
LA lectures 5&6: more eq. systems / determinants / inverses

Have:

� Vectors, matrices, ...

� Linear equation systems: Theory, Gaussian elimination

� More matrices: Determinants and the inverse.

To follow today: More of everything.

� More determinants (put at work!)
� More linear equation systems. Old & new stuff, in particular:

◦ Determinants in a problem-type that has been seen frequently

on exams

◦ Cramér’s rule

� More matrices: The inverse
◦ A new determinants-based formula, with an example

◦ (More rules)

Question for you: anything you need reviewed on Wednesday?

(You requested: another detailed cofactor expansion walkthrough (see

slides 27ff). And Sarrus (slides 25–26).)
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LA lectures 5&6: more eq. systems / determinants / inverses

Example: The ECON2310 seminar 1 macro model could be written
1 −1 −1 0 1

−c1 1 0 c1 0
−b1 0 1 0 0
−t 0 0 1 0
−a 0 0 0 1



Y

C

I

T

Q

 = h, h = ĥ+


G

−c2ı̂

−b2ı̂

0
0


(the latter RHS if you like to indicate possible policy instruments – for an example next week).

Unique solution iff coeff. matrix has nonzero determinant.

Cofactor expansion (tip: look for many 0’s – say, 2nd column and then

indicated in cyan ) −(−1)

∣∣∣∣∣∣∣∣
−c1 0 c1 0

−b1 1 0 0
−t 0 1 0
−a 0 0 1

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

1 −1 0 1
−b1 1 0 0

−t 0 1 0
−a 0 0 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
−1 1 0
−t 1 0

−a 0 1

∣∣∣∣∣∣ c1 +

∣∣∣∣∣∣
1 −1 1

−b1 1 0

−a 0 1

∣∣∣∣∣∣ = −c1(1 − t) + a+ 1 − b1
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LA lectures 5&6: more eq. systems / determinants / inverses

Observation (not a typical exam question, but maybe good for “debugging your determinants”):

Wrt. each of the constants a, b and c1, that determinant on slide

2 is an affine function (i.e. first-order polynomial; note, “Wrt. each” meaning: “does not rule out

cross terms”!). That is not a coincidence:

� Generally, the determinant function is affine in each element:

Cofactor expansion: aijCij+ [no aij elsewhere].

So for a, b1 and t: each of these enters (and linearly!) in

precisely one element. As a function of t: γt+ δ, etc.

� The determinant is linear in each row and in each column.

So c1 enters (as a first-order term) twice but both are in the

same row. Do cofactor expansion along that row, and you see

that the determinant must be of the form ηc1 + ε.

But a parameter that enters in several rows/columns, may have

higher order. (Ex.: |λIn −A| is an nth order polynomial in λ.) 3



LA lectures 5&6: more eq. systems / determinants / inverses

Example: (that used to be) frequent exam-type problem:

Consider for each real constant t the matrix and the vector

At =

 4 3 2
1 t −1
−2 −3 −4

 , bt = t

1
1
1

. Questions:

(a) Calculate the determinant of At, each t ∈ R.

(b) For what t ∈ R will the equation system Atx = bt have (i) no

solution, (ii) precisely one solution, resp. (iii) several solutions?
Note: does not ask to “solve”. (But the wording does not forbid solving either, so if that is all you know ...)

(a): (“No tempting zeroes” ... but if you want to collect the “t” coefficient easily, how? Or just go ahead

calculate.) |At| = −1

∣∣∣∣ 3 2
−3 −4

∣∣∣∣+ t ∣∣∣∣ 4 2
−2 −4

∣∣∣∣− (−1)

∣∣∣∣ 4 3
−2 −3

∣∣∣∣
= −(−6) + t · (−16 + 4) + (−6) = −12t.

(Cofactor expansion details: on slide 27, with the “review”.)

(b): Unique solution iff t 6= 0. For t = 0: several solutions (since

b0 = 0, there is at least one, and we know it is not unique.) 4
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Example variant:

What if the first row of At were replaced by (4444, 4443, 4442)?

