
LA lecture 4: linear eq. systems, (inverses,) determinants

Yesterday:

� Linear equation systems
◦ Theory

◦ Gaussian elimination

To follow today:

� Gaussian elimination – leftovers
� A bit about the inverse:

◦ Definition

◦ If A has an inverse, call it A−1, then the equation system

AX = B has precisely one solution, X = A−1B.

◦ We can calculate A−1 by eliminating (A
∣∣I) down to (I

∣∣M)

◦ ... or by a formula involving determinants.

� Determinants, then.
◦ “Definition” [loosely – what you need to know]

◦ Properties

◦ Two ways to calculate.

Post-lecture update: Bugfix extravaganza.
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LA lecture 4: Gaussian elimination leftovers

[End of previous slideset, see that one.]
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LA lecture 4: The inverse

Back to the scalar equation αx = β:

� If α−1 exists, then the only solution is α−1β.

� That “α−1” we often write 1/α: we can divide by numbers.

� Matrices: cannot divide, but sometimes we have an “A−1”

and can multiply.

Definition: Given A. If there exists M such that MA = AM = I,

then we call M the inverse of A and write A−1 = M.

� A must necessarily be square. M must be of same order.

� Fact: A cannot have more than one inverse.

� Fact: If A is square, then you need only check one of AM = I

or MA = I, because then the other holds automatically:

For n× n matrices, AM = I holds if and only if MA = I
(Not at all obvious! True because n < ∞ ...)
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LA lecture 4: The inverse

Once we point out that A is square, we need only calculate one of

the products. Examples:

Example: Show that

(
1 −2
3 −4

)−1

= t

(
4 −2
3 −1

)
for some t ∈ R.

Solution: Multiply: t

(
1 −2
3 −4

)(
4 −2
3 −1

)
= t

(
−2 0
0 −2

)
= −2tI.

True when t = −1/2.

Or, just as good: −1
2

(
4 −2
3 −1

)(
1 −2
3 −4

)
= I.

Example: If ad− bc 6= 0, then

(
a b

c d

)−1

= 1
ad−bc

(
d −b
−c a

)
(Fact: If ad− bc = 0, then no inverse exists.

For later: ad− bc is the determinant of
(
a b
c d

)
.)
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LA lecture 4: The inverse

Once we point out that A is square ... cont’d:

Fact: If A is square, then solving AX = I for X, yields X = A−1 if

it exists (and no solution if it doesn’t.))

Why? Solving, we do get X such that AX = I – iff that exists.

Then we do not need to verify that XA = I. (Since A is square.)

Furthermore:

Fact: A matrix A has an inverse iff

A is square AND has nonzero determinant
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LA lecture 4: The determinant ... what and ... ?

What? A special function that takes a square (n× n) matrix as

input, and returns a number.
History: used for linear eq. systems before matrices! Nine Chapters of Mathematical Art, China, ≈ 200 BCE ...

Does that number mean anything? It has an area/volume/

hypervolume interpretation you do not need to worry about.

For the curious: diagram next page.

More important in this course: if A has nonzero determinant, then

A−1 exists and the system Ax = b (which is n equations in n

unknowns) obeys the counting rule.
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LA lecture 4: The determinant: geometry (OPTIONAL!)

Geometry (OPTIONAL). If it helps your intuition – or curiosity:

The determinant of A equals ± the n-dimensional hypervolume of

the n-dim. parallelogram spanned by the columns of A.

Or by the rows of A. Illustration, n = 2 and n = 3:

Determinant = ± the

area, resp. the volume

Source: Wikibooks “Linear Algebra/Determinants as Size Functions”, diagrams derived by Nicholas Longo from

Jim Hefferon’s open-source linear algebra book, license: CC-BY-SA-2.5.

