) = 1 - \lambda - 2\mu z = 0$$

$$\mathcal{L}'_{2}(x, y, z) - \mathcal{L}'_{3}(x, y, z) = 2\mu(z - y) = 0$$

$$\rightarrow either \ \mu = 0 \ or \ z - y = 0$$

if $\mu = 0$, we have that $1 - \lambda = 0$ so $\lambda = 1$, then $e^x - \lambda = 0 \rightarrow x = 0$.

The two constraints then become:

$$y + z = 1, \quad y^2 + z^2 = 1$$

$$y^2 + (1 - y)^2 = 2y^2 - 2y + 1 = 1 \rightarrow 2y^2 - 2y = 0$$

$$2y(y - 1) = 0 \rightarrow y = 0, z = 1 \text{ or } y = 1, z = 0.$$

We have then got two solution candidates

$$(x_1, y_1, z_1, \lambda_1, \mu_1) = (0, 1, 0, 1, 0),$$
 $f(x_1, y_1, z_1) = 2$
and $(x_2, y_2, z_2, \lambda_2, \mu_2) = (0, 0, 1, 1, 0),$ $f(x_2, y_2, z_2) = 2.$

if z = y, the two constraints could be rewritten as :

$$x + 2y = 1$$
, $x^2 + 2y^2 = 1$

Then $y = \frac{1-x}{2}$, substituting into the second constraint gives us:

$$\Rightarrow x^2 + 2\left(\frac{1-x}{2}\right)^2 = x^2 + \frac{1}{2}(1 - 2x + x^2) = \frac{3}{2}x^2 - x + \frac{1}{2} = 1$$

$$\Rightarrow 3x^2 - 2x - 1 = 0$$

$$\Rightarrow (x-1)(3x+1) = 0$$

so we have
$$x = 1, y = z = 0, or x = -\frac{1}{3}, y = z = \frac{2}{3}$$
.

For x = 1, y = z = 0,

$$\mathcal{L}'_1(x, y, z) = e - \lambda - 2\mu = 0$$

$$\mathcal{L}'_2(x, y, z) = 1 - \lambda = 0$$

$$\rightarrow \lambda = 1, \mu = \frac{e - 1}{2}$$

For
$$x = -\frac{1}{3}$$
, $y = z = \frac{2}{3}$,

$$\mathcal{L}'_1(x, y, z) = e^{-\frac{1}{3}} - \lambda + \frac{2}{3}\mu = 0$$

$$\mathcal{L}'_2(x, y, z) = 1 - \lambda - \frac{4}{3}\mu = 0$$

$$\to \mu = \frac{1 - e^{-\frac{1}{3}}}{2}, \lambda = \frac{2e^{-\frac{1}{3}} + 1}{2}$$

We have then got another two solution candidates

$$(x_3, y_3, z_3, \lambda_3, \mu_3) = \left(1,0,0,1, \frac{e-1}{2}\right), \quad f(x_3, y_3, z_3) = e.$$

$$(x_4, y_4, z_4, \lambda_4, \mu_4) = \left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2e^{-\frac{1}{3}} + 1}{2}, \frac{1 - e^{-\frac{1}{3}}}{2}\right), \quad f(x_4, y_4, z_4) = e^{-\frac{1}{3}} + \frac{4}{3} < 1 + \frac{4}{3} < e.$$

It is easy to see that solution candidate

$$(x_3, y_3, z_3, \lambda_3, \mu_3) = \left(1,0,0,1, \frac{e-1}{2}\right) \text{ with } f(x_3, y_3, z_3) = e$$

Solve the problem.

