What? a rectangular array of m rows and n columns of numbers.

What is it good for? (Putting numbers in boxes, huh? Apart from compact notation as bookkeeping tool?)

• We shall write the linear equation system

 $a_{11}x_1 + \ldots + a_{1n}x_n = b_1$

 $\mathbf{x} = \mathbf{b}$ as $\mathbf{A}\mathbf{x} = \mathbf{b}$

 $a_{m1}x_1 + \ldots + a_{mn}x_n = b_m$

• Yesterday: manipulation tools for vectors (budgets, ...). Now: manipulation tools for matrices, and then: use them to solve and/or characterize the solution/solvability of Ax = b.

(Other courses? If a random vector ${\bf X}$ has covariance matrix ${\bf W}$, then the random variable $Y={\bf c}\cdot {\bf X}$ (with ${\bf c}$ nonrandom) has variance ${\bf c}\cdot ({\bf W}{\bf c})$...)

Definition: a matrix of *order* $m \times n$ (read: "m by n") is a rectangular array of m rows and n columns of numbers.

• Example: This example matrix is 2 × 3:

$$\mathbf{H} = \begin{pmatrix} 2018 & 9 & 25\\ 2e & -1.4 & 5 \end{pmatrix}$$

- **Elements:** The numbers, indexed by (rownumber, column number), indexing counted from top–left.
- Notation: We write a_{ij} for the elements of A. (" $a_{i,j}$ " if needed). Example: for H above, $h_{21} = 2e$.
- Specification by elements: We can specify a matrix by specifying the elements individually. Examples: write down the 3 \times 2 matrices U and V defined by $u_{ij} = i j \text{ and } v_{ij} = (-1)^{i+j}.$

LA lecture 2: Matrices: equality, transpose

from previous page:

$$\mathbf{U} = \begin{pmatrix} 1-1 & 1-2\\ 2-1 & 2-2\\ 3-1 & 3-2 \end{pmatrix} = \begin{pmatrix} 0 & -1\\ 1 & 0\\ 2 & 1 \end{pmatrix}, \quad \mathbf{V} = \begin{pmatrix} 1 & -1\\ -1 & 1\\ 1 & -1 \end{pmatrix}$$

Equality: element-wise. We have A = B iff $a_{ij} = b_{ij}$, all i, j (orders must be the same).

Definition: the *transpose* \mathbf{A}' of the $m \times n$ matrix $\mathbf{A} = (a_{ij})$ is $n \times m$ with elements $b_{ij} = a_{ji}$. We call \mathbf{A} symmetric if $\mathbf{A}' = \mathbf{A}$.

[The prime symbol is not a derivative. No confusion as long as we keep linear algebra and analysis separated!]

• Example: if
$$\mathbf{H} = \begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix}$$
, then $\mathbf{H}' = \begin{pmatrix} 2018 & 2e \\ 9 & -1.4 \\ 25 & 5 \end{pmatrix}$
• Exercise: Explain why $(\mathbf{A}')' = \mathbf{A}$.

LA lecture 2: Vectors as matrices. Rows & columns.

Vectors recast: A row vector is a $1 \times n$ matrix. A column vector is an $m \times 1$ matrix.

- The transpose of a row vector is a column vector. The transpose of a column vector is a row vector.
- Vectors default to columns from now on. To specify a row vector, I will use a prime.
 - **Example:** The first row of the example matrix **H** is $\mathbf{r}'_1 = (2018 \ 9 \ 25)$. Here, \mathbf{r}_1 is a column, namely $\mathbf{r}_1 = \begin{pmatrix} 2018 \\ 9 \\ 25 \end{pmatrix}$.
 - To save space, you can specify a column x as e.g. x = (1 2 3)'. (Or, comma-separated.)

Noticed? We can specify a matrix by its rows or its columns.

• **Example:** H is given by its rows $\mathbf{r}'_1 = (2018 \ 9 \ 25)$ and $\mathbf{r}_2 = (2e \ -1.4 \ 5)$. (*Enumeration matters!!*) Alternatively, by its columns $\mathbf{c}_1 = (\begin{array}{c} 2018 \\ 2e \end{array})$, $\mathbf{c}_2 = \begin{pmatrix} 9 \\ -1.4 \end{pmatrix}$ and $\mathbf{c}_3 = \begin{pmatrix} 25 \\ 5 \end{pmatrix}$.

Δ

Definitions:

- A matrix S is square if it is n × n. The elements s_{ii} (i.e., s_{ij} with i = j) are called the main diagonal elements.
- A (necessarily square) matrix S is called *symmetric* if S' = S.
- A (necessarily symmetric) matrix D is *diagonal* if $d_{ij} = 0$ whenever $i \neq j$ (the "off-diagonal" elements are zero)
- The *identity matrix* I_n of order $n \times n$ is diagonal with elements = 1 on the main diagonal.

$$\begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}; \qquad \begin{pmatrix} 14 & 0 & 0 \\ 0 & -e & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(asterisks indicate the main diagonal; a diagonal matrix; $I_{3.}$)

We often say "order n identity" rather than " $n \times n$ ", and write I without subscript if order is understood.

