## LA preview 2: Matrices: what for?

What? a rectangular array of $m$ rows and $n$ columns of numbers.
What is it good for? (Putting numbers in boxes, huh? Apart from compact notation as bookkeeping tool?)

- We shall write the linear equation system

$$
\begin{array}{cr}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
\vdots & \vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m} & \text { as } \mathbf{A x}=b
\end{array}
$$

- Yesterday: manipulation tools for vectors (budgets, ...).

Now: manipulation tools for matrices, and then: use them to solve and/or characterize the solution/solvability of $\mathbf{A x}=\mathbf{b}$.
(Other courses? If a random vector $\mathbf{X}$ has covariance matrix $\mathbf{W}$, then the random variable $\mathrm{Y}=\mathbf{c} \cdot \mathbf{X}$ (with $\mathbf{c}$ nonrandom) has variance $\mathbf{c} \cdot(\mathbf{W c}) \ldots$ )

## LA preview 2: Matrices: definition

Definition: a matrix of order $m \times n$ (read: " $m$ by $n$ ") is a rectangular array of $m$ rows and $n$ columns of numbers.

- Example: This example matrix is $2 \times 3$ :

$$
\mathbf{H}=\left(\begin{array}{ccc}
2018 & 9 & 25 \\
2 e & -1.4 & 5
\end{array}\right)
$$

- Elements: The numbers, indexed by (rownumber, column number), indexing counted from top-left.
- Notation: We write $a_{i j}$ for the elements of $\mathbf{A}$. (" $a_{i, j}$ " if needed). Example: for $\mathbf{H}$ above, $h_{21}=2 e$.
- Specification by elements: We can specify a matrix by specifying the elements individually.
Examples: write down the $3 \times 2$ matrices $\mathbf{U}$ and $\mathbf{V}$ defined by $u_{i j}=i-j$ and $v_{i j}=(-1)^{i+j}$.


## LA preview 2: Matrices: equality, transpose

from previous page:

$$
\mathbf{U}=
$$

$$
\mathbf{V}=
$$

Equality: element-wise. We have $\mathbf{A}=\mathbf{B}$ of $a_{i j}=b_{i j}$, all $i, j$ (orders must be the same).

Definition: the transpose $\mathbf{A}^{\prime}$ of the $\mathfrak{m} \times \mathfrak{n}$ matrix $\mathbf{A}=\left(\mathrm{a}_{i j}\right)$ is $n \times m$ with elements $b_{i j}=a_{j i}$. We call $\mathbf{A}$ symmetric if $\mathbf{A}^{\prime}=\mathbf{A}$.
[The prime symbol is not a derivative. No confusion as long as we keep linear algebra and analysis separated!]

- Example: if $\mathbf{H}=\left(\begin{array}{ccc}2018 & 9 & 25 \\ 2 e & -1.4 & 5\end{array}\right)$, then $\mathbf{H}^{\prime}=$
- Exercise: Explain why $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$.


## LA preview 2: Vectors as matrices. Rows \& columns.

Vectors recast: A row vector is a $1 \times \mathrm{n}$ matrix. A column vector is an $\mathrm{m} \times 1$ matrix.

- The transpose of a row vector is a column vector.

The transpose of a column vector is a row vector.

- Vectors default to columns from now on.

To specify a row vector, I will use a prime.

- Example: The first row of the example matrix $\mathbf{M}$ is

$$
\mathbf{r}_{1}^{\prime}=\left(\begin{array}{lll}
2018 & 9 & 25
\end{array}\right) \text {. Here, } \mathbf{r}_{1} \text { is a column, namely } \mathbf{r}_{1}=\binom{2018}{25} \text {. }
$$

- To save space, you can specify a column $x$ as e.g. $x=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{\prime}$. (Or, comma-separated.)

Noticed? We can specify a matrix by its rows or its columns.

- Example: $\mathbf{H}$ is given by its rows $\mathbf{r}_{1}^{\prime}=\left(\begin{array}{ll}2018 & 9\end{array}\right)$ and $\mathbf{r}_{2}=\left(\begin{array}{lll}2 e & -1.4 & 5\end{array}\right)$. (Enumeration matters!!) Alternatively, by its columns $\mathbf{c}_{1}=\binom{2018}{2 e}, \mathbf{c}_{2}=\binom{9}{-1.4}$ and $\mathbf{c}_{3}=\binom{25}{5}$.


## LA preview 2: square matrices will turn out quite significant

Definitions:

- A matrix $\mathbf{S}$ is square if it is $n \times n$. The elements $s_{i i}$ (i.e., $s_{i j}$ with $i=j$ ) are called the main diagonal elements.
- A (necessarily square) matrix $\mathbf{S}$ is called symmetric if $\mathbf{S}^{\prime}=\mathbf{S}$.
- A (necessarily symmetric) matrix $\mathbf{D}$ is diagonal if $\mathrm{d}_{\mathrm{ij}}=0$ whenever $\mathfrak{i} \neq \mathfrak{j}$ (the "off-diagonal" elements are zero)
- The identity matrix $\mathbf{I}_{\mathrm{n}}$ of order $\mathrm{n} \times \mathrm{n}$ is diagonal with elements $=1$ on the main diagonal.

$$
\left(\begin{array}{lll}
* & & \\
& * & \\
& & *
\end{array}\right) ; \quad\left(\begin{array}{ccc}
14 & 0 & 0 \\
0 & -\mathrm{e} & 0 \\
0 & 0 & \pi
\end{array}\right) ; \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(asterisks indicate the main diagonal; a diagonal matrix; $\mathbf{I}_{3}$.)
We often say "order $n$ identity" rather than " $n \times n$ ", and write $\mathbf{I}$ without subscript if order is understood.

