Have:

- Vectors, matrices, ...
- Linear equation systems: Theory, Gaussian elimination
- More matrices: Determinants and the inverse.

To follow today: More of everything.

- More determinants (put at work!)
- More linear equation systems. Old & new stuff, in particular:
 - Determinants in a problem-type that has been seen frequently on exams

1

- Cramér's rule
- More matrices: The inverse
 - $\circ~$ A new determinants-based formula, with an example
 - (More rules)

Question for you: anything you need reviewed on Wednesday? (You requested: another detailed cofactor expansion walkthrough (see slides 27ff). And Sarrus (slides 25–26).)

Example: The ECON2310 seminar 1 macro model could be written

$$\begin{pmatrix} 1 & -1 & -1 & 0 & 1 \\ -c_1 & 1 & 0 & c_1 & 0 \\ -b_1 & 0 & 1 & 0 & 0 \\ -t & 0 & 0 & 1 & 0 \\ -a & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Y \\ C \\ I \\ T \\ Q \end{pmatrix} = \mathbf{h}, \qquad \mathbf{h} = \hat{\mathbf{h}} + \begin{pmatrix} G \\ -c_2 \hat{\imath} \\ -b_2 \hat{\imath} \\ 0 \\ 0 \end{pmatrix}$$

(the latter RHS if you like to indicate possible policy instruments - for an example next week).

Unique solution iff coeff. matrix has nonzero determinant. Cofactor expansion (tip: look for many 0's – say, 2nd column and then

indicated in cyan)
$$-(-1)$$
$$\begin{vmatrix} -c_1 & 0 & c_1 & 0 \\ -b_1 & 1 & 0 & 0 \\ -t & 0 & 1 & 0 \\ -a & 0 & 0 & 1 \end{vmatrix}$$
 $+$
$$\begin{vmatrix} 1 & -1 & 0 & 1 \\ -b_1 & 1 & 0 & 0 \\ -t & 0 & 1 & 0 \\ -a & 0 & 0 & 1 \end{vmatrix}$$
 $=$
$$\begin{vmatrix} -1 & 1 & 0 \\ -t & 1 & 0 \\ -a & 0 & 1 \end{vmatrix}$$
 c_1 {+}
$$\begin{vmatrix} 1 & -1 & 1 \\ -b_1 & 1 & 0 \\ -a & 0 & 1 \end{vmatrix}$$
 $=$ $-c_1(1-t)$ {+} a {+} 1 {-} b_1

Observation (not a typical exam question, but maybe good for "debugging your determinants"): Wrt. each of the constants a, b and c_1 , that determinant on slide 2 is an affine function (i.e. first-order polynomial; note, "Wrt. each" meaning: "does not rule out cross terms"!). That is not a coincidence:

- Generally, the determinant function is affine in each element: Cofactor expansion: $a_{ij}C_{ij}$ + [no a_{ij} elsewhere]. So for a, b_1 and t: each of these enters (and linearly!) in precisely one element. As a function of t: $\gamma t + \delta$, etc.
- The determinant is linear in each row and in each column.
 So c₁ enters (as a first-order term) *twice* but both are in the same row. Do cofactor expansion along that row, and you see that the determinant must be of the form ηc₁ + ε.

But a parameter that enters in several rows/columns, may have higher order. (Ex.: $|\lambda I_n - A|$ is an nth order polynomial in λ .)

Example: (that used to be) frequent exam-type problem: Consider for each real constant t the matrix and the vector $\mathbf{A}_{t} = \begin{pmatrix} 4 & 3 & 2\\ 1 & t & -1\\ -2 & -3 & -4 \end{pmatrix}, \qquad \mathbf{b}_{t} = t \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}. \text{ Questions:}$ (a) Calculate the determinant of \mathbf{A}_t , each $t \in \mathbb{R}$. (b) For what $t \in \mathbb{R}$ will the equation system $A_t x = b_t$ have (i) no solution, (ii) precisely one solution, resp. (iii) several solutions? Note: does not ask to "solve". (But the wording does not forbid solving either, so if that is all you know ...) (a): ("No tempting zeroes" ... but if you want to collect the "t" coefficient easily, how? Or just go ahead calculate.) $|\mathbf{A}_{t}| = -1 \begin{vmatrix} 3 & 2 \\ -3 & -4 \end{vmatrix} + t \begin{vmatrix} 4 & 2 \\ -2 & -4 \end{vmatrix} - (-1) \begin{vmatrix} 4 & 3 \\ -2 & -3 \end{vmatrix}$ $= -(-6) + t \cdot (-16 + 4) + (-6) = -12t.$

(Cofactor expansion details: on slide 27, with the "review".)