First:

Definition: The order $m \times n$ **zero (/null) matrix 0**_{mn} (denoted simply **0** if order is understood), has all elements equal to zero.

Scaling is defined element-wise: $C = \alpha B$ has elements $c_{ij} = \alpha b_{ij}$.

Addition is defined element-wise, provided the matrices have the same order: C = A + B has elements $c_{ij} = a_{ij} + b_{ij}$.

Scaling and addition "follow nice rules", like for vectors. Assuming all matrices are of same order $m\times n,$ then

$$\begin{split} &(\alpha +\beta)(\mathbf{A} +\lambda \mathbf{B} +\mathbf{0})=(\alpha \lambda +\beta \lambda)\mathbf{B} +\alpha \mathbf{A} +\beta \mathbf{A} \\ &\alpha \mathbf{0}=\mathbf{0} \text{ and } \mathbf{0}\mathbf{A}=\mathbf{0} \text{ and } \mathbf{1}\mathbf{A}=\mathbf{A} \\ &\text{Subtraction: } \mathbf{A} -\mathbf{B}=\mathbf{A} +(-1)\mathbf{B}. \\ &\text{Downscaling: } \frac{1}{\alpha}\mathbf{A} \text{ is OK for } \alpha \neq \mathbf{0}. \\ &\text{and for transposition: } (\alpha \mathbf{A})'=\alpha \mathbf{A}' \text{ and } (\mathbf{A} +\mathbf{B})'=\mathbf{A}'+\mathbf{B}'. \end{split}$$

LA preview 2: matrix multiplication I

The matrix product AB is defined only iff

the number of columns of (the left) \mathbf{A} equals the number of rows of (the right) \mathbf{B} .

That is: A is $m \times n$ and B is $n \times p$. (Note where the "n" occurs!) **Definition:** The product C = AB of an $m \times n$ matrix A and $n \times p$ matrix B, is $m \times p$ with

LA preview 2: matrix multiplication II "bottom - leftmost "is Cont'd: Let $\mathbf{H} = \begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix}$ and $\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (ast row of left matrix) first column of nght matax Of each of those which are well-defined among I_2I_2 , HI_2 , I_2H , element = (0 i) · (1 0) = 0 $\vec{I}_{2}\vec{H} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix} \quad \vec{H}\vec{H} = \begin{pmatrix} 2018 & 2e \\ 9 & -1.9 \end{pmatrix}\begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.9 & 5 \end{pmatrix} \quad element = element = \begin{pmatrix} 1 & 0 & 1 \\ 2e & -1.9 & 5 \end{pmatrix} \quad source + 10e$ **Example** (small): Could AB be a 1×1 matrix? Hint: dot product? Yes. $4 \times n \times 1$. **Example** ("big"?): Calculate AB where $A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 2 & 2 & \dots & 2 \end{pmatrix}$ has the next bandwritten 2018 columns and **B** is 2018×3 with all elements b_{ij} equal to 1. These calculations need a bit more space :-o Q Let x and y be column rectors (in Rⁿ, same n). both inx!
Then x' y = x · y .
I × n n-1 Sometimes you only see matter products, no "clots"!

 $\overrightarrow{A} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 2 & 2 & \dots & 2 \end{pmatrix} \qquad is \quad 2 \times 2018$ $\overrightarrow{B} \quad is \quad 2018 \times 3 \quad all \quad b_{ij} = 1.$ $\overline{AB} = ?$ Note: $\overline{B} = (\overline{k_1}, \overline{k_2}, \overline{k_3}), \quad \overline{AB} = (\overline{Ak_1}, \overline{Ak_2}, \overline{Ak_3})$ Note: $\overline{B} = (\overline{k_1}, \overline{k_2}, \overline{k_3}), \quad \overline{AB} = (\overline{Ak_1}, \overline{Ak_2}, \overline{Ak_3})$ $Column j = Ak_j$ $Column j = Ak_j$ $This \overline{B} : \overline{k_1} = \overline{k_2} = \overline{k_3} = (1)$ (\overline{C}') Also: $\vec{A} = \begin{pmatrix} \vec{r}_{1} \\ \vec{r}_{2} \end{pmatrix}$; this \vec{A} : $\begin{pmatrix} \vec{r}_{1} \\ \vec{r}_{2} \end{pmatrix}$; By $\vec{r}_{2} = 2\vec{r}_{1}$; and $\vec{k}_{1} = \vec{k}_{2} = \vec{k}_{3}$, $\vec{A} \vec{B}$ will be $\begin{pmatrix} t & t & t \\ zt & zt & zt \end{pmatrix}$ where $t = \frac{1}{2} = \frac{1$ $AB = 7018 \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$

LA lecture 2: matrix multiplication "howto"

What is the third row of the following matrix product? What is the fourth column? Then, start calculating from top-left:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 4 & -5 & 6 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 & 0 \\ 4 & 2 & 0 & 0 \\ 4 & 3 & 1 & 0 \end{pmatrix} = \begin{pmatrix} ? & ? & ? & 0 \\ ? & ? & ? & 0 \\ 0 & 0 & 0 & 0 \\ ? & ? & ? & 0 \end{pmatrix}$$

How to calculate? For the first column of the product, you need the left matrix and the first column of the right:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 4 & -5 & 6 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 4+4+4 \\ 0+4+0 \\ 0+0+0 \\ 16-20+24 \end{pmatrix}$$

Then on to the second column. Though you know a few "0" elements.