## LA preview 2: Matrices: scaling and addition.

First:
Definition: The order $m \times n$ zero (/null) matrix $\mathbf{0}_{\mathrm{mn}}$ (denoted simply $\mathbf{0}$ if order is understood), has all elements equal to zero.

Scaling is defined element-wise: $\mathbf{C}=\alpha \mathbf{B}$ has elements $\boldsymbol{c}_{i j}=\alpha b_{i j}$.
Addition is defined element-wise, provided the matrices have the same order: $\mathbf{C}=\mathbf{A}+\mathbf{B}$ has elements $c_{i j}=a_{i j}+b_{i j}$.

Scaling and addition "follow nice rules", like for vectors. Assuming all matrices are of same order $\mathrm{m} \times \mathrm{n}$, then

$$
\begin{aligned}
& (\alpha+\beta)(\mathbf{A}+\lambda \mathbf{B}+\mathbf{0})=(\alpha \lambda+\beta \lambda) \mathbf{B}+\alpha \mathbf{A}+\beta \mathbf{A} \\
& \alpha \mathbf{0}=\mathbf{0} \text { and } 0 \mathbf{A}=\mathbf{0} \text { and } 1 \mathbf{A}=\mathbf{A} \\
& \text { Subtraction: } \mathbf{A}-\mathbf{B}=\mathbf{A}+(-1) \mathbf{B} . \\
& \text { Downscaling: } \frac{1}{\alpha} \mathbf{A} \text { is } \mathrm{OK} \text { for } \alpha \neq 0 \text {. } \\
& \text { and for transposition: }(\alpha \mathbf{A})^{\prime}=\alpha \mathbf{A}^{\prime} \text { and }(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime} .
\end{aligned}
$$

## LA preview 2: matrix multiplication I

The matrix product $\mathbf{A B}$ is defined only jiff
the number of columns of (the left) A equals the number of rows of (the right) $\mathbf{B}$.

That is: $\mathbf{A}$ is $m \times n$ and $\mathbf{B}$ is $n \times p$. (Note where the " $n$ " occurs!)
Definition: The product $\mathbf{C}=\mathbf{A B}$ of an $m \times n$ matrix $\mathbf{A}$ and $n \times p$ matrix $\mathbf{B}$, is $m \times p$ with

$$
\begin{gathered}
\mathbf{c}_{i j}=\mathbf{r}_{i} \cdot \mathbf{k}_{\mathfrak{j}} \text {, where } \\
\mathbf{r}_{\mathfrak{i}}^{\prime} \text { is the ith row of } \mathbf{A} \text {, and } \\
\mathbf{k}_{\mathfrak{j}} \text { is the } \mathrm{kth} \text { column of } \mathbf{B} \text {. }
\end{gathered}
$$

Examples / not? Let $\mathbf{H}=\left(\begin{array}{ccc}2018 & 9 & 25 \\ 2 e & -1.4 & 5\end{array}\right)$ and $\mathbf{I}_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Which are well-defined of $\mathbf{I}_{2} \mathbf{I}_{2}, \quad \mathbf{H I}_{2}, \quad \mathbf{I}_{2} \mathbf{H}, \quad \mathbf{H H}, \quad \mathbf{H H}^{\prime}, \quad \mathbf{H}^{\prime} \mathbf{H}$ ?

## LA preview 2: matrix multiplication II

Cont'd: Let $\mathbf{H}=\left(\begin{array}{ccc}2018 & 9 & 25 \\ 2 e & -1.4 & 5\end{array}\right)$ and $\mathbf{I}_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Of each of those which are well-defined among $\mathbf{I}_{2} \mathbf{I}_{2}, \mathbf{H I}_{2}, \mathbf{I}_{2} \mathbf{H}$, $\mathbf{H H}, \mathbf{H H}^{\prime}, \mathbf{H}^{\prime} \mathbf{H}$ : calculate the "bottom-leftmost" element.

Example (small): Could $\mathbf{A B}$ be a $1 \times 1$ matrix? Hint: dot product?
Example ("big"?): Calculate $\mathbf{A B}$ where $\mathbf{A}=\left(\begin{array}{llll}1 & 1 & \ldots & 1 \\ 2 & 2 & \ldots & 2\end{array}\right)$ has 2018 columns and $\mathbf{B}$ is $2018 \times 3$ with all elements $b_{i j}$ equal to 1 .

