
LA lecture 3 on Linear equation systems ++

First: what do we have?

� Vectors:
◦ Definition(s). Scale, add, dot.

◦ Geometric interpretation. (The budget hyperplane!)

� Matrices:
◦ Definition(s). Scale, add, multiply, transpose.

◦ Vectors as matrices. Matrices as composed by vectors.

� Q: Do we have any geometry that makes intuition simpler ...?
◦ Maybe? To follow: slides 2–3 may or may not help you.

The geometry interpretation is “optional” (the algebra is not!)

To follow today: Linear equation systems.

� (elementary row) operations on matrices

Post-lecture update: “Example 3” was omitted, as indicated – but left in

these notes, and the final examples were done in lecture 4, after which a

couple of sentences were added at the end of slide 26. Bugs fixed.
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LA lecture 3: Budget constraint as linear equation

� Suppose there are n goods in the economy, and you are about

to choose x ∈ Rn to consume1.

� The budget constraint p · x = β will remove one degree of

freedom from your choice; if2 p1 6= 0, then once x2, . . . , xn are

chosen, x1 will be pinned down to 1
p1

[
β−p2x2 − · · ·−pnxn

]
.

� What if someone imposes another linear constraint r · x = γ

on you?

◦ Next slide: n = 3; think of a budget (1, 3, 3) · (x,y, z) = 5 (the

plane “with blue edge”!) and throw in another linear equation.

1assuming you can actually consume negative amounts
2what if p1 = 0? Then choose some other non-free good to solve for. Works

unless p = 0 ... in which case, what happens?
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LA lecture 3: Linear equation systems visualized

Visualization: assume n = 3. Two eq’s:

0
1

2 0

1

2
−1

0

1

Two planes: (1, 0, 3) · (x, y, z) = 2 and (1, 3, 3) · (x, y, z) = 5.

The intersection is the line (x, y, z) = (2, 1, 0) + t(−3, 0, 1). 3



LA lecture 3: Linear equation systems

Requiring (x,y, z) to belong to (both simultaneously!) the two

planes (1, 0, 3) · (x, y, z) = 2 and (1, 3, 3) · (x, y, z) = 5 and

(1, 0, 3) · (x, y, z) = 2, is the same as imposing the system of

two linear equations: x+ 3z = 2 & x+ 3y+ 3z = 5. Or, written

on matrix form:

(
1 0 3
1 3 3

)xy
z

 =

(
2
5

)
� Solution with one degree of freedom. (A line.)
� If there were another third equation: Would typically eliminate

that degree of freedom and pin down one point where that
third plane is hit by the line.
◦ ... but not necessarily so. E.g., if the third eq. is y = c: If

c 6= 1: impossible! If c = 1: still the same line.

Next slide: general theory
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LA lecture 3: Linear equation systems – theory

A linear equation system for an unknown n× p matrix X is (or

can be written as) AX = B where A is m× n, B is m× p

� Such an eq. system has either no solution, unique

(i.e. precisely one) solution, or infinitely many solutions!
◦ Case B = 0m×p – a so-called homogeneous equation system:

Then, there always is at least one solution, X = 0n×p.

◦ (If there are two distinct solutions, X and Y, then any

Z = X+ t(Y −X) also solves:

AZ = AX+ t(AY −AX) = B+ t(B− B), OK.)

� Exam: You can be asked to “solve”. That means:

Find all solutions, or show that none exists.
� Exam: You can be asked, e.g. “Does the equation system have

zero, one or more than one solution?” That does not ask you to solve!

◦ System might depend on parameter c. Question type: “For

what c ∈ R does the system Acx = bc have unique solution?”

(cont’d next slide)
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LA lecture 3: Linear eq. systems – theory / degrees of freedom

Last sub-item had minuscle x and bc – i.e. column vectors, p = 1:

� Exam/syllabus: if p > 1, so X and B are not (column)
vectors, then:
◦ You will not be asked to solve for infinitely many solutions.

You will not be asked for degrees of freedom (see below).

The rest of the previous slide you should know, though.

In the following: Unless the capital B is explicitly used, assume

p = 1 and consider Ax = b.