(b): Unique solution iff $t \neq 0$. For t = 0: several solutions (since $\mathbf{b}_0 = \mathbf{0}$, there is at least one, and we know it is not unique.)

Example variant:

What if the first row of A_t were replaced by (4444, 4443, 4442)? Recall that we can use elementary row operations for determinants, and note that both row 1 and row 3 "decrease by one as we move to the right"; the difference is 4446(1, 1, 1). Indeed, compute

$$\begin{vmatrix} R-2 & R-3 & R-4 \\ 1 & t & -1 \\ -2 & -3 & -4 \end{vmatrix} \stackrel{+}{\longrightarrow} = \begin{vmatrix} R & R & R \\ 1 & t & -1 \\ -2 & -3 & -4 \end{vmatrix} = R \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ -2 & -3 & -4 \end{vmatrix}$$

For the $|\mathbf{A}_t|$ from the previous slide, we had R = 6 and got -12t. On this, we have R = 4446 and get a determinant equal to $\frac{4446}{6} \cdot (-12t) = -4446 \cdot 2t$ (or, just compute it! Exercise: use row operations as long as you can).

But this determinant too, is zero only iff t = 0 – and so part (b) would have the same answer for the variation on this page.

Example variant: with $(k\mathbf{A}_t)^k$ in place of \mathbf{A}_t . Here, $k \in \mathbb{N}$ a constant.

(a): $|(k\mathbf{A}_t)^k| = |k\mathbf{A}_t|^k = (k^3|\mathbf{A}_t|)^k = \underbrace{(-12tk^3)^k}_{\text{. Did you remember the "3"?}}$

(b): Same argument and same answer as the two previous slides!

Example variant: Replace \mathbf{b}_t by (1, 2, c)'. (k = 1). Q: How does that change anything, for each $c \in \mathbb{R}$?

A: No change in (a). In (b), eq. system is no longer homogeneous; for t = 0, we have no other tools than starting to solve:

 $\begin{pmatrix} 4 & 3 & 2 & | & 1 \\ 1 & 0 & -1 & | & 2 \\ -2 & -3 & -4 & | & c \end{pmatrix} \xleftarrow{+}_{+} \begin{pmatrix} 0 & 3 & 7 & | & -7 \\ 1 & 0 & -1 & | & 2 \\ 0 & -3 & -7 & | & c + 4 \end{pmatrix} \xleftarrow{+}_{+}$ First row then says 0 = c - 3. Infinitely many solutions iff c = 3, otherwise no solution. (Is it perfectly clear why?) **Example variant** (mentioned in class for the "slide 4" ex., further tweaked): What if you were also asked for *the degrees of freedom*?

Unique solution, hence <u>no degrees of freedom</u>, if $t \neq 0$ – this goes no matter what the RHS is! Therefore, for case t = 0, I change the example to general RHS = $(\alpha, \beta, \gamma)'$. The previous slide is a special case too. Doing the same operations:

First row now says $0 = \alpha - 2\beta + \gamma$. Choose the third variable freely and get <u>one degree of freedom if $0 = \alpha - 2\beta + \gamma$, no solution otherwise</u>. (This still assumes t = 0.)

Note: only case with the *maximum* n degrees of freedom, is 0x = 0. Here n = 3, so for t = 0: "One or two, at a glance." (Even: "one at a glance", because n - 1 degrees would imply all rows proportional ...)

Example variant: Let $\mathbf{M} = \begin{pmatrix} 4 & 3 & 2 \\ 1 & 0 & -1 \\ -2 & -3 & -4 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. (a) Calculate Mv.

(b) Why does it follow from part (a) that $|\mathbf{M}| = 0$? You are *not* allowed to calculate the determinant by other means.

(a) [The "easy" part, cheap points. Matrix multiplication yields 0.] (b) $\mathbf{M}\mathbf{v} = \mathbf{0}$ for some *nonzero* vector \mathbf{v} ; hence the eq. system $\mathbf{M}\mathbf{x} = \mathbf{0}$ has more than one solution, and hence $|\mathbf{M}| = 0$.