Recall that we can use elementary row operations for determinants,

and note that both row 1 and row 3 “decrease by one as we move

to the right”; the difference is 4446(1, 1, 1). Indeed, compute∣∣∣∣∣∣∣
R− 2 R− 3 R− 4

1 t −1

−2 −3 −4

∣∣∣∣∣∣∣
←−

−1

+

=

∣∣∣∣∣∣
R R R

1 t −1
−2 −3 −4

∣∣∣∣∣∣ = R·
∣∣∣∣∣∣

1 1 1
1 t −1
−2 −3 −4

∣∣∣∣∣∣
For the |At| from the previous slide, we had R = 6 and got −12t.

On this, we have R = 4446 and get a determinant equal to
4446

6 · (−12t) = −4446 · 2t (or, just compute it! Exercise: use row

operations as long as you can).

But this determinant too, is zero only iff t = 0 – and so part (b)

would have the same answer for the variation on this page. 5



LA lectures 5&6: more eq. systems / determinants / inverses

Example variant: with (kAt)
k in place of At. Here, k ∈ N a

constant.

(a): |(kAt)
k| = |kAt|

k = (k3|At|)
k = (−12tk3)k. Did you remember the “3”?

(b): Same argument and same answer as the two previous slides!

Example variant: Replace bt by (1, 2, c) ′. (k = 1). Q: How does

that change anything, for each c ∈ R?

A: No change in (a). In (b), eq. system is no longer homogeneous;

for t = 0, we have no other tools than starting to solve: 4 3 2
∣∣ 1

1 0 −1
∣∣∣ 2

−2 −3 −4
∣∣ c

 ←−
−4

+

←−−−−
2

+

∼

0 3 7
∣∣ −7

1 0 −1
∣∣∣ 2

0 −3 −7
∣∣ c+ 4

 ←−+

First row then says 0 = c− 3. Infinitely many solutions iff c = 3,

otherwise no solution. (Is it perfectly clear why?)
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LA lectures 5&6: more eq. systems / determinants / inverses

Example variant (mentioned in class for the “slide 4” ex., further

tweaked): What if you were also asked for the degrees of freedom?

Unique solution, hence no degrees of freedom, if t 6= 0 – this goes no

matter what the RHS is! Therefore, for case t = 0, I change the example

to general RHS = (α, β, γ) ′. The previous slide is a special case too.

Doing the same operations: 4 3 2
∣∣ α

1 0 −1
∣∣∣ β

−2 −3 −4
∣∣ γ

 ←−
−4

+

←−−−−
2

+

∼

0 3 7
∣∣ α− 4β

1 0 −1
∣∣∣ β

0 −3 −7
∣∣ γ+ 2β

 ←−+

First row now says 0 = α− 2β+ γ. Choose the third variable freely and

get one degree of freedom if 0 = α− 2β+ γ, no solution otherwise.

(This still assumes t = 0.)

Note: only case with the maximum n degrees of freedom, is 0x = 0.

Here n = 3, so for t = 0: “One or two, at a glance.” (Even: “one at a

glance”, because n− 1 degrees would imply all rows proportional ...) 7



LA lectures 5&6: more eq. systems / determinants / inverses

Example variant: Let M =

 4 3 2
1 0 −1
−2 −3 −4

 , v =

 1
−2
1

.
(This M is A0 from slide 4.)

(a) Calculate Mv.

(b) Why does it follow from part (a) that |M| = 0? You are not

allowed to calculate the determinant by other means.

(a) [The “easy” part, cheap points. Matrix multiplication yields 0.]

(b) Mv = 0 for some nonzero vector v; hence the eq. system

Mx = 0 has more than one solution, and hence |M| = 0.

Note: If w solves the homogeneous system Mx = 0 then cw also

does, any c ∈ R – but if w = 0, this is no more than one vector!

For our nonzero v, all the cv make infinitely many solutions.
8



LA lectures 5&6: more eq. systems / determinants / inverses

Example (too tricky for exam?) yeah ... consider this optional.