Definition: Solution with d degrees of freedom means:

d = 0: Unique solution.

d ∈ N: Infinitely many solutions, such that there is some selection

of d variables that can be chosen freely, and then, the remaining

n− d variables are determined uniquely by the system.
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LA lecture 3: Linear equation systems – vs scalar αx = β

The case of one single equation in a single unknown? αx = β.

� Square coefficient matrix :-) (1× 1 is “square”)
↔ as many equations as unknowns, cf. the counting rule –
which is only a “rule of thumb”, not logically valid!
◦ If α−1 exists (i.e. if α 6= 0): Unique solution.

◦ If α−1 does not exist: 0x = β either has no solution (if β 6= 0)

or solution with one degree of freedom.

Q: What properties generalize from αx = β to AX = B, and how?

� A alone determines whether there is unique solution or not.

� If not unique: None or infinitely many; one must consider both

A and B to determine (i) whether none or infinitely many;

and (ii) if infinitely many: how many degrees of freedom.

� If A is square: unique solution iff A has an inverse M such

that MA = I: more tomorrow!

� If A not square: start to solve! Math 2 has no other tools. 7



LA lecture 3: Linear equation systems – example of Ax = b

Example: Back to x+ 3z = 2 & x+ 3y+ 3z = 5. Subtract eq’s to

get 3y = 3 and x+ 3z = 2, one degree of freedom:

� Either choose z = t; then x will be given as y = 2 − 3t;

� Or, choose x = s; then z will be given as z = (2 − s)/3.

� Note: y cannot be chosen freely. All solutions have y = 1.

What did I just do to solve ... ?

x + 3z = 2

x + 3y + 3z = 5 ←−
−1

+
⇔

x + 3z = 2

0 + 3y + 0 = 3

Matrices:

(
1 0 3
1 3 3

)xy
z

 =

(
2
5

)
⇔
(

1 0 3
0 3 0

)xy
z

 =

(
2
3

)
Next up: write as

(
1 0 3

∣∣ 2
1 3 3

∣∣ 5

)
∼

(
1 0 3

∣∣ 2
0 1 0

∣∣ 1

)
.

(Scaled the last by 1/3, then it says “y = 1”.) 8



LA lecture 3: Linear equation systems; more terminology.

Lots of phrases coming up, some “not exam relevant3”:

Definition: The augmented coefficient matrix of the equation

system AX = B, is the matrix (A
∣∣B) composed by stacking up B

to the right of A. (Like on previous slide.)

� The
∣∣ is not “completely standard” notation, but

recommended to keep left-hand side from right-hand side.

More terminology follows:

3At the exam, you will not be asked “what are elementary row operations?”

nor “what is row-echelon form?” (indeed, you can say “staircase” if you like) –

but you need to be able to get there using those operations. And teaching

needs some language ...

You will not be asked “what is Gaussian elimination?”, but you could be asked,

e.g.: “Solve [...] by Gaussian elimination”, and then you must use that method

– which means you must know which method it refers to.
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LA lecture 3: Linear equation systems; more terminology.

(reduced) row-echelon form: A matrix is on row-echelon form if:

every row has a leading one
i.e.: first nonzero element = 1

(leading ones: green)
&: all zeroes below leading 1s


1 ? ? ? ? ...
0 1 ? ? ? ...
0 0 0 1 ? ...
... . . .


Reduced row-echelon: if furthermore all elements above leading

ones, are zero as well: the blue question marks should be 0.

Good for: An augmented coefficient matrix on row-echelon form is

“easy to solve bottom–up”. Example:

1 1 3
∣∣ 4

0 1 4
∣∣ 3

0 0 1
∣∣ 7


Third row says x3 = 7. Second says x2 + 4x3 = 3, we solve for

x2 = 3 − 4 · 7 = −25. First row says x1 + x2 + 3x3 = 4, and so

x1 = 4 + 25 − 21 = 8.
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LA lecture 3: Linear equation systems on row-echelon form.

Example:

1 1 3
∣∣ 4

0 1 4
∣∣ 3

0 0 0
∣∣ 1


Even easier! The leading 1 for the third row, belongs to the RHS –

and so the third equation says 0 = 1. No solution!