Note: If w solves the *homogeneous* system Mx = 0 then cw also does, any $c \in \mathbb{R}$ – *but if* w = 0, *this is no more than one vector!* For our nonzero v, all the cv make infinitely many solutions.

Example (too tricky for exam?) yeah ... consider this optional. Can determinants say anything about whether there is a solution to the eq. system (4 eq's, 3 unknowns, RHS=column) with

augmented coefficient matrix

$$\begin{pmatrix} 4 & 3 & 2 & | & 1 \\ 1 & 0 & -1 & | & 2 \\ -2 & -3 & -4 & | & 3 \\ 1 & 1 & 1 & | & c \end{pmatrix}$$
?

Yes. Fact: if the *augmented* coefficient matrix has an inverse, then no solution exists. Note: does not say "iff"!

Why? An exercise in matrix manipulation:

Generally, Ax-b can be written as Mz, where M= the augmented coefficient matrix (A|b) ("written without the separator bar") and z'=(x',-1) is the n+1-vector with x first and element n+1 being -1. To have Ax-b=0, we want Mz=0, and if $|M|\neq 0$, then this is only possible for z=0. But $z_{n+1}=-1!$

If $|\mathbf{M}| = 0$: eliminate on to contradiction or square coeff. matrix.

Not an exam question by itself, but potentially useful for the exam – especially the last "But", where lots of errors are made:

Can determinants say anything if fewer eq's than var's? Yes. If there are m equations, coeff. matrix = A, and we can find a nonzero $m \times m$ determinant from m columns from A, then:

- choose the other variables free; "move them over to the RHS"
- now we have an $m \times m$ with nonzero determinant, in the m variables corresponding to the column numbers.
- (We knew this already for the situation when we have row-echelon form ("staircase") – but it holds more generally.)

Theory note: If there are fewer eq's than var's, then there cannot be unique solution!

But: There does not have to exist any solution at all!

(Example: consider last example slide 5, throw in an extra fourth column (0, 0, 0)' to make it a system in four variables – and there is still no solution if $c \neq 3$.)

Case: n eq's uniquely determining n variables as $A^{-1}b$.

- If you already know A^{-1} , then calculating $x = A^{-1}b$ is easy.
- If you do not know A^{-1} , and do not need anything but $A^{-1}b$, you (usually) save work by solving for x rather than inverting.
- But sometimes you want a *formula* (like " A⁻¹b ") rather than a recipe ("Gaussian elimination").
- Soon: A formula for A^{-1} .
- But first: *Cramér's rule* gives a formula for *each individual element* of a unique solution x.
 - Usage: E.g., the macro model slide 2: what if you are only interested in output Y? Or only consumption C?
 - (Under the hood, you don't need to know details: Cramér's rule is just another guise of the formula for the inverse.)

 $n \times n$, unique x cont'd: Cramér's rule Consider Ax = b where A is $n \times n$ and $|A| \neq 0$.

• Form the determinant D_j by replacing column j of ${\bf A}$ by ${\bf b}.$

and calculating the resulting determinant, goes without saying?

• Then $x_j = D_j/|\mathbf{A}|$.

Example (from slide 4): Q1: What is D_3 ? Q2: If t = 4, what is z?

$$\underbrace{\begin{pmatrix} 4 & 3 & 2 \\ 1 & t & -1 \\ -2 & -3 & -4 \end{pmatrix}}_{=\mathbf{A}_t} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} t \\ t \\ t \end{pmatrix}.$$

A1: Replace column 3 of A by the RHS and calculate the determinant $\begin{vmatrix} 4 & 3 & t \\ 1 & t & t \\ -2 & -3 & t \end{vmatrix} = t \cdot \left(\begin{vmatrix} 1 & t \\ -2 & -3 \end{vmatrix} - \begin{vmatrix} 4 & 3 \\ -2 & -3 \end{vmatrix} + \begin{vmatrix} 4 & 3 \\ 1 & t \end{vmatrix} \right)$ = $t \cdot (2t - 3 - (-12 + 6) + 4t - 3) = \underline{6t^2}$ (For details on the cofactor expansion, see slide 27ff. in this version.)

12

Exercise: find the FLAWS in the arguments:

(I) "Let A be $n \times n$, and suppose that b is in fact one of the columns A, namely number j. Then $D_j = |A|$, and so x_j must be $= \frac{D_j}{|A|} = 1$."