A square matrix A has an inverse as long as that “hypervolume”

does not collapse to zero:

n = 2 as long as the columns are not on the same line. n = 3: as

long as the columns are not in the same plane. Etc. 7

https://en.wikibooks.org/wiki/Linear_Algebra/Determinants_as_Size_Functions
http://joshua.smcvt.edu/linearalgebra
https://creativecommons.org/licenses/by-sa/2.5/deed.en


LA lecture 4: The determinant

Notation: det A or |A| or “bar delimiters”:

∣∣∣∣a b

c d

∣∣∣∣ for det

(
a b

c d

)
.

Beware, it is not an absolute value – and could be negative.

How to define? There are n! = n(n− 1) · · · 2 · 1 ways to select n

elements with precisely one from each row and column. For each

selection, multiply the elements. Switch sign on half the products,

and add up. The “sign switching” follows this rule:

� The selection of all the main diagonal elements: do not switch.

� Every time two rows are interchanged: switch sign.

Example: 2× 2 and 3× 3, the “NE/SW” diagonal. Resp.:(
· ?
? ·

)
and

 · · ?
· ? ·
? · ·

. Would be the main diagonal if the 1st

and last row were interchanged. Precisely one interchange ↔
precisely one sign switch. Put a negative in front. 8



LA lecture 4: The determinant

You will likely not use the definition except a very few cases:

� 1× 1: From the definition, the determinant is the element.

(Again: Not any absolute value! Not even writing the bars here ...)

� 2× 2: From the definition,

∣∣∣∣a b

c d

∣∣∣∣ = ad− bc.

Maybe also for the following, although they will also follow from

the rules to follow next slides:

� 3× 3: Here you can also read it from the book. Or: “Sarrus

rule” (only valid for 3× 3, not to be covered here).

� Triangular matrices: upper (resp. lower) triangular ↔ all

zeroes below (resp. above) the main diagonal:

Determinant = the product of the main diagonal elements.

(Why? Every other selection of precisely one element from

each row/col., contains a zero.) 9



LA lecture 4: The determinant. Cofactors

The cofactor Cij of element (i, j) of A, is formed by

� Deleting row i and column j from A (that is, the row and

column of said element)

� Calculating the determinant of the rest ((n− 1)× (n− 1))

� Multiplying by (−1)i+j.

Example: The cofactor C23 of element (2, 3) of

 3 9 −2

−1 5 777
−11 4 7

 is

(note how nothing magenta appears):

(−1)5

∣∣∣∣ 3 9
−11 4

∣∣∣∣ = −(12 − (−99)) = −111.

The “(−1)i+j”: chessboard


+ − + − + . . .
− + − + − . . .
+ − + − + . . .
− + − + − . . .
...

. . .
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LA lecture 4: The determinant. Cofactor expansion:

Fact: For any i = 1, . . .n, we have |A| = ai1Ci1 + . . . + ainCin.

IOW, we can calculate the determinant as follows:

� Pick one row number i (and stick to it!)

� For each element in the row, multiply it by its cofactor

� Add up.

This is called cofactor expansion along the ith row.

Example:

∣∣∣∣∣∣
3 9 −2
2 5 −1

−11 4 7

∣∣∣∣∣∣ along the 2nd row: 2C21 +5C22 +(−1)C23

Need C21 = (−1)2+1

∣∣∣∣9 −2
4 7

∣∣∣∣ = −(63 − (−8)) = −71

and C22 = [you go ahead!]: (−1)2+2

∣∣∣∣ 3 −2
−11 7

∣∣∣∣ = −1

and C23 = [from previous slide] = −111

Answer: 2 · (−71) + 5 · (−1) − 1 · (−111) = −36. 11



LA lecture 4: The determinant. Cofactor expansion:

Fact: For any j = 1, . . .n, we have |A| = a1jC1j + . . . + anjCnj.

That is cofactor expansion along the jth column.

Example:

∣∣∣∣∣∣∣∣
3 9 −2 1
2 5 −1 0

−11 4 7 0
0 0 −1 1

∣∣∣∣∣∣∣∣ along the 4th column.