Can determinants say anything about whether there is a solution

to the eq. system (4 eq’s, 3 unknowns, RHS=column) with

augmented coefficient matrix


4 3 2

∣∣ 1
1 0 −1

∣∣∣ 2
−2 −3 −4

∣∣ 3
1 1 1

∣∣ c

 ?

Yes. Fact: if the augmented coefficient matrix has an inverse, then
no solution exists. Note: does not say “iff”!

Why? An exercise in matrix manipulation:

Generally, Ax− b can be written as Mz, where M = the augmented

coefficient matrix (A|b) (“written without the separator bar”) and

z ′ = (x ′,−1) is the n+ 1-vector with x first and element n+ 1 being

−1. To have Ax− b = 0, we want Mz = 0, and if |M| 6= 0, then this is

only possible for z = 0. But zn+1 = −1!

If |M| = 0: eliminate on to contradiction or square coeff. matrix.
9



LA lectures 5&6: more eq. systems / determinants / inverses

Not an exam question by itself, but potentially useful for the exam –

especially the last “But”, where lots of errors are made:

Can determinants say anything if fewer eq’s than var’s?

Yes. If there are m equations, coeff. matrix = A, and we can find a

nonzero m×m determinant from m columns from A, then:

� choose the other variables free; “move them over to the RHS”

� now we have an m×m with nonzero determinant, in the m

variables corresponding to the column numbers.

� (We knew this already for the situation when we have

row-echelon form (“staircase”) – but it holds more generally.)

Theory note: If there are fewer eq’s than var’s, then there cannot

be unique solution!

But: There does not have to exist any solution at all!
(Example: consider last example slide 5, throw in an extra fourth column (0, 0, 0)′ to make it a system in four

variables – and there is still no solution if c 6= 3.)
10



LA lectures 5&6: more eq. systems / determinants / inverses

Case: n eq’s uniquely determining n variables as A−1b.

� If you already know A−1, then calculating x = A−1b is easy.

� If you do not know A−1, and do not need anything but A−1b,

you (usually) save work by solving for x rather than inverting.

� But sometimes you want a formula (like “ A−1b ”) rather

than a recipe (“Gaussian elimination”).

� Soon: A formula for A−1.

� But first: Cramér’s rule gives a formula for each individual
element of a unique solution x.

◦ Usage: E.g., the macro model slide 2: what if you are only

interested in output Y? Or only consumption C?

◦ (Under the hood, you don’t need to know details: Cramér’s

rule is just another guise of the formula for the inverse.)

11



LA lectures 5&6: more eq. systems / determinants / inverses

n× n, unique x cont’d: Cramér’s rule

Consider Ax = b where A is n× n and |A| 6= 0.

� Form the determinant Dj by replacing column j of A by b.

and calculating the resulting determinant, goes without saying?

� Then xj = Dj/|A| .

Example (from slide 4):

 4 3 2
1 t −1
−2 −3 −4


︸ ︷︷ ︸

=At

xy
z

 =

tt
t

.

Q1: What is D3?

Q2: If t = 4, what is z?

A1: Replace column 3 of A by the RHS and calculate the

determinant

∣∣∣∣∣∣
4 3 t

1 t t

−2 −3 t

∣∣∣∣∣∣ = t ·
( ∣∣∣∣ 1 t

−2 −3

∣∣∣∣− ∣∣∣∣ 4 3
−2 −3

∣∣∣∣+ ∣∣∣∣4 3
1 t

∣∣∣∣ )
= t · (2t− 3 − (−12 + 6) + 4t− 3) = 6t2

(For details on the cofactor expansion, see slide 27ff. in this version.)
12



LA lectures 5&6: more eq. systems / determinants / inverses

Exercise: find the FLAWS in the arguments:

(I) “Let A be n× n, and suppose that b is in fact one of the

columns A, namely number j. Then Dj = |A|, and so xj must

be =
Dj

|A|
= 1.”