(II) "From the previous slide and slide 4, $D_3 = 6t^2 = \frac{-t}{2}|A_t|$, so z must be $= \frac{-t}{2}$. Therefore, $\underline{z = -2}$ when t = 4."

The flaw: Cramér's rule requires $|\mathbf{A}| \neq 0!$ If that were verified, the arguments would be valid. ((II): OK iff $t \neq 0$, so OK for t = 4.)

Exercise: What can you actually say about x_j in case (I)? (Do you even know that a solution exists?)

Answer: there is a solution with $x_j = 1$ and all other $x_i = 0$ (check it!) – but if $|\mathbf{A}| = 0$, that solution is not unique; and, depending on \mathbf{A} , there *could* be solutions with $x_j \neq 1$ (dumb example: $\mathbf{0x} = \mathbf{0}$).

13

Back to the inverse: We have:

- Definition (and for square matrices, suffices to check ...)
- Exists iff A square AND $|\mathbf{A}| \neq 0$.
- How to find by Gaussian elimination

Next:

- A general formula based on cofactors
- Example(s)
- Rules! Old ones and some more.
- More examples?

... and then we should be done with linear algebra. Review topics, anyone? (Yes, as indicated on slide 1.)

A formula for the inverse:

Fix A (square). Let C have elements C_{ij} , where C_{ij} is the cofactor of element (i, j) of A. Then C'A = AC' = |A| I, so:

Provided
$$|\mathbf{A}| \neq 0$$
, $\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{C'}$ (beware: transpose!)

Terminology, not essential to remember: C' =: adj(A), abbreviation for "adjugate". Or "adjunct" / "classical adjoint".

```
"Workload" for C':

n^2 cofactors, each cofactor is

\pm an (n-1) \times (n-1) determinant, each determinant is

a sum of (n-1)! terms, ...
```

Beauty is in the eye of the beholder? (clickable - won't compute the inverse of this, but ...)

[not stressed in class] Just browsed through, and you won't be asked to reproduce this "proof" (which it really isn't, we have only postulated that cofactor expansion works). But see if you can *follow* the steps!

Again: If $|\mathbf{A}| \neq 0$, $\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \operatorname{adj} (\mathbf{A})$

where $\mathtt{adj}(\mathbf{A}) := \mathbf{C}'$

Why? The following is an exercise in determinant rules:

- Recall cofactor expansion by ith row: $|\mathbf{A}| = \sum_{k=1}^{n} a_{ik} C_{ik}$
- If instead we picked the cofactors from another ("alien") row $\ell \neq i$, then we actually have $\sum_{k=1}^{n} a_{ik} C_{\ell k} = 0$. Why? Since cofactors of row ℓ do not depend on elements in row ℓ , then this is the determinant of the matrix we get by replacing row ℓ by a copy of row i. But that has two equal rows!
- To check AC' = |A| I, check each element (i, j); it equals row #i from A dot row #j from C (because the prime!) i.e. $\sum_{k=1}^{n} a_{ik}C_{jk}$, which equals:

 $|\mathbf{A}| \text{ if } i=j \text{ (i.e. on the main diagonal)}, \qquad \text{and} \quad 0 \text{ otherwise}.$

• Exercise: check element (i, j) of C'A. (Verifies that you only need to calculate "one of the products", if A is square.)

Example (from slide 4 with t = 4, again): To invert $A_4 = \begin{pmatrix} 4 & 3 & 2 \\ 1 & 4 & -1 \\ -2 & -3 & -4 \end{pmatrix}$, we calculate cofactors. (Remember signs!) Then transpose, which is why the following cofactors appear "in the transposed order" (e.g. C_{21} on the (1, 2) position):

17

How does this formula give the expression for $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}$?

Clarification of wording: "Find an expression for" means "valid as long as exists". This problem intended as example. [But actually: sometimes, even less is asked! See Messages & next week's lectures!]

On to work: Remembering to transpose, cofactors are as follows:

of the "a" element: d of the "c" element: -b of the "b" element: -c of the "d" element: a

(the "-"s for the cofactors of elements (2, 1) and (1, 2): "chessboard".) And so the answer is the familiar(?) $\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Back to wording: If asked for "an expression for the inverse", this is the answer – because it is an expression valid as long as the inverse exists. (Writing "as long as $ad \neq bc$ " not required, but won't hurt.)