Reduced row–echelon form “has already been solved bottom–up”.

Example:

1 0 2 0 0
∣∣ 4

0 1 6 0 0
∣∣ 3

0 0 0 1 0
∣∣ 7

 (Three eq’s, five unknowns)

Leading 1s are in columns, 1, 2, 4. So x1, x2, x4 will be determined

once the others (x3, x5) are chosen freely.

(Indeed, x5 does not enter at all.) Choose x3 = s, x5 = t, and

write out: x4 = 7, x2 = 3 − 6s, x1 = 4 − 2s.

We want a recipe for converting an eq. system to row-echelon: 11



LA lecture 3: Linear equation systems; Gaussian elimination.

Gaussian elimination

� An algorithm to solve linear equation systems, by
◦ interchanging equations

◦ scaling equations by nonzero numbers

◦ adding (a scaling of) an equation to another – or subtracting

(Subsumes your old “isolate and insert” method!)

� These operations can be performed on the equation system,

or on the augmented coefficient matrix4,5.

� Yields the full solution (“none” if none exists).

� Exam: if asked to “solve by Gaussian elimination”, you shall

[next slide]

4On the matrix, they are called “elementary row operations”. I will use that

term, you only need to know the recipe.
5For a homogeneous system, you can omit the RHS and do the operations on

A. Why? Because the RHS will remain zero throughout the algorithm. 12



LA lecture 3: Linear equation systems; Gaussian elimination.

Gaussian elimination:

� Exam: if asked to “solve by Gaussian elimination”, you shall

◦ use the above operations until you can conclude that no

solution exists (then stop!) OR until row-echelon form, & then:

◦ from row-echelon form on, you can choose whether to solve

bottom–up, or to continue Gaussian elimination until reduced

row-echelon form ...

◦ although, if the unknown is not a column vector (AX = B),

then eliminate until reduced row-echelon form. Should that

occur on the exam, you will either arrive at (I
∣∣M) so that

X = M – or at no solution.

You are not required to apply the following cookbook “in

order”; as long as you apply the same operations, you can

take shortcuts if you find them.
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LA lecture 3: Linear eq.; Gaussian elimination cookbook.

Gaussian elimination cookbook:

� If at any stage in the below algorithm you get a “zero equal to

nonzero” equation: declare “no solution” and stop. Done!

� Any zero row is a “0 = 0” equation: Delete it.

� Any “variable not appearing” is free if solution exists.

Start at the top–left of (A
∣∣ B): first equation and first variable.

Step 0: If the first column is the null column vector, then move

one column to the right; repeat if necessary.

Step 1: First variable: get a nonzero coefficient in the first eq. by

interchanging rows if necessary.

Step 2: Scale the first row by 1/ that coefficient: gets a leading 1.

Step 3: eliminate all nonzeroes underneath this 1 by adding a

scaling of the first row. [continued]
14



LA lecture 3: Linear eq.; Gaussian elimination cookbook.

After Step 3, you have a leading 1 and all zeroes underneath it.

Now you can declare that row (and all above) done, keep them as

they are – at least until step 5.

Step 4: Start over at step 0 on the block “to the south–east”: i.e.,

that starts with the next row & next column. Illustration:
1 ? ?

∣∣ ?
Z
E
R
O

 or


1 ? ? ? . . .

∣∣ ?
0 1 ? ? . . .

∣∣ ?

Z
R
E

E
O
S


Step 4: IOW, start at step 0 on the green block – with “first row”

as “first in the green block”. Repeat until no rows left.

Step 5: Solve bottom–up. Or, eliminate “upwards”, eliminating

everything above leading ones. Then read off the solution.
15



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 1

Example 1 w/o matrix notation: Recall the example x+ 3z = 2 &

x+ 3y+ 3z = 5; introduce another equation x+ y+ z = 0 for

three eq.’s in three unknowns. Write out (aligned vertically):

x + 3z = 2 (I)

x+ 3y+ 3z = 5 (II)

x+ y+ z = 0 (III)

� Steps 0–2: Lucky us, the top–left coefficient is already 1.