(II) “From the previous slide and slide 4, D3 = 6t2 = −t
2 |At|, so z

must be = −t
2 . Therefore, z = −2 when t = 4.”

The flaw: Cramér’s rule requires |A| 6= 0! If that were verified, the

arguments would be valid. ((II): OK iff t 6= 0, so OK for t = 4.)

Exercise: What can you actually say about xj in case (I)?

(Do you even know that a solution exists?)

Answer: there is a solution with xj = 1 and all other xi = 0 (check

it!) – but if |A| = 0, that solution is not unique; and, depending on

A, there could be solutions with xj 6= 1 (dumb example: 0x = 0).
13



LA lectures 5&6: more eq. systems / determinants / inverses

Back to the inverse: We have:

� Definition (and for square matrices, suffices to check ...)

� Exists iff A square AND |A| 6= 0.

� How to find by Gaussian elimination

Next:

� A general formula based on cofactors

� Example(s)

� Rules! Old ones and some more.

� More examples?

... and then we should be done with linear algebra. Review topics,

anyone? (Yes, as indicated on slide 1.)

14



LA lectures 5&6: more eq. systems / determinants / inverses

A formula for the inverse:

Fix A (square). Let C have elements Cij, where Cij is the cofactor

of element (i, j) of A. Then C ′A = AC ′ = |A| I, so:

Provided |A| 6= 0, A−1 = 1
|A|

C ′ (beware: transpose!)

Terminology, not essential to remember: C ′ =: adj(A),

abbreviation for “adjugate”. Or “adjunct” / “classical adjoint”.

“Workload” for C ′:

n2 cofactors, each cofactor is

± an (n− 1)× (n− 1) determinant, each determinant is

a sum of (n− 1)! terms, ...

Beauty is in the eye of the beholder? (clickable – won’t compute the inverse of this, but ...)

15

https://www.wolframalpha.com/input/?i=adjugate+of+%7B+%7B+a,+b,+c,d,e%7D,+%7B+f,g,h,i,j+%7D,+%7Bk,l,m,n,o+%7D,%7Bp,q,r,s,t%7D,%7Bu,v,w,x,y%7D+%7D


LA lectures 5&6: more eq. systems / determinants / inverses

[not stressed in class] Just browsed through, and you won’t be asked to reproduce this “proof” (which

it really isn’t, we have only postulated that cofactor expansion works). But see if you can follow the steps!

Again: If |A| 6= 0, A−1 = 1
|A|

adj (A) where adj(A) := C ′

Why? The following is an exercise in determinant rules:

� Recall cofactor expansion by ith row: |A| =
∑n

k=1 aikCik

� If instead we picked the cofactors from another (“alien”) row

` 6= i, then we actually have
∑n

k=1 aikC`k = 0.
Why? Since cofactors of row ` do not depend on elements in row `, then this is the determinant of the

matrix we get by replacing row ` by a copy of row i. But that has two equal rows!

� To check AC ′ = |A| I, check each element (i, j); it equals

row #i from A dot row #j from C (because the prime!)

i.e.
∑n

k=1 aikCjk, which equals:

|A| if i = j (i.e. on the main diagonal), and 0 otherwise.

� Exercise: check element (i, j) of C ′A. (Verifies that you only

need to calculate “one of the products”, if A is square.) 16



LA lectures 5&6: more eq. systems / determinants / inverses

Example (from slide 4 with t = 4, again): To invert A4 = 4 3 2
1 4 −1
−2 −3 −4

, we calculate cofactors. (Remember signs!)