Example: Use the formula to find an expression for

 $\begin{pmatrix} p_1 & 0 & 0 & p_2 \\ 0 & p_4 & p_3 & 0 \\ 0 & p_2 & p_1 & 0 \\ p_3 & 0 & 0 & p_4 \end{pmatrix}^{-1}$

(16 cofactors, each size 3 \times 3, yikes! But we are in some luck ...)

Symmetries! Let $K = |p_1 p_2 p_4|$. It is the determinant of the "middle 2 × 2 block" (check sign!) and also of "the corners put together".

"The cofactors of the corners" have a common factor K: We have $C_{11} = p_4 K$ and $C_{44} = p_1 K$. Beware signs: $C_{14} = -p_3 K$ and $C_{41} = -p_2 K$. "The cofactors of the middle block" have a common factor K: We have $C_{22} = p_1 K$, $C_{33} = p_4 K$ and (beware signs) $C_{23} = -p_2 K$, $C_{32} = -p_3 K$. "The cofactors of the greens are all zero!" Each has two proportional rows $\begin{vmatrix} 0 & p_4 & 0 \end{vmatrix}$

or two proportional columns. Example: $C_{12} = - \begin{vmatrix} 0 & p_4 & 0 \\ 0 & p_6 & 0 \\ p_7 & 0 & p_8 \end{vmatrix} = 0$. Remains:

- Put together the elements into C' (remember to transpose!)
- Calculate the determinant. We have all the cofactors.

cont'd: The determinant is (say!) $p_1C_{11} + 0 + 0 + p_3C_{41}$ (Q: why no "-" before p_3 ?) - which = $p_1p_4K - p_3p_2K = K^2$.

Stacking up cofactors, transposing:

$$\mathbf{C}' = \begin{pmatrix} p_4 K & 0 & 0 & -p_2 K \\ 0 & p_1 K & -p_3 K & 0 \\ 0 & -p_2 K & p_4 K & 0 \\ -p_3 K & 0 & 0 & p_1 K \end{pmatrix}$$

and the expression for the inverse is:

$$\frac{1}{K} \begin{pmatrix} p_4 & 0 & 0 & -p_2 \\ 0 & p_1 & -p_3 & 0 \\ 0 & -p_2 & p_4 & 0 \\ -p_3 & 0 & 0 & p_1 \end{pmatrix}$$

Exercise: verify! (Multiply and see that you get the identity.)

Terminology: "invertible" \leftrightarrow has an inverse.

But also: A square matrix is called *non-singular* if it has an inverse, and *singular* if it does *not*.

("Singular" is fairly common. You can use "non-invertible" on the exam.)

Rules for the inverse. Known already:

- If A is square and furthermore either AM = I or MA = I, then A^{-1} exists and equals M.
- \bullet ... and if so: M^{-1} exists and equals A. Consequently:
- If A is invertible, then so is A^{-1} , and $(A^{-1})^{-1} = A$.
- A is invertible \Leftrightarrow square and $|\mathbf{A}| \neq 0$.
- If so, we have the formula and the Gaussian elm'n method.

A few more rules next slide

More rules for the inverse. (The term paper problem set stops way before this!)

- Iff exists: $|\mathbf{A}^{-1}| = 1/|\mathbf{A}|$. (Because $1 = |\mathbf{I}| = |\mathbf{A}\mathbf{A}^{-1}| = |\mathbf{A}| |\mathbf{A}^{-1}|$)
- Either $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$ or neither inverse exists.
- Let $k \in \mathbb{N}$. Then \mathbf{A}^k is invertible iff \mathbf{A} is, and if so: $(\mathbf{A}^k)^{-1} = (\mathbf{A}^{-1})^k$. Which we denote \mathbf{A}^{-k} .
 - $\circ~$ Easy to check. Determinant $\neq 0$ and $\mathbf{A} \dots \mathbf{A} \mathbf{A}^{-1} \dots \mathbf{A}^{-1} = \mathbf{I}$
 - (Often seen, not not exam relevant: $A^0 = I$, cf. $\alpha^0 = 1$.)
- If A and B are both $n \times n$, then either $(AB)^{-1} = B^{-1}A^{-1}$ or neither side exists. Note reverse order!
 - Similarly, $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ or neither side exists. And also: $(cA)^{-1} = A^{-1}(cI)^{-1} = \frac{1}{c}A^{-1}$ if $c \neq 0$.
 - "Proof": Easy to check if well-defined: $(AB)(B^{-1}A^{-1}) = I$.
 - Beware: $(AB)^{-1}$ could exist even if A and B' are m × n with $m \neq n$.
 - + Or more factors, e.g. $\mathbf{x}'\mathbf{A}\mathbf{x}$ is 1×1 and has an inverse iff $\neq 0$
 - (Not curriculum: That's why you in e.g. econometrics may see "large" products $(...)^{-1}$ not written out. BTW, it requires m < n, impossible if m > n.)

