LA lectures 5\&6: more eq. systems / determinants / inverses

Have:

- Vectors, matrices, ...
- Linear equation systems: Theory, Gaussian elimination
- More matrices: Determinants and the inverse.

To follow today: More of everything.

- More determinants (put at work!)
- More linear equation systems. Old \& new stuff, in particular:
- Determinants in a problem-type that has been seen frequently on exams
- Cramér's rule
- More matrices: The inverse
- A new determinants-based formula, with an example
- (More rules)

Question for you: anything you need reviewed on Wednesday?
(You requested: another detailed cofactor expansion walkthrough (see
slides 27ff). And Sarrus (slides 25-26).)

LA lectures 5\&6: more eq. systems / determinants / inverses

Example: The ECON2310 seminar 1 macro model could be written

$$
\left(\begin{array}{ccccc}
1 & -1 & -1 & 0 & 1 \\
-c_{1} & 1 & 0 & c_{1} & 0 \\
-b_{1} & 0 & 1 & 0 & 0 \\
-t & 0 & 0 & 1 & 0 \\
-a & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
Y \\
C \\
I \\
T \\
Q
\end{array}\right)=\mathbf{h}, \quad \mathbf{h}=\hat{\mathbf{h}}+\left(\begin{array}{c}
G \\
-c_{2} \hat{\imath} \\
-b_{2} \hat{\imath} \\
0 \\
0
\end{array}\right)
$$

(the latter RHS if you like to indicate possible policy instruments - for an example next week).
Unique solution iff coeff. matrix has nonzero determinant.
Cofactor expansion (tip: look for many 0's - say, 2nd column and then
indicated in cyan) $-(-1)\left|\begin{array}{cccc}-\mathrm{c}_{1} & 0 & c_{1} & 0 \\ -\mathrm{b}_{1} & 1 & 0 & 0 \\ -\mathrm{t} & 0 & 1 & 0 \\ -\mathrm{a} & 0 & 0 & 1\end{array}\right|+\left|\begin{array}{cccc}1 & -1 & 0 & 1 \\ -\mathrm{b}_{1} & 1 & 0 & 0 \\ -\mathrm{t} & 0 & 1 & 0 \\ -\mathrm{a} & 0 & 0 & 1\end{array}\right|$
$=\left|\begin{array}{ccc}-1 & 1 & 0 \\ -\mathrm{t} & 1 & 0 \\ -\mathrm{a} & 0 & 1\end{array}\right| \mathrm{c}_{1}+\left|\begin{array}{ccc}1 & -1 & 1 \\ -b_{1} & 1 & 0 \\ -\mathrm{a} & 0 & 1\end{array}\right|=-c_{1}(1-\mathrm{t})+\mathrm{a}+1-\mathrm{b}_{1}$

LA lectures 5\&6: more eq. systems / determinants / inverses

Observation (not a typical exam question, but maybe good for "debugging your determinants"):
Wrt. each of the constants a, b and c_{1}, that determinant on slide 2 is an affine function (i.e. first-order polynomial; note, "Wrt. each" meaning: "does not rule out cross terms"!!. That is not a coincidence:

- Generally, the determinant function is affine in each element: Cofactor expansion: $a_{i j} C_{i j}+\left[\right.$ no $a_{i j}$ elsewhere $]$. So for a, b_{1} and t : each of these enters (and linearly!) in precisely one element. As a function of $t: \gamma t+\delta$, etc.
- The determinant is linear in each row and in each column. So c_{1} enters (as a first-order term) twice but both are in the same row. Do cofactor expansion along that row, and you see that the determinant must be of the form $\eta c_{1}+\epsilon$.

But a parameter that enters in several rows/columns, may have higher order. (Ex.: $\left|\lambda \mathbf{I}_{n}-\mathbf{A}\right|$ is an nth order polynomial in λ.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Example: (that used to be) frequent exam-type problem:
Consider for each real constant t the matrix and the vector
$\mathbf{A}_{\mathrm{t}}=\left(\begin{array}{ccc}4 & 3 & 2 \\ 1 & \mathrm{t} & -1 \\ -2 & -3 & -4\end{array}\right), \quad \mathbf{b}_{\mathrm{t}}=\mathrm{t}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Questions:
(a) Calculate the determinant of \mathbf{A}_{t}, each $t \in \mathbb{R}$.
(b) For what $t \in \mathbb{R}$ will the equation system $\mathbf{A}_{t} \mathbf{x}=\mathbf{b}_{\mathrm{t}}$ have (i) no solution, (ii) precisely one solution, resp. (iii) several solutions?

Note: does not ask to "solve". (But the wording does not forbid solving either, so if that is all you know ...)
(a): ("No tempting zeroes" ... but if you want to collect the "t" coefficient easily, how? Or just go ahead
calculate.) $\quad\left|\mathbf{A}_{\mathrm{t}}\right|=-1\left|\begin{array}{cc}3 & 2 \\ -3 & -4\end{array}\right|+\mathrm{t}\left|\begin{array}{cc}4 & 2 \\ -2 & -4\end{array}\right|-(-1)\left|\begin{array}{cc}4 & 3 \\ -2 & -3\end{array}\right|$
$=-(-6)+t \cdot(-16+4)+(-6)=\underline{\underline{-12 t}}$.
(Cofactor expansion details: on slide 27, with the "review".)
(b): Unique solution iff $t \neq 0$. For $t=0$: several solutions (since
$\mathbf{b}_{0}=\mathbf{0}$, there is at least one, and we know it is not unique.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Example variant:

What if the first row of \mathbf{A}_{t} were replaced by (4444, 4443, 4442)?
Recall that we can use elementary row operations for determinants, and note that both row 1 and row 3 "decrease by one as we move to the right"; the difference is $4446(1,1,1)$. Indeed, compute $\left|\begin{array}{ccc}R-2 & \mathrm{R}-3 & \mathrm{R}-4 \\ 1 & \mathrm{t} & -1 \\ -2 & -3 & -4\end{array}\right| \bigsqcup_{-1}^{+}=\left|\begin{array}{ccc}R & \mathrm{R} & \mathrm{R} \\ 1 & \mathrm{t} & -1 \\ -2 & -3 & -4\end{array}\right|=\mathrm{R} \cdot\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & \mathrm{t} & -1 \\ -2 & -3 & -4\end{array}\right|$
For the $\left|\mathbf{A}_{t}\right|$ from the previous slide, we had $R=6$ and got $-12 t$.
On this, we have $R=4446$ and get a determinant equal to $\frac{4446}{6} \cdot(-12 t)=-4446 \cdot 2 t$ (or, just compute it! Exercise: use row operations as long as you can).

But this determinant too, is zero only iff $t=0$ - and so part (b) would have the same answer for the variation on this page.

LA lectures 5\&6: more eq. systems / determinants / inverses

Example variant: with $\left(k \mathbf{A}_{t}\right)^{k}$ in place of $\mathbf{A}_{\mathbf{t}}$. Here, $\mathrm{k} \in \mathbb{N}$ a constant.
(a): $\left|\left(k \mathbf{A}_{\mathrm{t}}\right)^{\mathrm{k}}\right|=\left|\mathrm{k} \mathbf{A}_{\mathrm{t}}\right|^{\mathrm{k}}=\left(\mathrm{k}^{3}\left|\mathbf{A}_{\mathrm{t}}\right|\right)^{\mathrm{k}}=\underline{\underline{\left(-12 \mathrm{t} \mathrm{k}^{3}\right)^{\mathrm{k}}} \text {. Did you remember the " } 3^{\prime} \text { "? }}$
(b): Same argument and same answer as the two previous slides!

Example variant: Replace \mathbf{b}_{t} by $(1,2, c)^{\prime} .(k=1)$. \mathbf{Q} : How does that change anything, for each $c \in \mathbb{R}$?
A: No change in (a). In (b), eq. system is no longer homogeneous; for $t=0$, we have no other tools than starting to solve:
$\left(\begin{array}{ccc|c}4 & 3 & 2 & 1 \\ 1 & 0 & -1 & 2 \\ -2 & -3 & -4 & \mathrm{c}\end{array}\right) \underset{-4}{\square_{+}^{+}}{ }^{2} \sim\left(\begin{array}{ccc|c}0 & 3 & 7 & -7 \\ 1 & 0 & -1 & 2 \\ 0 & -3 & -7 & \mathrm{c}+4\end{array}\right) \downarrow^{+}$
First row then says $0=\mathrm{c}-3$. Infinitely many solutions iff $\mathrm{c}=3$, otherwise no solution.

LA lectures 5\&6: more eq. systems / determinants / inverses

Example variant (mentioned in class for the "slide 4" ex., further tweaked): What if you were also asked for the degrees of freedom?

Unique solution, hence no degrees of freedom, if $t \neq 0$ - this goes no matter what the RHS is! Therefore, for case $t=0$, I change the example to general RHS $=(\alpha, \beta, \gamma)^{\prime}$. The previous slide is a special case too. Doing the same operations:
$\left(\begin{array}{ccc|c}4 & 3 & 2 & \alpha \\ 1 & 0 & -1 & \beta \\ -2 & -3 & -4 & \gamma\end{array}\right) \stackrel{\bigsqcup_{-4}^{+}}{\longleftrightarrow_{+}^{2}} \sim\left(\begin{array}{ccc|c}0 & 3 & 7 & \alpha-4 \beta \\ 1 & 0 & -1 & \beta \\ 0 & -3 & -7 & \gamma+2 \beta\end{array}\right) \downarrow^{+}$
First row now says $0=\alpha-2 \beta+\gamma$. Choose the third variable freely and get one degree of freedom if $0=\alpha-2 \beta+\gamma$, no solution otherwise.
(This still assumes $t=0$.)
Note: only case with the maximum n degrees of freedom, is $\mathbf{0 x}=\mathbf{0}$. Here $\mathrm{n}=3$, so for $\mathrm{t}=0$: "One or two, at a glance." (Even: "one at a glance", because $n-1$ degrees would imply all rows proportional ...)

LA lectures 5\&6: more eq. systems / determinants / inverses

$\begin{aligned} & \text { Example variant: Let } \\ & \text { (This } \mathbf{M} \text { is } \mathbf{A}_{0} \text { from slide 4.) }\end{aligned} \quad \mathbf{M}=\left(\begin{array}{ccc}4 & 3 & 2 \\ 1 & 0 & -1 \\ -2 & -3 & -4\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$.
(a) Calculate Mv.
(b) Why does it follow from part (a) that $|\mathbf{M}|=0$? You are not allowed to calculate the determinant by other means.
(a) [The "easy" part, cheap points. Matrix multiplication yields 0.]
(b) $\mathbf{M v}=\mathbf{0}$ for some nonzero vector \mathbf{v}; hence the eq. system $\mathbf{M x}=\mathbf{0}$ has more than one solution, and hence $|\mathbf{M}|=0$.