Second column:
$$\begin{pmatrix} l & l & l \\ 0 & l & 0 \\ 4 & -5 & 6 \end{pmatrix} \begin{pmatrix} l \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} l + 2 + 3 \\ 0 + 2 + 0 \\ 4 + 5 & 0 \end{pmatrix} = \begin{pmatrix} l \\ 2 \\ 0 \\ 12 \end{pmatrix}$$

Third column: Egon get it? J (Founth = $\begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix}$, known.)
Said in bother, not written:]
Q: what would have happened if we put another row abop
the left matrix?
A: Product would get another row $\vec{r} = \begin{pmatrix} 4 & 2 & l & 0 \\ 4 & 2 & 0 & 0 \end{pmatrix}$ on top.
Q: What about $\begin{pmatrix} 1 & l & l \\ 0 & l & 0 \\ 4 & -5 & 6 \end{pmatrix} \begin{pmatrix} 4 & l & 25 \\ 4 & 2 & 0 & 5 \\ 4 & 3 & l & 5 \end{pmatrix}$?
A: First three columns unchanged. Fourth: $\begin{pmatrix} 5 \\ 5 \end{pmatrix} = \frac{5}{4} \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$.

Rules: Let α and β be numbers. Suppose **A** being $m \times n$, and suppose for each formula that **A**, **B** and **C** have orders such that sums and products *are well-defined*. Then:

 $\begin{array}{ll} 0_{k,m}A=0_{k,n} \text{ and } A0_{n,p}=0_{m,p}. & (\text{Note: orders of "0"}) \\ I_mA=A=AI_n & (\text{Note: orders of "I"}) \\ (\alpha A)(\beta B)=(\alpha\beta)AB, & \text{we drop the parentheses: } \alpha\beta \ AB. \\ A(B+C)=AB+AC & \text{and} & (A+B)C=AC+BC \\ \bullet \ \text{Note: } AB+\beta B=(A+\beta I_n)B & (A \ \text{necessarily } n\times n. \\ & \text{Take care not to write the ill-defined "A plus β" times B.) \\ A(BC)=(AB)C, & \text{we drop the parentheses: } ABC. \\ (AB)'=B'A', \ \text{so also} \ (ABC)'=C'B'A' \\ \end{array}$

Small exercise: Explain why AA' always exists and is symmetric. ¹⁰

Take care not to apply bogus rules:

- Matrix multiplication is *not* performed element-wise, not even when A, B both $n \times n$. (Exercise: what if both are diagonal?)
- Except "by coincidence", $AB \neq BA$.
 - Even when both products are well-defined and of the same order i.e., both A and B are $n \times n$ the products are usually unequal. (Calculate: $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$... ?)
 - Exercise: for numbers we have $\alpha^2 \beta^2 = (\alpha \beta)(\alpha + \beta)$ and formulae for squares of sums/differences are they valid if α and β are replaced by $n \times n$ matrices **A** and **B**?
- Do not divide by matrices! Leave $\mathbf{AC}=\mathbf{DC}$ as-is ... for now.
 - Later: criteria for when that is indeed $\iff A = D$. But even then, you cannot slash C off CA = BC nor from ACA = BCB.
 - (But $1 \times 1s$ that are (non-zero!) numbers? ... ?)
- It is possible that $\mathbf{A}^2=\mathbf{0}$ even when all $\alpha_{\mathtt{i}\mathtt{j}}\neq 0.$ Example:

 $\mathbf{A} = \big(\begin{smallmatrix} 1 & -1 \\ 1 & -1 \end{smallmatrix}\big). \qquad (\mathsf{But}\ \mathbf{A}'\mathbf{A} \neq \mathbf{0} \text{ for } \mathbf{A} \neq \mathbf{0}, \, \mathsf{cf.} \text{ dot product.})$

11

LA lecture 2: linear transformations and eq. systems

Terminology: multiplication "does not commute"; Fix C. To get LCR, we "left-multiply by L" and "right-multiply by R". (Alternative phrases: pre-multiply/post-multiply.)

Matrix multiplication can be thought of as linear transformation, and the *only* linear transformatios ("functions") from \mathbb{R}^n to \mathbb{R}^m , are by some matrix multiplication taking x in and returning Ax.

- The Math2-relevant consequence: The only possible linear equations for n unknowns x, are of the form Ax = b.
- Next: an algorithm to solve. Before that: give me the truth, the whole truth, and nothing but the truth about the solution of the single-variable linear equation (for x) ax = b

(Hint: Saying " $x = a^{-1}b$ " is not good enough.)