Example cases based on some book problems. [not stressed in class]

- Let $|X'X| \neq 0$. Show that $A = I X(X'X)^{-1}X'$ satisfies $A = A^2$. What can we say about |A|?
 - We have not assumed X square, so we cannot simplify A. But $\mathbf{A}^2 = \mathbf{I} - 2\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' + \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ which
 - $= \mathbf{I} + (-2+1)\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \text{ because } \mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{I}.$
 - $\label{eq:alpha} \begin{array}{l} \circ \ |\mathbf{A}| = |\mathbf{A}^2|, \mbox{ so in Math 2 we can tell that } |\mathbf{A}| \mbox{ is zero or one.} \\ \mbox{ The proof that it is 0 uses only Math2, but is too tricky for a Math2 exam: Suppose for contradiction that \mathbf{A}^{-1} exists: Then $\mathbf{A}^{-1}\mathbf{A}^2 = \mathbf{A}^{-1}\mathbf{A}$, and $\mathbf{A} = \mathbf{I}$. And so $\mathbf{0} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. Right-multiply by \mathbf{X} to get: $\mathbf{0} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X} = \mathbf{XI}$. But $\mathbf{X} = \mathbf{0} \Rightarrow |\mathbf{X}'\mathbf{X}| = 0$, contradiction.} \end{array}$
- Suppose some power B^k is 0. Then B^{-1} does not exist, but
 - $(I-B)^{-1}$ does and equals $I+B+\ldots+B^{k-1}.$ $\,$ (Cf. geometric series.)
 - \circ $|\mathbf{B}^k| = |\mathbf{B}|^k$ and also $= |\mathbf{0}|$.
 - $\circ \ \ \text{Calculate} \ (I+B+\ldots+B^{k-1})(I-B)=[\ldots]=I-B^k=I.$
- Suppose $M = PDP^{-1}$. Then $M^k = PD^kP^{-1}$, all $k \in \mathbb{N}$.

Show: Valid even for negative integers k iff $|\mathbf{D}| \neq 0$. Typically want: D diagonal. Explain: Why is this convenient? (Computes M^k when k large or ... sometimes even non-integer. Curriculum at BI Norwegian Business School and NTNU &k.ad. Application: $k = \frac{1}{2}$ to standardize a random vector with covariance matrix M.)

 $\begin{array}{ll} \textbf{Two applications in this course} & [not stressed in class] \\ \mbox{Fix a function } f \in C^2 \mbox{ of } n \mbox{ variables: } f(x). \mbox{ Let } \mathbf{H} \mbox{ be the so-called Hessian} \\ \mbox{matrix: } h_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} \mbox{ (symmetric matrix, depends on x)} \end{array}$

- Second-order approximation around \mathbf{x}_* : the 2nd-order term will become $\frac{1}{2}(\mathbf{x} \mathbf{x}_*)'\mathbf{H}_*(\mathbf{x} \mathbf{x}_*)$ where \mathbf{H}_* indicates that it is evaluated at \mathbf{x}_* . Prime denotes transpose; if you don't like that (with derivatives in the picture): $\frac{1}{2}(\mathbf{x} \mathbf{x}_*) \cdot (\mathbf{H}_*(\mathbf{x} \mathbf{x}_*))$. Note $\mathbf{H}_*()$ means product, not "of".
- Behind the scenes, this underlies the 2nd derivatives test in n variables, and concavity/convexity tests. Case n = 2 in Math2:
 - The Hessian determinant $|\mathbf{H}|$ equals the "AC B²" from your first Math course's 2nd derivative test. (Math2 does not require you to use *matrix formulation* in your 2nd derivative tests, but the content is the same anyway!)
 - $\circ~$ If both the $|{\bf H}|$ and the top-left element A are > 0:
 - $\cdot\,$ everywhere, the function is convex
 - $\cdot\,$ merely at some stationary point, then this is strict local min.
 - \circ (Why do we have opposite signs $|\mathbf{H}|>0>A$ for concavity/max? Switch sign on f and thus on A; but since n=2, then $|-\mathbf{H}|=(-1)^2|\mathbf{H}|$, no sign change! More than 2 variables: Math3!)