Note: If \mathbf{w} solves the homogeneous system $\mathbf{M x}=\mathbf{0}$ then cw also does, any $c \in \mathbb{R}$ - but if $\mathbf{w}=\mathbf{0}$, this is no more than one vector! For our nonzero \mathbf{v}, all the $\mathbf{c v}$ make infinitely many solutions.

LA lectures 5\&6: more eq. systems / determinants / inverses

Example (too tricky for exam?) yeah ... consider this optional.
Can determinants say anything about whether there is a solution to the eq. system (4 eq's, 3 unknowns, RHS=column) with
augmented coefficient matrix $\left(\begin{array}{ccc|c}4 & 3 & 2 & 1 \\ 1 & 0 & -1 & 2 \\ -2 & -3 & -4 & 3 \\ 1 & 1 & 1 & c\end{array}\right) \quad$?
Yes. Fact: if the augmented coefficient matrix has an inverse, then no solution exists. Note: does not say "rf"!

Why? An exercise in matrix manipulation:
Generally, $\mathbf{A x}-\mathbf{b}$ can be written as $\mathbf{M z}$, where $\mathbf{M}=$ the augmented coefficient matrix $(\mathbf{A} \mid \mathbf{b})$ ("written without the separator bar") and $z^{\prime}=\left(x^{\prime},-1\right)$ is the $n+1$-vector with x first and element $n+1$ being -1 . To have $\mathbf{A x}-\mathbf{b}=\mathbf{0}$, we want $\mathbf{M z}=\mathbf{0}$, and if $|\mathbf{M}| \neq \mathbf{0}$, then this is only possible for $\mathbf{z}=\mathbf{0}$. But $z_{\mathrm{n}+1}=-1$!
If $|\mathbf{M}|=0$: eliminate on to contradiction or square coeff. matrix.

LA lectures 5\&6: more eq. systems / determinants / inverses

Not an exam question by itself, but potentially useful for the exam especially the last "But", where lots of errors are made:
Can determinants say anything if fewer eq's than var's?
Yes. If there are m equations, coeff. matrix $=\mathbf{A}$, and we can find a nonzero $m \times m$ determinant from m columns from \mathbf{A}, then:

- choose the other variables free; "move them over to the RHS"
- now we have an $m \times m$ with nonzero determinant, in the m variables corresponding to the column numbers.
- (We knew this already for the situation when we have row-echelon form ("staircase") - but it holds more generally.)

Theory note: If there are fewer eq's than var's, then there cannot be unique solution!
But: There does not have to exist any solution at all!
(Example: consider last example slide 5 , throw in an extra fourth column $(0,0,0)^{\prime}$ to make it a system in four variables - and there is still no solution if $c \neq 3$.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Case: n eq's uniquely determining n variables as $A^{-1} b$.

- If you already know \mathbf{A}^{-1}, then calculating $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ is easy.
- If you do not know \mathbf{A}^{-1}, and do not need anything but $\mathbf{A}^{-1} \mathbf{b}$, you (usually) save work by solving for x rather than inverting.
- But sometimes you want a formula (like " $\mathbf{A}^{-1} \mathbf{b}$ ") rather than a recipe ("Gaussian elimination").
- Soon: A formula for \mathbf{A}^{-1}.
- But first: Cramér's rule gives a formula for each individual element of a unique solution \mathbf{x}.
- Usage: E.g., the macro model slide 2: what if you are only interested in output Y ? Or only consumption C ?
- (Under the hood, you don't need to know details: Cramér's rule is just another guise of the formula for the inverse.)

LA lectures 5\&6: more eq. systems / determinants / inverses

$n \times n$, unique x cont'd: Cramér's rule
Consider $\mathbf{A x}=\mathbf{b}$ where \mathbf{A} is $\mathrm{n} \times \mathrm{n}$ and $|\mathbf{A}| \neq 0$.

- Form the determinant D_{j} by replacing column \mathfrak{j} of \mathbf{A} by \mathbf{b}.
and calculating the resulting determinant, goes without saying?
- Then $x_{j}=\mathrm{D}_{\mathrm{j}} /|\mathbf{A}|$.

Example (from slide 4):
Q1: What is D_{3} ?
Q2: If $t=4$, what is z ?

$$
\underbrace{\left(\begin{array}{ccc}
4 & 3 & 2 \\
1 & \mathrm{t} & -1 \\
-2 & -3 & -4
\end{array}\right)}_{=\mathbf{A}_{\mathrm{t}}}\left(\begin{array}{l}
x \\
\mathrm{y} \\
z
\end{array}\right)=\left(\begin{array}{l}
\mathrm{t} \\
\mathrm{t} \\
\mathrm{t}
\end{array}\right)
$$