� Step 3: Eliminate the other x-coefficients by adding a multiple

of the first equation. In this case: −1 of (I) to (II) and (III)

keep this x + 3z = 2 (I)

subtracting (I), we get 3y = 5 − 2 (II’)

subtr. (I) from (III) as well y− 2z = 0 − 2 (III’)

Now we consider the section 3y = 3
y−2z = −2 , leaving (I) as-is. 16



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 1

Equation 2 says 3y = 3, so steps 0–1 done. Step 2: Scale by 1/3 to

get a leading 1, and the eq. system.s

done ’til step 5: x + 3z = 2 (I)

scaled by 1/3 y = 1 (II”)

(nothing done here yet) y− 2z = −2 (III’)

Step 3: eliminate the y-coefficient from (III’) by adding (−1) times

(II”). Third eq. then becomes −2z = −3. We have:

x + 3z = 2 (I)

y = 1 (II”)

− 2z = −3 (III”)

Last equation left: step 2, scale by (−1/2) to get z = 3/2 (III’’’).

Now, each eq. has a leading one. We can either solve bottom–up;

z = 3/2, y = 1 and x = 2 − 3z = −5/2. Or, eliminate upwards:

add (−3) of (III’’’) to (I) to eliminate the “3z”. 17



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 2

On to matrix notation6 – and a system depending on a constant:

Example 2:

t 1 0 2
∣∣ 3

1 2 0 3
∣∣ t

2 3 0 4
∣∣ 5

.

� Here, t is not an unknown. This is one equation system for

each value of t.

� Scaling by 1/t? Then you have to split between cases t = 0

and t 6= 0. Lots of work ... that we can avoid for a while.

� Better: Move any division by t “so far into the future as we

can”. Reordering the one on the RHS is not so bad, we shall

not divide by it. So get the first row all the way down!

� Suggestion: get the second row first (no scaling, no fractions)

– but if you prefer, you can just interchange rows 1 and 3.

6Exercises: write (I)–(III) of Example 1 on matrix form, do the same

operations, and compare; then do Example 2 without matrices and compare. 18



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 2

Notation: ∼ for “represents equivalent equation system”.

Reordering: ∼

1 2 0 3
∣∣ t

2 3 0 4
∣∣∣ 5

t 1 0 2
∣∣ 3

 ←−
−2

+

←−−−−

−t

+

Now eliminate 2 and t (“step 3”), using the operations indicated:

∼

1 2 0 3
∣∣ t

0 −1 0 −2
∣∣∣ 5 − 2t

0 1 − 2t 0 2 − 3t
∣∣ 3 − t2

 | · (−1)

First row and column done, go on with the −1 0 −2
∣∣ 5−2t

1−2t 0 2−3t
∣∣ 3−t2

block; the “·(−1)” is step 1 and gets a leading 1 in row 2:

∼

1 2 0 3
∣∣ t

0 1 0 2
∣∣∣ 2t− 5

0 1 − 2t 0 2 − 3t
∣∣ 3 − t2


←−

−(1−2t)

+

(If we want to end up with reduced row-echelon form, we could

simultaneously subtract 2 of row 2 from row 1!)
19



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 2

Last row becomes (0, 0, 0, 2−3t−2+4t | 3−t2−2t+5+4t2−10t):

∼

1 2 0 3
∣∣ t

0 1 0 2
∣∣∣ 2t− 5

0 0 0 t
∣∣ 3t2 − 10t+ 8


Now on to the last row, and here we have a “step 0”: from the

“block” (0, t, 3t2 − 10t+ 8), we move one step to the right.

Then the t forces us to split into cases t = 0 vs. t 6= 0. But that is

much easier now than had we done so at the very beginning:

� Case t = 0: Last eq. says 0 = 8. No solution!
� Case t 6= 0: now we can divide by t, and the last row becomes
(0, 0, 0, 1, 3t− 10 + 8/t) – row-echelon! Solve bottom–up
with x3 = 3t− 10 + 8/t (or eliminate upwards, if you prefer).
◦ In the end, make sure you do not use the letter t for degree of

freedom – in this problem, that is already used.