By popular demand (I): The Sarrus rule for calculating 3×3 determinants. *CAVEAT: NOT VALID for larger!*

Look at the picture:

To the left, matrix elements. To the right, the first two columns repeated.

 $\mathsf{Determinant} = \begin{bmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ - \left[a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33}\right] \end{bmatrix}$

- The blue ones (first line) are the triplets connected with lines Northwest-Southeast.
- The red ones which get subtracted, 2nd line are the triplets connected with dashes Northeast–Southwest.

	1	2	4		1	2	4	÷	1	2
Example:	$\left -1\right $	8	3	Becomes	-1	8	3	÷	-1	8
	7	0	-5		7	0	-5	÷	7	0

when we write the elements and then repeat the first two columns.

The ones left as-is: start top-left, go south-east:

1	2	4	÷			cyan product:	$1 \cdot 8 \cdot (-5)$	= -	-40
	8	3	÷	-1		green product:	$2 \cdot 3 \cdot 7$	=	42
		-5	÷	7	0	b/w product:	$4\cdot(-1)\cdot 0$	=	0

The ones to subtract/change sign are the south-*west* connections:

		4	4	÷	1	2	magenta product: 4 · 8 · 7	=	224
	8		3	÷	-1		b/w product: $1 \cdot 3 \cdot 0$	=	0
7	0	-	5	÷			yellow product: $2 \cdot (-1) \cdot (-5)$) =	10

Determinant = -40 + 42 + 0 - [224 + 10] = -232.

By popular demand (II): More cofactor expansion

Recall expansion along the ith row:

- Pick one row number i (and stick to it!)
- For each element in the row, multiply it by its cofactor (...remember what a "cofactor" is, and in particular: the chessboard for signs)
- Add up.

1 t

Or pick a column instead of a row.

$$3 \times 3$$
 example from Tuesday's class: $\begin{vmatrix} 4 & 3 & p \\ 1 & t & q \\ -2 & -3 & r \end{vmatrix}$ by 3rd column.

Cofactor of element (1, 3): strike out first column and third row, evaluate determinant of rest, (chessboard says: do not switch sign)

. That is, the cofactor is
$$-3 + 2t$$
. (cont'd)

example cont'd:

Have already: the cofactor of the "p" element (1,3) is 2t-3.

The cofactor of the "q" element (2, 3) is $-\begin{vmatrix} 4 & 3 \\ -2 & -3 \end{vmatrix} = 6$; the negative sign due to the chessboard.

The cofactor of the "r" element (3, 3) is $\begin{vmatrix} 4 & 3 \\ 1 & t \end{vmatrix} = 4t - 3$.

Multiply each by the element and add up: p(2t-3) + 6q + r(4t-3) = 2t(p+2r) - 3(p-2q+r).

- For $|\mathbf{A}_t|$ on slide 4, $p=2, \ q=-1, \ r=-4$ and we get -12t.
- For the D₃ on slide 12, p = q = r = t, so we get $6t^2$.
- As long as $t \neq 0$ so the \mathbf{A}_t slide 4 has an inverse: Cramér's rule on the equation system $\mathbf{A}_t \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}$, says that $z = \frac{2t(p+2r)-3(p-2q+r)}{-12t}$. 3rd variable "z" because we replaced 3rd column.

28

 4×4 example:

$$ple: \begin{vmatrix} 1 & 2 & 1 & 1 \\ -1 & 8 & 3 & 3 \\ 7 & 0 & -5 & 1 \\ 2 & 2 & -3 & 5 \end{vmatrix}$$

in a boring way, no "clever" shortcuts.

First: pick one row or column. I pick column 4. Need the four cofactors (top to bottom, none involving column 4):

$$\begin{aligned} C_{14} &= (-1)^5 \begin{vmatrix} -1 & 8 & 3 \\ 7 & 0 & -5 \\ 2 & 2 & -3 \end{vmatrix} \qquad \qquad C_{24} &= (-1)^6 \begin{vmatrix} 1 & 2 & 4 \\ 7 & 0 & -5 \\ 2 & 2 & -3 \end{vmatrix} \\ C_{34} &= (-1)^7 \begin{vmatrix} 1 & 2 & 4 \\ -1 & 8 & 3 \\ 2 & 2 & -3 \end{vmatrix} \qquad \qquad C_{44} &= (-1)^8 \begin{vmatrix} 1 & 2 & 4 \\ -1 & 8 & 3 \\ 7 & 0 & -5 \end{vmatrix}$$

The determinant will be $-7 \cdot C_{14} + 3 \cdot C_{24} + 1 \cdot C_{34} + 5 \cdot C_{44}$.