A1: Replace column 3 of \mathbf{A} by the RHS and calculate the determinant $\left|\begin{array}{ccc}4 & 3 & \mathrm{t} \\ 1 & \mathrm{t} & \mathrm{t} \\ -2 & -3 & \mathrm{t}\end{array}\right|=\mathrm{t} \cdot\left(\left|\begin{array}{cc}1 & \mathrm{t} \\ -2 & -3\end{array}\right|-\left|\begin{array}{cc}4 & 3 \\ -2 & -3\end{array}\right|+\left|\begin{array}{ll}4 & 3 \\ 1 & \mathrm{t}\end{array}\right|\right)$
$=\mathrm{t} \cdot(2 \mathrm{t}-3-(-12+6)+4 \mathrm{t}-3)=\underline{\underline{6 t^{2}}}$
(For details on the cofactor expansion, see slide 27ff. in this version.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Exercise: find the FLAWS in the arguments:
(I) "Let \mathbf{A} be $\mathrm{n} \times \mathrm{n}$, and suppose that \mathbf{b} is in fact one of the columns \mathbf{A}, namely number \mathfrak{j}. Then $\mathrm{D}_{\mathrm{j}}=|\mathbf{A}|$, and so x_{j} must be $=\frac{\mathrm{D}_{\mathrm{j}}}{|\mathbf{A}|}=1 . "$
(II) "From the previous slide and slide $4, \mathrm{D}_{3}=6 \mathrm{t}^{2}=\frac{-t}{2}\left|\mathbf{A}_{\mathrm{t}}\right|$, so z must be $=\frac{-t}{2}$. Therefore, $\underline{\underline{z=-2}}$ when $t=4$."

The flaw: Cramér's rule requires $|\mathbf{A}| \neq 0$! If that were verified, the arguments would be valid. ((II): OK iff $t \neq 0$, so OK for $\mathrm{t}=4$.)

Exercise: What can you actually say about x_{j} in case (I)?
(Do you even know that a solution exists?)
Answer: there is a solution with $x_{j}=1$ and all other $x_{i}=0$ (check it!) - but if $|\mathbf{A}|=0$, that solution is not unique; and, depending on A, there could be solutions with $x_{j} \neq 1$ (dumb example: $\mathbf{0 x}=\mathbf{0}$).

LA lectures 5\&6: more eq. systems / determinants / inverses

Back to the inverse: We have:

- Definition (and for square matrices, suffices to check ...)
- Exists iff \mathbf{A} square AND $|\mathbf{A}| \neq 0$.
- How to find by Gaussian elimination

Next:

- A general formula based on cofactors
- Example(s)
- Rules! Old ones and some more.
- More examples?
... and then we should be done with linear algebra. Review topics, anyone? (Yes, as indicated on slide 1.)

LA lectures 5\&6: more eq. systems / determinants / inverses

A formula for the inverse:

Fix \mathbf{A} (square). Let \mathbf{C} have elements $C_{i j}$, where $C_{i j}$ is the cofactor of element (i, j) of \mathbf{A}. Then $\mathbf{C}^{\prime} \mathbf{A}=\mathbf{A C}^{\prime}=|\mathbf{A}| \mathbf{I}$, so:

Provided $|\mathbf{A}| \neq 0, \quad \mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|} \mathbf{C}^{\prime} \quad$ (beware: transpose!)
Terminology, not essential to remember: $\mathbf{C}^{\prime}=: \operatorname{adj}(\mathbf{A})$, abbreviation for "adjugate". Or "adjunct" / "classical adjoint".
"Workload" for \mathbf{C}^{\prime} :
n^{2} cofactors, each cofactor is
\pm an $(n-1) \times(n-1)$ determinant, each determinant is a sum of $(n-1)$! terms, \ldots

Beauty is in the eye of the beholder? (clickable - won't compute the inverse of this, but ...)

LA lectures 5\&6: more eq. systems / determinants / inverses

[not stressed in class] Just browsed through, and you won't be asted to reproduce this "proff" (which it really isn't, we have only postulated that cofactor expansion works). But see if you can follow the steps!

Again: If $|\mathbf{A}| \neq 0, \quad \mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|} \operatorname{adj}(\mathbf{A}) \quad$ where $\operatorname{adj}(\mathbf{A}):=\mathbf{C}^{\prime}$
Why? The following is an exercise in determinant rules:

- Recall cofactor expansion by ith row: $|\mathbf{A}|=\sum_{k=1}^{n} a_{i k} C_{i k}$
- If instead we picked the cofactors from another ("alien") row $\ell \neq \mathfrak{i}$, then we actually have $\sum_{k=1}^{n} a_{i k} C_{\ell k}=0$.
Why? Since cofactors of row ℓ do not depend on elements in row ℓ, then this is the determinant of the matrix we get by replacing row ℓ by a copy of row i. But that has two equal rows!
- To check $\mathbf{A C}^{\prime}=|\mathbf{A}| \mathbf{I}$, check each element (i, j); it equals row $\# i$ from \mathbf{A} dot row $\# j$ from \mathbf{C} (because the prime!) i.e. $\sum_{k=1}^{n} a_{i k} C_{j k}$, which equals:
$|\mathbf{A}|$ if $\mathfrak{i}=j$ (i.e. on the main diagonal), and 0 otherwise.
- Exercise: check element (i, j) of $\mathbf{C}^{\prime} \mathbf{A}$. (Verifies that you only need to calculate "one of the products", if \mathbf{A} is square.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Example (from slide 4 with $\mathrm{t}=4$, again): To invert $\mathbf{A}_{4}=$ $\left(\begin{array}{ccc}4 & 3 & 2 \\ 1 & 4 & -1 \\ -2 & -3 & -4\end{array}\right)$, we calculate cofactors. (Remember signs!)
Then transpose, which is why the following cofactors appear "in the transposed order" (e.g. C_{21} on the $(1,2)$ position):

$$
\begin{array}{ll}
C_{11} & =\left|\begin{array}{cc}
4 & -1 \\
-3 & -4
\end{array}\right| \\
C_{12} & =-\left|\begin{array}{cc}
1 & -1 \\
-2 & -4
\end{array}\right|
\end{array} \quad C_{22}=-\left|\begin{array}{cc}
3 & 2 \\
-3 & -4
\end{array}\right| \quad C_{31}=\left|\begin{array}{cc}
3 & 2 \\
4 & -1
\end{array}\right|
$$