Then transpose, which is why the following cofactors appear “in the

transposed order” (e.g. C21 on the (1, 2) position):

C11 =

∣∣∣∣ 4 −1
−3 −4

∣∣∣∣ C21 = −

∣∣∣∣ 3 2
−3 −4

∣∣∣∣ C31 =

∣∣∣∣3 2
4 −1

∣∣∣∣
C12 = −

∣∣∣∣ 1 −1
−2 −4

∣∣∣∣ C22 =

∣∣∣∣ 4 2
−2 −4

∣∣∣∣ C32 = −

∣∣∣∣4 2
1 −1

∣∣∣∣
C13 =

∣∣∣∣ 1 4
−2 −3

∣∣∣∣ C23 = −

∣∣∣∣ 4 3
−2 −3

∣∣∣∣ C33 =

∣∣∣∣4 3
1 4

∣∣∣∣
So

 4 3 2
1 4 −1
−2 −3 −4

−1

= −1
48

−19 6 −11
6 −12 6
5 6 13


17
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How does this formula give the expression for

(
a b

c d

)−1

?

Clarification of wording: “Find an expression for” means “valid

as long as exists”. This problem intended as example. [But actually:

sometimes, even less is asked! See Messages & next week’s lectures!]

On to work: Remembering to transpose, cofactors are as follows:

of the “a” element: d of the “c” element: −b

of the “b” element: −c of the “d” element: a

(the “−”s for the cofactors of elements (2, 1) and (1, 2): “chessboard”.)

And so the answer is the familiar(?) 1
ad−bc

(
d −b
−c a

)
Back to wording: If asked for “an expression for the inverse”, this is the

answer – because it is an expression valid as long as the inverse exists.

(Writing “as long as ad 6= bc” not required, but won’t hurt.) 18



LA lectures 5&6: more eq. systems / determinants / inverses

Example: Use the formula to find an expression for
p1 0 0 p2

0 p4 p3 0
0 p2 p1 0
p3 0 0 p4


−1

(16 cofactors, each size 3× 3, yikes! But we are in some luck ...)

Symmetries! Let K = | p1 p2
p3 p4 |. It is the determinant of the “middle 2× 2

block” (check sign!) and also of “the corners put together”.

“The cofactors of the corners” have a common factor K: We have

C11 = p4K and C44 = p1K. Beware signs: C14 = −p3K and C41 = −p2K.

“The cofactors of the middle block” have a common factor K: We have

C22 = p1K, C33 = p4K and (beware signs) C23 = −p2K, C32 = −p3K.

“The cofactors of the greens are all zero!” Each has two proportional rows

or two proportional columns. Example: C12 = −

∣∣∣∣ 0 p4 0
0 p6 0
p7 0 p8

∣∣∣∣ = 0. Remains:

� Put together the elements into C ′ (remember to transpose!)

� Calculate the determinant. We have all the cofactors.
19
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cont’d: The determinant is (say!) p1C11 + 0 + 0 + p3C41

(Q: why no “−” before p3?) – which = p1p4K− p3p2K = K2.

Stacking up cofactors, transposing:

C ′ =


p4K 0 0 −p2K

0 p1K −p3K 0
0 −p2K p4K 0

−p3K 0 0 p1K


and the expression for the inverse is:

1

K


p4 0 0 −p2

0 p1 −p3 0
0 −p2 p4 0

−p3 0 0 p1


Exercise: verify! (Multiply and see that you get the identity.)

20
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Terminology: “invertible” ↔ has an inverse.

But also: A square matrix is called non-singular if it has an inverse,

and singular if it does not.
(“Singular” is fairly common. You can use “non-invertible” on the exam.)

Rules for the inverse. Known already:

� If A is square and furthermore either AM = I or MA = I,

then A−1 exists and equals M.

� ... and if so: M−1 exists and equals A. Consequently:

� If A is invertible, then so is A−1, and (A−1)−1 = A.

� A is invertible ⇔ square and |A| 6= 0.

� If so, we have the formula – and the Gaussian elm’n method.

A few more rules next slide

21
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More rules for the inverse. (The term paper problem set stops way before this!)

� Iff exists: |A−1| = 1/|A|. (Because 1 = |I| = |AA−1| = |A| |A−1|)

� Either (A ′)−1 = (A−1) ′ or neither inverse exists.

� Let k ∈ N. Then Ak is invertible iff A is, and if so:

(Ak)−1 = (A−1)k . Which we denote A−k.