◦ In fact, x3 does not enter the system! You could already at the

very beginning conclude “x3 free if a solution exists at all”. 20



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 3

Example 3 (bigger) – this was skipped in the interest of

time. Review it if you like – I think it is explained thoroughly
0 0 0 1 2
4 2 4 3 4
2 2 2 2 4
3 4 3 5 6



x1

x2

x3

x4

x5

 =


4
3
2
1

.

No “step 0”, as there is some nonzero in the first column. Step 1:

to get a nonzero in element (1,1), interchange row 1 with e.g. 3. In

step 2, scale by 1/2, and then step 3 is indicated:

∼


2 2 2 2 4

∣∣ 2

4 2 4 3 4
∣∣∣ 3

0 0 0 1 2
∣∣∣ 4

3 4 3 5 6
∣∣ 1


| · 1/2

∼


1 1 1 1 2

∣∣ 1

4 2 4 3 4
∣∣∣ 3

0 0 0 1 2
∣∣∣ 4

3 4 3 5 6
∣∣ 1

 ←−
−4

+

←−−−−

−3

+

21



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 3

Step 3, the elimination, slowly: The “−4” is what it takes to

eliminate element # (2,2). The “−3” eliminates element # (4,2).

Element # (3,2) is already zero. The first row is kept!
1 1 1 1 2

∣∣ 1

4 2 4 3 4
∣∣∣ 3

0 0 0 1 2
∣∣∣ 4

3 4 3 5 6
∣∣ 1

 ←−
−4

+

←−−−−

−3

+

∼


1 1 1 1 2

∣∣ 1

0 −2 0 −3 −4
∣∣∣ −1

0 0 0 1 2
∣∣∣ 4

0 1 0 2 0
∣∣ −2


Now we are done with the first two columns, and the first row.

Keep these, and return to step 0 on the block
−2 −3 −4

∣∣ −1
0 1 2

∣∣ 4
1 2 0

∣∣ −2
.

Nothing to do in steps 0, 1; for step 2, scale by − 1/2, and then:
1 1 1 1 2

∣∣ 1

0 1 0 3/2 2
∣∣∣ 1/2

0 0 0 1 2
∣∣∣ 4

0 1 0 2 0
∣∣ −2


←−

−1

+

∼


1 1 1 1 2

∣∣ 1

0 1 0 3/2 2
∣∣∣ 1/2

0 0 0 1 2
∣∣∣ 4

0 0 0 1/2 −2
∣∣ − 5/2


22



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 3

Return to step 0 on the block 0 1 2
∣∣ 4

0 1/2 −2
∣∣ − 5/2 . Here is where step 0

is used: the first column of that block is all zeroes; move one step

to the right and consider 1 2
∣∣ 4

1/2 −2
∣∣ − 5/2 . No steps 0/1/2; step 3:

subtract half of the third (= first of these two) from the last:
1 1 1 1 2

∣∣ 1

0 1 0 3/2 2
∣∣∣ 1/2

0 0 0 1 2
∣∣∣ 4

0 0 0 1/2 −2
∣∣ − 5/2


←−

− 1/2

+

∼


1 1 1 1 2

∣∣ 1

0 1 0 3/2 2
∣∣∣ 1/2

0 0 0 1 2
∣∣∣ 4

0 0 0 0 −3
∣∣ − 9/2


Finally, consider the last row: “Step 1”, scale by −1/3 to get the

row (0 0 0 0 1 | 3/2), obtaining the staircase (“row-echelon form”)
1 1 1 1 2

∣∣ 1

0 1 0 3/2 2
∣∣∣ 1/2

0 0 0 1 2
∣∣∣ 4

0 0 0 0 1
∣∣ 3/2

 . (Note: Ever row has a “leading 1”.)

x3 does not correspond to a leading 1, and will be free. 23



LA lecture 3: Linear eq. systems; Gaussian elimination ex. 3

Step 5! The “solve bottom–up” alternative is straightforward, once

we have put x3 = t (free)? Last row says x5 = 3
2 . Row 3 says

x4 + 2x5 = 4, so x4 = 4 − 3 = 1. Row 2: x2 = 1
2 − 3

2x4 − 2x5

= −4. And finally the first row: x1 = 1 − x2 − x3 − x4 − 2x5; here

x3 enters! Inserting, we get x1 = 1 + 4 − t− 1 − 3 = 1 − t.