LA lectures 5\&6: more eq. systems / determinants / inverses

How does this formula give the expression for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}$
Clarification of wording: "Find an expression for" means "valid as long as exists". This problem intended as example. [But actually: sometimes, even less is asked! See Messages \& next week's lectures!]

On to work: Remembering to transpose, cofactors are as follows:

$$
\begin{array}{cl}
\text { of the "a" element: } d & \text { of the "c" element: }-b \\
\text { of the "b" element: }-\mathrm{c} & \text { of the " } d \text { " element: } a
\end{array}
$$ (the " - "s for the cofactors of elements $(2,1)$ and $(1,2)$: "chessboard".)

And so the answer is the familiar(?)

$$
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Back to wording: If asked for "an expression for the inverse", this is the answer - because it is an expression valid as long as the inverse exists. (Writing "as long as ad $\neq b c$ " not required, but won't hurt.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Example: Use the formula to find an expression for
$\left(\begin{array}{cccc}p_{1} & 0 & 0 & p_{2} \\ 0 & p_{4} & p_{3} & 0 \\ 0 & p_{2} & p_{1} & 0 \\ p_{3} & 0 & 0 & p_{4}\end{array}\right)^{-1}$
(16 cofactors, each size 3×3, yikes! But we are in some luck ...)

Symmetries! Let $K=\left|\begin{array}{ll}p_{1} & p_{2} \\ p_{3} & p_{4}\end{array}\right|$. It is the determinant of the "middle 2×2 block" (check sign!) and also of "the corners put together".
"The cofactors of the corners" have a common factor K : We have $C_{11}=p_{4} K$ and $C_{44}=p_{1} K$. Beware signs: $C_{14}=-p_{3} K$ and $C_{41}=-p_{2} K$.
"The cofactors of the middle block" have a common factor K : We have $C_{22}=p_{1} K, C_{33}=p_{4} K$ and (beware signs) $C_{23}=-p_{2} \mathrm{~K}, \mathrm{C}_{32}=-p_{3} \mathrm{~K}$.
"The cofactors of the greens are all zero!" Each has two proportional rows or two proportional columns. Example: $C_{12}=-\left|\begin{array}{ccc}0 & p_{4} & 0 \\ 0 & p_{6} & 0 \\ p_{7} & 0 & p_{8}\end{array}\right|=0$. Remains:

- Put together the elements into \mathbf{C}^{\prime} (remember to transpose!)
- Calculate the determinant. We have all the cofactors.

LA lectures 5\&6: more eq. systems / determinants / inverses

cont'd: The determinant is (say!) $p_{1} C_{11}+0+0+p_{3} C_{41}$
(Q : why no " - " before p_{3} ?) $\quad-$ which $=p_{1} p_{4} K-p_{3} p_{2} K=K^{2}$.
Stacking up cofactors, transposing:

$$
\mathbf{C}^{\prime}=\left(\begin{array}{cccc}
p_{4} K & 0 & 0 & -p_{2} K \\
0 & p_{1} K & -p_{3} K & 0 \\
0 & -p_{2} K & p_{4} K & 0 \\
-p_{3} K & 0 & 0 & p_{1} K
\end{array}\right)
$$

and the expression for the inverse is:

$$
\frac{1}{\mathrm{~K}}\left(\begin{array}{cccc}
\mathrm{p}_{4} & 0 & 0 & -\mathrm{p}_{2} \\
0 & \mathrm{p}_{1} & -\mathrm{p}_{3} & 0 \\
0 & -p_{2} & \mathrm{p}_{4} & 0 \\
-\mathrm{p}_{3} & 0 & 0 & \mathrm{p}_{1}
\end{array}\right)
$$

Exercise: verify! (Multiply and see that you get the identity.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Terminology: "invertible" \leftrightarrow has an inverse.
But also: A square matrix is called non-singular if it has an inverse, and singular if it does not.
("Singular" is fairly common. You can use "non-invertible" on the exam.)

Rules for the inverse. Known already:

- If \mathbf{A} is square and furthermore either $\mathbf{A M}=\mathbf{I}$ or $\mathbf{M A}=\mathbf{I}$, then \mathbf{A}^{-1} exists and equals \mathbf{M}.
- ... and if so: \mathbf{M}^{-1} exists and equals \mathbf{A}. Consequently:
- If \mathbf{A} is invertible, then so is \mathbf{A}^{-1}, and $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$.
- \mathbf{A} is invertible \Leftrightarrow square and $|\mathbf{A}| \neq 0$.
- If so, we have the formula - and the Gaussian elm'n method.

A few more rules next slide

LA lectures 5\&6: more eq. systems / determinants / inverses

More rules for the inverse. (The term paper problem set stops way before this!)