1 · (−1)1+4

∣∣∣∣∣∣
2 5 −1

−11 4 7
0 0 −1

∣∣∣∣∣∣︸ ︷︷ ︸
expand along 3rd row

+0 + 0 + 1 · (−1)4+4

∣∣∣∣∣∣
3 9 −2
2 5 −1

−11 4 7

∣∣∣∣∣∣︸ ︷︷ ︸
=−36, prev. slide

=

∣∣∣∣ 2 5
−11 4

∣∣∣∣− 36 = 8 + 55 − 36 = 27

You can choose which row or which column. If there is one with a

lot of zeroes, if often pays off to choose that one. (Although, ...)

In particular: A zero row or column ⇒ zero determinant!
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LA lecture 4: The determinant. Rules.

For n× n matrices, the following rules apply:

(i) Cofactor expansion applies along any row/column.

(ii) If one row/column is zero, the determinant is zero.

(iii) |A ′| = |A|.

(iv) If you scale one row by α, then you scale the determinant by

α. Same with “column”.

(v) Interchange two rows of A, and you switch sign on the

determinant (but keep the absolute value!). Same with “two

columns”. But do not try to interchange a row with a column!

(vi) The determinant does not change if a scaling α of a row is
added to a different row. Same with “column”.
◦ So if two rows are proportional, then |A| = 0. Or if “two

columns are proportional”. But not “a row and a column”.
(vii) |AB| = |A| |B|. Beware that both must be square, not just the product.
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LA lecture 4: The determinant. Rules: Warnings

Note: There is no simple rule for |A+ B|.

Exercises: What is |tIn|? What is |tA|?

Beware the common error! Answers: tn resp. tn|A|.

Why? Scaling just one row by t will scale the determinant by t;

and, scaling the entire matrix ↔ scaling every one of them.

For n× n matrices, there are n rows.
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LA lecture 4: The determinant. Elementary row operations

Recall that in Gaussian elimination, we had three operations on

rows. On determinants, they do the following:

� Interchange two rows: switches sign.

� Scale a row: scales the determinant.

� Add a scaling of a row to another: no change.

Example:

∣∣∣∣∣∣
222 333 444
555 666 777

1111 2222 3333

∣∣∣∣∣∣ = 111 · 111 · 1111 ·

∣∣∣∣∣∣
2 3 4
5 6 7
1 2 3

∣∣∣∣∣∣
and

∣∣∣∣∣∣∣
2 3 4

5 6 7

1 2 3

∣∣∣∣∣∣∣ ←−−1

+

←−−−−

−1

+

=

∣∣∣∣∣∣∣
1 1 1

4 4 4

1 2 3

∣∣∣∣∣∣∣ = 0

Exam: You can be asked, e.g. “Calculate this without using

cofactor expansion.”
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LA lecture 4: The determinant. Elementary column operations

For determinants we can also do the same operations on columns.

But do not apply column operations to equation systems!

Example:

∣∣∣∣∣∣∣
· 1/11· 1/11

22 33 14

55 66 13

11 22 1

∣∣∣∣∣∣∣ = 112

∣∣∣∣∣∣∣
y−2 +

y
−1 +

2 3 14

5 6 13

1 2 1

∣∣∣∣∣∣∣ = 121

∣∣∣∣∣∣∣
2 −1 12

5 −4 8

1 0 0

∣∣∣∣∣∣∣
which by cofactor expansion (along what, you think?) equals

= 121

∣∣∣∣−1 12
−4 8

∣∣∣∣ = −121 · 4 ·
∣∣∣∣1 3
1 2

∣∣∣∣ (WHY?). Answer: 484.

(Worried that you might be asked to calculate this w/o cofactor

expansion? Not this one, for then you would in the end need to

apply the definition on a 3× 3, and ... but previous slide: an “easy”

zero. Or we could ask that for something that ends up in β · |αI|.) 16