(b)

$$\max f(x,y) \quad s.t. \quad g(x,y) = c$$
 if we write the maximized f as f^* , then
$$f^*(c+dc) - f^*(c) \approx \lambda(c)dc.$$

$$\Delta f^*(x, y, z) \approx \lambda(0.02) + \mu(-0.02) = 0.02 - 0.01(e - 1)$$

= 0.01(3 - e)

Problem 86

(a)
$$\mathcal{L}(x,y,z) = x^2 + x + y^2 + z^2 - \lambda(x^2 + 2y^2 + 2z^2 - 16)$$

 $\mathcal{L}'_1(x,y,z) = 2x + 1 - 2\lambda x = 0$
 $\mathcal{L}'_2(x,y,z) = 2y - 4\lambda y = 0 = 2y(1 - 2\lambda)$
 $\mathcal{L}'_3(x,y,z) = 2z - 4\lambda z = 0 = 2z(1 - 2\lambda)$
 $\mathcal{L}'_2(x,y,z) - \mathcal{L}'_3(x,y,z) = 2(y-z)(1 - 2\lambda) = 0$

If
$$1 - 2\lambda = 0 \rightarrow \lambda = \frac{1}{2}$$

$$2x + 1 - x = 0 \rightarrow x = -1$$
,

substituting this into the constraint gives us:

$$1 + 2y^2 + 2z^2 = 16 \rightarrow y^2 + z^2 = \frac{15}{2}$$

So our first solution candidate(s) are:

$$(x,y,z) = (-1,y,z)$$
 with $y^2 + z^2 = \frac{15}{2}$, $f(x,y,z) = \frac{15}{2}$

If
$$\lambda \neq \frac{1}{2}$$
, then $y = z = 0 \rightarrow x^2 = 16 \rightarrow x = \pm 4 \rightarrow \lambda = \frac{9}{8}$ or $\frac{7}{8}$ satisfies $\lambda \neq \frac{1}{2}$

So our second and third solution candidates are

$$(x, y, z) = (4,0,0),$$
 $f(x, y, z) = 20$ and

$$(x, y, z) = (-4,0,0), f(x, y, z) = 12.$$

Easy to see that (x, y, z) = (4,0,0) gives the maximum f(x, y, z) = 20,

And (x, y, z) = (-1, y, z) with $y^2 + z^2 = \frac{15}{2}$ gives the minimum $f(x, y, z) = \frac{15}{2}$

(b)
$$\mathcal{L}(x,y,z) = x^2 + x + y^2 + z^2 - \lambda(x^2 + 2y^2 + 2z^2 - 16)$$

 $\mathcal{L}'_1(x,y,z) = 2x + 1 - 2\lambda x = 0$
 $\mathcal{L}'_2(x,y,z) = 2y - 4\lambda y = 0 = 2y(1 - 2\lambda)$
 $\mathcal{L}'_3(x,y,z) = 2z - 4\lambda z = 0 = 2z(1 - 2\lambda)$

Introduce the complementary slackness condition:

$$\lambda \ge 0$$
, with $\lambda = 0$ if $x^2 + 2y^2 + 2z^2 < 16$

Let's first assume $x^2 + 2y^2 + 2z^2 = 16$, then we have $\lambda \ge 0$, and the problem is identical with (a), which gives us the following solution candidates (and for all these candidates we can verify that indeed $\lambda \ge 0$):

$$(x, y, z) = (-1, y, z)$$
 with $y^2 + z^2 = \frac{15}{2}$, $f(x, y, z) = \frac{15}{2}$
 $(x, y, z) = (4,0,0)$, $f(x, y, z) = 20$
 $(x, y, z) = (-4,0,0)$, $f(x, y, z) = 12$

Then we assume $x^2 + 2y^2 + 2z^2 < 16$, which means that $\lambda = 0$

The FOCs then gives us y = z = 0, $x = -\frac{1}{2}$.

So we have another solution candidates $(x, y, z) = \left(-\frac{1}{2}, 0, 0\right) with f(x, y, z) = -\frac{1}{4}$

Easy to see that (x, y, z) = (4,0,0) gives the maximum f(x, y, z) = 20,

And
$$(x, y, z) = \left(-\frac{1}{2}, 0, 0\right)$$
 gives the minimum $f(x, y, z) = -\frac{1}{4}$