- Iff exists: $\left|\mathbf{A}^{-1}\right|=1 /|\mathbf{A}|$. (Because $1=|\mathbf{I}|=\left|\mathbf{A} \mathbf{A}^{-1}\right|=|\mathbf{A}|\left|\mathbf{A}^{-1}\right|$)
- Either $\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}$ or neither inverse exists.
- Let $k \in \mathbb{N}$. Then \mathbf{A}^{k} is invertible iff \mathbf{A} is, and if so:
$\left(\mathbf{A}^{k}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{k}$. Which we denote \mathbf{A}^{-k}.
- Easy to check. Determinant $\neq 0$ and $\mathbf{A} \ldots \mathbf{A A}^{-1} \ldots \mathbf{A}^{-1}=\mathbf{I}$
- (Often seen, not not exam relevant: $\mathbf{A}^{0}=\mathbf{I}$, cf. $\alpha^{0}=1$.)
- If \mathbf{A} and \mathbf{B} are both $n \times n$, then either $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ or neither side exists. Note reverse order!
- Similarly, $(\mathbf{A B C})^{-1}=\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}$ or neither side exists. And also: $(\mathbf{c A})^{-1}=\mathbf{A}^{-1}(\mathbf{c I})^{-1}=\frac{1}{c} \mathbf{A}^{-1}$ if $\mathrm{c} \neq 0$.
- "Proof": Easy to check if well-defined: $(\mathbf{A B})\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=\mathbf{I}$.
- Beware: $(\mathbf{A B})^{-1}$ could exist even if \mathbf{A} and \mathbf{B}^{\prime} are $m \times n$ with $m \neq n$.
- Or more factors, e.g. $\mathbf{x}^{\prime} \mathbf{A x}$ is 1×1 and has an inverse iff $\neq 0$
- (Not curriculum: That's why you in e.g. econometrics may see "large" products (...) ${ }^{-1}$ not written out. BTW, it requires $m<n$, impossible if $m>n$.)

LA lectures 5\&6: more eq. systems / determinants / inverses

Example cases based on some book problems. [not stressed in class]

- Let $\left|\mathbf{X}^{\prime} \mathbf{X}\right| \neq 0$. Show that $\mathbf{A}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ satisfies
$\mathbf{A}=\mathbf{A}^{2}$. What can we say about $|\mathbf{A}|$?
- We have not assumed \mathbf{X} square, so we cannot simplify \mathbf{A}. But $\mathbf{A}^{2}=\mathbf{I}-2 \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}+\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ which $=\mathbf{I}+(-2+1) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ because $\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\mathbf{I}$.
- $|\mathbf{A}|=\left|\mathbf{A}^{2}\right|$, so in Math 2 we can tell that $|\mathbf{A}|$ is zero or one. The proof that it is 0 uses only Math2, but is too tricky for a Math2 exam: Suppose for contradiction that \mathbf{A}^{-1} exists: Then $\mathbf{A}^{-1} \mathbf{A}^{2}=\mathbf{A}^{-1} \mathbf{A}$, and $\mathbf{A}=\mathbf{I}$. And so $\mathbf{0}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$. Right-multiply by \mathbf{X} to get: $\mathbf{0}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}=\mathbf{X I}$. But $\mathbf{X}=\mathbf{0} \Rightarrow\left|\mathbf{X}^{\prime} \mathbf{X}\right|=0$, contradiction.
- Suppose some power \mathbf{B}^{k} is $\mathbf{0}$. Then \mathbf{B}^{-1} does not exist, but $(\mathbf{I}-\mathbf{B})^{-1}$ does and equals $\mathbf{I}+\mathbf{B}+\ldots+\mathbf{B}^{k-1}$. (Cf. geometric series.)
- $\left|\mathbf{B}^{\mathrm{k}}\right|=|\mathbf{B}|^{\mathrm{k}}$ and also $=|\mathbf{0}|$.
- Calculate $\left(\mathbf{I}+\mathbf{B}+\ldots+\mathbf{B}^{k-1}\right)(\mathbf{I}-\mathbf{B})=[\ldots]=\mathbf{I}-\mathbf{B}^{k}=\mathbf{I}$.
- Suppose $\mathbf{M}=\mathbf{P D P}^{-1}$. Then $\mathbf{M}^{k}=\mathbf{P D}^{k} \mathbf{P}^{-1}$, all $k \in \mathbb{N}$.

Show: Valid even for negative integers k iff $|\mathbf{D}| \neq 0$.
Typically want: D diagonal. Explain: Why is this convenient?
(Computes M^{k} when k large or ... sometimes even non-integer. Curriculum at BI Norwegian Business

LA lectures 5\&6: more eq. systems / determinants / inverses

Two applications in this course

[not stressed in class]
Fix a function $f \in C^{2}$ of n variables: $f(x)$. Let \mathbf{H} be the so-called Hessian matrix: $h_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ (symmetric matrix, depends on x)

- Second-order approximation around \mathbf{x}_{*} : the 2 nd-order term will become $\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{*}\right)^{\prime} \mathbf{H}_{*}\left(\mathbf{x}-\mathbf{x}_{*}\right)$ where \mathbf{H}_{*} indicates that it is evaluated at \mathbf{x}_{*}. Prime denotes transpose; ; f you don't like that (with derivatives in the picture): $\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{*}\right) \cdot\left(\mathbf{H}_{*}\left(\mathbf{x}-\mathbf{x}_{*}\right)\right)$. Note $\mathbf{H}_{*}()$ means product, not "of".
- Behind the scenes, this underlies the $2 n d$ derivatives test in n variables, and concavity/convexity tests. Case $n=2$ in Math2:
- The Hessian determinant $|\mathbf{H}|$ equals the "AC - B2" from your first Math course's 2nd derivative test. (Math2 does not require you to use matrix formulation in your 2nd derivative tests, but the content is the same anyway!)
- If both the $|\mathbf{H}|$ and the top-left element A are >0 :
- everywhere, the function is convex
- merely at some stationary point, then this is strict local min.