## LA preview 2: matrix multiplication "howto"

What is the third row of the following matrix product? What is the fourth column? Then, start calculating from top-left:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
4 & -5 & 6
\end{array}\right)\left(\begin{array}{llll}
4 & 1 & 2 & 0 \\
4 & 2 & 0 & 0 \\
4 & 3 & 1 & 0
\end{array}\right)=
$$

## LA preview 2: multiplication rules

Rules: Let $\alpha$ and $\beta$ be numbers. Suppose $\mathbf{A}$ being $m \times n$, and suppose for each formula that $\mathbf{B}$ and $\mathbf{C}$ have orders such that sums and products are well-defined. Then:

$$
\begin{aligned}
& \mathbf{0}_{k, m} \mathbf{A}=\mathbf{0}_{k, n} \text { and } \mathbf{A} \mathbf{0}_{n, p}=\mathbf{0}_{m, p} . \\
& \mathbf{I}_{m} \mathbf{A}=\mathbf{A}=\mathbf{A} \mathbf{I}_{n} \\
& (\alpha \mathbf{A})(\beta \mathbf{B})=(\alpha \beta) \mathbf{A B}, \quad \text { (Note: orders of " } \mathbf{0} \text { "!) } \\
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \text { and } \quad(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C} \\
& \bullet \text { Note: } \mathbf{A B}+\beta \mathbf{B}=\left(\mathbf{A}+\beta \mathbf{I}_{n}\right) \mathbf{B} \quad \text { (Note: orders of " } \mathbf{I}^{\prime} \text { ") } \\
& \mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}, \quad \text { we drop the parentheses: } \mathbf{A B C} \text {. } \mathbf{I}_{n} " \text {.) } \\
& (\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime} \text {, so also }(\mathbf{A B C})^{\prime}=\mathbf{C}^{\prime} \mathbf{B}^{\prime} \mathbf{A}^{\prime}
\end{aligned}
$$

Multiplication of squares: AA exists iff $\mathbf{A}$ is square. For square matrices, we write $\mathbf{A}^{k}$ for $\underbrace{\mathbf{A A} \cdots \mathbf{A}}_{\text {k-fold }}(k \in \mathbb{N})$.
Small exercise: Explain why $\mathbf{A A}^{\prime}$ always exists and is symmetric.

## LA preview 2: matrix multiplication: INVALID operations

Take care not to apply bogus rules:

- Matrix multiplication is not performed element-wise, not even when $\mathbf{A}, \mathbf{B}$ both $\mathrm{n} \times \mathrm{n}$. (Exercise: what if both are diagonal?)
- Except "by coincidence", $\mathbf{A B} \neq \mathbf{B A}$.
- Even when both products are well-defined and of the same order - i.e., both $\mathbf{A}$ and $\mathbf{B}$ are $\mathrm{n} \times \mathrm{n}$ - the products are usually unequal. (Calculate: $\mathbf{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right), \mathbf{B}=\left(\begin{array}{lll}0 & 1 \\ 0 & 0\end{array}\right) \ldots$ ? $)$
- Exercise: for numbers we have $\alpha^{2}-\beta^{2}=(\alpha-\beta)(\alpha+\beta)$ and formulae for squares of sums/differences - are they valid if $\alpha$ and $\beta$ are replaced by $n \times n$ matrices $\mathbf{A}$ and $\mathbf{B}$ ?
- Do not divide by matrices! Leave $\mathbf{A C}=\mathbf{D C}$ as-is ... for now.
- Later: criteria for when that is indeed $\Longleftrightarrow \mathbf{A}=\mathbf{D}$. But even then, you cannot slash $\mathbf{C}$ off $\mathbf{C A}=\mathbf{B C}$ nor from $\mathbf{A C A}=\mathbf{B C B}$.
- (But $1 \times 1$ s that are (non-zero!) numbers? ... ?)
- It is possible that $\mathbf{A}^{2}=\mathbf{0}$ even when all $a_{i j} \neq 0$. Example:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right) . \quad\left(\text { But } \mathbf{A}^{\prime} \mathbf{A} \neq \mathbf{0} \text { for } \mathbf{A} \neq \mathbf{0}, \text { cf. dot product. }\right)
$$

## LA preview 2: linear transformations and eq. systems

Terminology: multiplication "does not commute" ; Fix C. To get $\mathbf{L C R}$, we "left-multiply by $\mathbf{L}$ " and "right-multiply by $\mathbf{R}$ ". (Alternative phrases: pre-multiply/post-multiply.)

Matrix multiplication can be thought of as linear transformation, and the only linear transformatios ("functions") from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$, are by some matrix multiplication taking x in and returning $\mathbf{A x}$.

- The Math2-relevant consequence: The only possible linear equations for n unknowns x , are of the form $\mathbf{A x}=\mathbf{b}$.
- Next: an algorithm to solve. Before that: give me the truth, the whole truth, and nothing but the truth about the solution of the single-variable linear equation (for $x$ ) $\mathrm{ax}=\mathrm{b}$
(Hint: Saying " $x=a^{-1} b$ " is not good enough.)