But the cofactors involve 3×3 determinants that must be calculated. For example by cofactor expansion.

 4×4 example cont'd: since this is a cofactor expansion exercise, use that method for every 3×3 too. Arbitrary choices: first row for the first two, second column for the last two.

$$C_{14}$$
 by first row: $(-1)^5 \begin{vmatrix} -1 & 8 & 3 \\ 7 & 0 & -5 \\ 2 & 2 & -3 \end{vmatrix} =$

 $(-1)^5 \cdot \left\{ -1 \cdot \text{its cofactor} + 8 \cdot \text{its cofactor} + 3 \cdot \text{its cofactor} \right\}$, all cofactors relative to that 3×3 determinant (ignore for the moment that there was ever a 4×4).

$$(-1)^{5} \cdot \left\{ -1 \cdot \underbrace{(-1)^{1+1} \begin{vmatrix} 0 & -5 \\ 2 & -3 \end{vmatrix}}_{=0-(-10)} + 8 \cdot \underbrace{(-1)^{1+2} \begin{vmatrix} 7 & -5 \\ 2 & -3 \end{vmatrix}}_{=-(-21+10)} + 3 \underbrace{(-1)^{1+3} \begin{vmatrix} 7 & 0 \\ 2 & 2 \end{vmatrix}}_{=14-0} \right\}$$

which equals $10 - 8 \cdot 11 - 3 \cdot 14 = -120$, and so the " $-7 \cdot C_{14}$ " contribution is $-7 \cdot (-120) = 840$. On to the three others. ₃₀

$$\begin{array}{c|c} 4 \times 4 \text{ example cont'd: } C_{24} = (-1)^6 \begin{vmatrix} 1 & 2 & 4 \\ 7 & 0 & -5 \\ 2 & 2 & -3 \end{vmatrix} \text{ by first row.} \\ 1 \cdot (-1)^2 \left| \text{ [what?]} \right| + 2 \cdot (-1)^3 \left| \text{ [what?]} \right| + 4 \cdot (-1)^4 \left| \text{ [what?]} \right| \\ & \text{ (Go ahead, fill in!)} \end{array}$$

$$1 \cdot (-1)^{2} \underbrace{\begin{vmatrix} 0 & -5 \\ 2 & -3 \end{vmatrix}}_{=10} + 2 \cdot (-1)^{3} \underbrace{\begin{vmatrix} 7 & -5 \\ 2 & -3 \end{vmatrix}}_{=-11} + 4 \cdot (-1)^{4} \underbrace{\begin{vmatrix} 7 & 0 \\ 2 & 2 \end{vmatrix}}_{=14}$$

which sums up to 10 + 22 + 56 = 88.

So the " $3 \cdot C_{24}$ " contribution is 264. Then what next?

 4×4 example cont'd (this slide from class):

$$C_{34} = (-1)^7 \begin{vmatrix} 1 & 2 & 4 \\ -1 & 8 & 3 \\ 2 & 2 & -3 \end{vmatrix}$$
 by second column:

(The first "-" is the $(-1)^7$. The negative signs before the "2" are from the "chessboard of signs" for the 3×3):

$$-\left\{ -2\begin{vmatrix} -1 & 3 \\ 2 & -3 \end{vmatrix} + 8\begin{vmatrix} 1 & 4 \\ 2 & -3 \end{vmatrix} - 2\begin{vmatrix} 1 & 4 \\ -1 & 3 \end{vmatrix} \right\}$$
$$= -\left\{ -2(3-6) + 8(-3-8) - 2(3+4) \right\} = 96.$$

Contribution to determinant: $1 \cdot 96$. Then finally the contribution $5 \cdot C_{44}$: C_{44} is the same determinant as in the Sarrus example: -232. (Time ran out in class; finding it by expanding along the 2nd column \rightsquigarrow exercise!) So the 4×4 determinant is $840 + 264 + 96 + 5 \cdot (-232) = 40$.

(As one of you asked: once you have reduced it to 3×3 's, you are free to use Sarrus on those! Or row/column operations ...)