O (Why do we have opposite signs $|\mathbf{H}|>0>A$ for concavity/max? Switch sign on f and thus on A; but since $n=2$, then $|-\mathbf{H}|=(-1)^{2}|\mathbf{H}|$, no sign change! More than 2 variables: Math3!)

LA lectures 5\&6: more eq. systems / determinants / inverses

By popular demand (I): The Sarrus rule for calculating 3×3 determinants. CAVEAT: NOT VALID for larger!

Look at the picture:

To the left, matrix elements. To the right, the first two columns repeated.

$$
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}
$$

Determinant $=$

$$
-\left[a_{13} a_{22} a_{31}+a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}\right]
$$

- The blue ones (first line) are the triplets connected with lines Northwest-Southeast.
- The red ones - which get subtracted, 2nd line - are the triplets connected with dashes Northeast-Southwest.

LA lectures 5\&6: more eq. systems / determinants / inverses

Example: $\left|\begin{array}{ccc}1 & 2 & 4 \\ -1 & 8 & 3 \\ 7 & 0 & -5\end{array}\right| . \quad$ Becomes $\begin{array}{cccccc}1 & 2 & 4 & \vdots & 1 & 2 \\ -1 & 8 & 3 & \vdots & -1 & 8 \\ 7 & 0 & -5 & \vdots & 7 & 0\end{array}$
when we write the elements and then repeat the first two columns.
The ones left as-is: start top-left, go south-east:

1	2	4	\vdots			cyan product:	$1 \cdot 8 \cdot(-5)$	$=-40$
	3	3	\vdots	-1		green product:	$2 \cdot 3 \cdot 7$	$=42$
	-5	\vdots	7	0	$\mathrm{~b} / \mathrm{w}$ product:	$4 \cdot(-1) \cdot 0$	$=$	0

The ones to subtract/change sign are the south-west connections:

$$
\begin{array}{cccccccccc}
& & 4 & \vdots & 1 & 2 & \text { magenta product: } & 4 \cdot 8 \cdot 7 & =224 \\
& 8 & 3 & \vdots & -1 & & \text { b/w product: } & 1 \cdot 3 \cdot 0 & = & 0 \\
7 & 0 & -5 & \vdots & & & \text { yellow product: } & 2 \cdot(-1) \cdot(-5) & =10
\end{array}
$$

Determinant $=-40+42+0-[224+10]=-232$.

LA lectures 5\&6: more eq. systems / determinants / inverses

By popular demand (II): More cofactor expansion

Recall expansion along the ith row:

- Pick one row number i (and stick to it!)
- For each element in the row, multiply it by its cofactor
(...remember what a "cofactor" is, and in particular: the chessboard for signs)
- Add up.

Or pick a column instead of a row.
3×3 example from Tuesday's class: $\left|\begin{array}{ccc}4 & 3 & p \\ 1 & t & q \\ -2 & -3 & r\end{array}\right|$ by 3rd column.
Cofactor of element $(1,3)$: strike out first column and third row, evaluate determinant of rest, (chessboard says: do not switch sign)
$\left|\begin{array}{ccc}\boldsymbol{\square} & \boldsymbol{\square} & \boldsymbol{\square} \\ -2 & -3 & \boldsymbol{\square}\end{array}\right|$
That is, the cofactor is $-3+2 t$.

LA lectures 5\&6: more eq. systems / determinants / inverses

example cont'd:
Have already: the cofactor of the " p " element $(1,3)$ is $2 t-3$.
The cofactor of the " q " element $(2,3)$ is $-\left|\begin{array}{cc}4 & 3 \\ -2 & -3\end{array}\right|=6$; the negative sign due to the chessboard.
The cofactor of the " r " element $(3,3)$ is $\left|\begin{array}{ll}4 & 3 \\ 1 & t\end{array}\right|=4 t-3$.
Multiply each by the element and add up:
$p(2 t-3)+6 q+r(4 t-3)=2 t(p+2 r)-3(p-2 q+r)$.

- For $\left|\mathbf{A}_{\mathrm{t}}\right|$ on slide 4, $\mathrm{p}=2, \mathrm{q}=-1, \mathrm{r}=-4$ and we get -12 t .
- For the D_{3} on slide $12, p=q=r=t$, so we get $6 t^{2}$.
- As long as $t \neq 0$ so the \mathbf{A}_{t} slide 4 has an inverse: Cramér's rule on the equation system $\mathbf{A}_{\mathrm{t}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}p \\ q \\ \mathrm{q}\end{array}\right)$, says that $z=\frac{2 t(p+2 r)-3(p-2 q+r)}{-12 t} . \quad$ 3rd variable " z " because we replaced 3rd column.