Solution: x = (1 − t, −4, t, 1, 3
2)
′.

Step 5, the “eliminate upwards” alternative: exercise!

24



LA lecture 3: Ex. 4: AX = B, eliminated to reduced row-echelon

Example 4:

1 1 2
1 2 4
3 3 5

X =

1 2
3 2
1 0

.

1 1 2
∣∣ 1 2

1 2 4
∣∣∣ 3 2

3 3 5
∣∣ 1 0

←−−1

+

←−−−−

−3

+

∼

1 1 2
∣∣ 1 2

0 1 2
∣∣∣ 2 0

0 0 −1
∣∣ −2 −6

 ←−
2

+

←−−−

2

+

“Cookbook” says change sign and subtract; here, I add first.

Afterwards also changing sign on row 3, we will get:

∼

1 1 0
∣∣ −3 −10

0 1 0
∣∣∣ −2 −12

0 0 1
∣∣ 2 6

 ←−
−1

+

∼

I3

∣∣ −1 2∣∣ −2 −12∣∣ 2 6



The latter says: I3X =

−1 2
−2 −12
2 6

.
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LA lecture 3: Ex. 5 & 6: AX = B, eliminated to ... ?

Example: What about

1 1 2
1 2 4
3 3 5

X = I3? (Left as exercise!)

Example:

1 1 2
1 2 4
1 3 5

X =

1 2
3 2
1 0

. (Changed: element a31.)

1 1 2
∣∣ 1 2

1 2 4
∣∣∣ 3 2

1 3 5
∣∣ 1 0

 ←−
−1

+

←−−−−

−1

+

∼

1 1 2
∣∣ 1 2

0 1 2
∣∣∣ 2 0

0 2 4
∣∣ 0 −2


←−

−1

+

Last row becomes (0 0 0 | − 2 − 2). No solution!

(If you want it related to the “cookbook”: scale the latter to (0 0 0 | 1 1)

and see that the leading “1” belongs to the right-hand side!)

Again: in this course, when B is not a vector, Gaussian elimination

all the way would either lead to (I |M) (so that X = M) or to

some contradiction. Other cases: only if B = b, a vector.
26



LA lecture 3: Gaussian elimination – “finding shortcuts”

Cookbook “works”, while an arbitrary selection of operations

“might run in circles”. But, sometimes, we can speed up.

Example:


[some row(s)...]

4 8 12 16
∣∣∣ c

2 4 6 8
∣∣ 1

[... more rows]

 ←−
−2

+

Two rows with proportional left-hand sides; consider handling

those first. No need to downscale to leading 1.

� Either: no solution (if c 6= 2) –

� or if c = 2: a redundant row that can be deleted.

Here, splitting in cases early is A Good Thing, because you can

conclude in one case – and in the other, you can insert c = 2

everywhere else in the system.

(You prefer numbers over constants that may or may not be zero, don’t you? Remember: never divide by zero!)
27



LA lecture 3: Gaussian elimination – “finding shortcuts”

Example: (exercise: try instead to subtract 11 of the first from #2 and #4 ...)
0 1 2 3

∣∣ 4

111 122 133 144
∣∣∣ 155

222 333 444 555
∣∣∣ 666

222 233 244 255
∣∣ 266

 | · 2
←−

−1

+

←−

−1 after having scaled #2

+

Avoiding fractions: scale by 2 rather than by 1/111 (resp. 1/222).

∼


0 1 2 3

∣∣ 4

0 244 − 233 266 − 244 288 − 255
∣∣∣ 310 − 266

0 100 200 200
∣∣∣ 400

222 233 244 255
∣∣ 266


3rd row – and second (0, 11, 22, 33,

∣∣ 44) – proportional to first

row. Delete! Subtract 233 of first from last, then it becomes(
222 0 −222 −444

∣∣ − 666
)
= 222

(
1 0 −1 −2

∣∣ − 3
)

Solution: Choose x3 and x4 free, and then x2 = 4 − 2x3 − 3x4

while x1 = x3 + 2x4 − 3. 28