LA lectures 5\&6: more eq. systems / determinants / inverses

4×4 example: $\left|\begin{array}{cccc}1 & 2 & 4 & -7 \\ -1 & 8 & 3 & 3 \\ 7 & 0 & -5 & 1 \\ 2 & 2 & -3 & 5\end{array}\right|$
First: pick one row or column. I pick column 4. Need the four cofactors (top to bottom, none involving column 4):

$$
\begin{array}{ll}
C_{14}=(-1)^{5}\left|\begin{array}{ccc}
-1 & 8 & 3 \\
7 & 0 & -5 \\
2 & 2 & -3
\end{array}\right| & C_{24}=(-1)^{6}\left|\begin{array}{ccc}
1 & 2 & 4 \\
7 & 0 & -5 \\
2 & 2 & -3
\end{array}\right| \\
C_{34}=(-1)^{7}\left|\begin{array}{ccc}
1 & 2 & 4 \\
-1 & 8 & 3 \\
2 & 2 & -3
\end{array}\right| & C_{44}=(-1)^{8}\left|\begin{array}{ccc}
1 & 2 & 4 \\
-1 & 8 & 3 \\
7 & 0 & -5
\end{array}\right|
\end{array}
$$

The determinant will be $-7 \cdot \mathrm{C}_{14}+3 \cdot \mathrm{C}_{24}+1 \cdot \mathrm{C}_{34}+5 \cdot \mathrm{C}_{44}$.
But the cofactors involve 3×3 determinants that must be calculated. For example by cofactor expansion.

LA lectures 5\&6: more eq. systems / determinants / inverses

4×4 example cont'd: since this is a cofactor expansion exercise, use that method for every 3×3 too. Arbitrary choices: first row for the first two, second column for the last two.
C_{14} by first row: $(-1)^{5}\left|\begin{array}{ccc}-1 & 8 & 3 \\ 7 & 0 & -5 \\ 2 & 2 & -3\end{array}\right|=$
$(-1)^{5} \cdot\{-1 \cdot$ its cofactor $+8 \cdot$ its cofactor $+3 \cdot$ its cofactor $\}$, all cofactors relative to that 3×3 determinant (ignore for the moment that there was ever a 4×4).

$$
(-1)^{5} \cdot\{-1 \cdot \underbrace{(-1)^{1+1}\left|\begin{array}{ll}
0 & -5 \\
2 & -3
\end{array}\right|}_{=0-(-10)}+\underbrace{8 \cdot(-1)^{1+2}\left|\begin{array}{ll}
7 & -5 \\
2 & -3
\end{array}\right|}_{=-(-21+10)}+\underbrace{3(-1)^{1+3}\left|\begin{array}{ll}
7 & 0 \\
2 & 2
\end{array}\right|}_{=14-0}\}
$$

which equals $10-8 \cdot 11-3 \cdot 14=-120$, and so the " $-7 \cdot \mathrm{C}_{14}$ " contribution is $-7 \cdot(-120)=840 . \quad$ On to the three others.

LA lectures 5\&6: more eq. systems / determinants / inverses

4×4 example cont'd: $C_{24}=(-1)^{6}\left|\begin{array}{ccc}1 & 2 & 4 \\ 7 & 0 & -5 \\ 2 & 2 & -3\end{array}\right|$ by first row.
$1 \cdot(-1)^{2} \mid\left[\right.$ what?] $\left|+2 \cdot(-1)^{3}\right| \underset{\text { (Go ahead, fill in!) }}{[\text { nhat? }]}\left|+4 \cdot(-1)^{4}\right|$ [what?] \mid

$$
1 \cdot(-1)^{2} \underbrace{\left|\begin{array}{ll}
0 & -5 \\
2 & -3
\end{array}\right|}_{=10}+2 \cdot(-1)^{3} \underbrace{\left|\begin{array}{ll}
7 & -5 \\
2 & -3
\end{array}\right|}_{=-11}+4 \cdot(-1)^{4} \underbrace{\left|\begin{array}{ll}
7 & 0 \\
2 & 2
\end{array}\right|}_{=14}
$$

which sums up to $10+22+56=88$.

So the " $3 \cdot \mathrm{C}_{24}$ " contribution is 264 . Then what next?

LA lectures 5\&6: more eq. systems / determinants / inverses

4×4 example cont'd (this slide from class):
$C_{34}=(-1)^{7}\left|\begin{array}{ccc}1 & 2 & 4 \\ -1 & 8 & 3 \\ 2 & 2 & -3\end{array}\right|$ by second column:
(The first "-" is the $(-1)^{7}$. The negative signs before the " 2 " are from the "chessboard of signs" for the 3×3):

$$
\begin{aligned}
& -\left\{-2\left|\begin{array}{cc}
-1 & 3 \\
2 & -3
\end{array}\right|+8\left|\begin{array}{cc}
1 & 4 \\
2 & -3
\end{array}\right|-2\left|\begin{array}{cc}
1 & 4 \\
-1 & 3
\end{array}\right|\right\} \\
= & -\{-2(3-6)+8(-3-8)-2(3+4)\}=96 .
\end{aligned}
$$

Contribution to determinant: $1 \cdot 96$. Then finally the contribution $5 \cdot \mathrm{C}_{44}$:
C_{44} is the same determinant as in the Sarrus example: - 232 . (Time ran out in class; finding it by expanding along the 2nd column \rightsquigarrow exercise!)
So the 4×4 determinant is $840+264+96+5 \cdot(-232)=40$.
(As one of you asked: once you have reduced it to 3×3 's, you are free to use Sarrus on those! Or row/column operations ...)