◦ Easy to check. Determinant 6= 0 and A . . .AA−1 . . .A−1 = I

◦ (Often seen, not not exam relevant: A0 = I, cf. α0 = 1.)

� If A and B are both n× n, then either (AB)−1 = B−1A−1

or neither side exists. Note reverse order!
◦ Similarly, (ABC)−1 = C−1B−1A−1 or neither side exists. And

also: (cA)−1 = A−1(cI)−1 = 1
c
A−1 if c 6= 0.

◦ “Proof”: Easy to check if well-defined: (AB)(B−1A−1) = I.

◦ Beware: (AB)−1 could exist even if A and B ′ are m× n with

m 6= n.

· Or more factors, e.g. x ′Ax is 1× 1 and has an inverse iff 6= 0
· (Not curriculum: That’s why you in e.g. econometrics may see “large” products (...)−1

not written out. BTW, it requires m < n, impossible if m > n.) 22
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Example cases based on some book problems. [not stressed in class]

� Let |X ′X| 6= 0. Show that A = I−X(X ′X)−1X ′ satisfies
A = A2. What can we say about |A|?
◦ We have not assumed X square, so we cannot simplify A. But

A2 = I− 2X(X ′X)−1X ′ +X(X ′X)−1X ′X(X ′X)−1X ′ which

= I+ (−2 + 1)X(X ′X)−1X ′ because X ′X(X ′X)−1 = I.
◦ |A| = |A2|, so in Math 2 we can tell that |A| is zero or one.

The proof that it is 0 uses only Math2, but is too tricky for a Math2 exam: Suppose for

contradiction that A−1 exists: Then A−1A2 = A−1A, and A = I. And so 0 = X(X′X)−1X′.
Right-multiply by X to get: 0 = X(X′X)−1X′X = XI. But X = 0⇒ |X′X| = 0, contradiction.

� Suppose some power Bk is 0. Then B−1 does not exist, but
(I− B)−1 does and equals I+ B+ . . . + Bk−1. (Cf. geometric series.)

◦ |Bk| = |B|k and also = |0|.

◦ Calculate (I+ B+ . . . + Bk−1)(I− B) = [. . .] = I− Bk = I.

� Suppose M = PDP−1. Then Mk = PDkP−1, all k ∈ N.

Show: Valid even for negative integers k iff |D| 6= 0.
Typically want: D diagonal. Explain: Why is this convenient?
(Computes Mk when k large or ... sometimes even non-integer. Curriculum at BI Norwegian Business

School and NTNU øk.ad. Application: k = 1/2 to standardize a random vector with covariance matrix M.)
23
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Two applications in this course [not stressed in class]

Fix a function f ∈ C2 of n variables: f(x). Let H be the so-called Hessian

matrix: hij =
∂2f

∂xi∂xj
(symmetric matrix, depends on x)

� Second-order approximation around x∗: the 2nd-order term will

become 1
2 (x− x∗)

′H∗(x− x∗) where H∗ indicates that it is

evaluated at x∗. Prime denotes transpose; if you don’t like that (with derivatives in the picture):

1
2 (x− x∗) · (H∗(x− x∗)). Note H∗() means product, not “of”.

� Behind the scenes, this underlies the 2nd derivatives test in n

variables, and concavity/convexity tests. Case n = 2 in Math2:

◦ The Hessian determinant |H| equals the “AC− B2” from your

first Math course’s 2nd derivative test. (Math2 does not require you to use

matrix formulation in your 2nd derivative tests, but the content is the same anyway!)

◦ If both the |H| and the top-left element A are > 0:

· everywhere, the function is convex

· merely at some stationary point, then this is strict local min.

◦ (Why do we have opposite signs |H| > 0 > A for concavity/max? Switch sign on f and thus on A;

but since n = 2, then |−H| = (−1)2|H|, no sign change! More than 2 variables: Math3!) 24
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By popular demand (I): The Sarrus rule for calculating 3× 3

determinants. CAVEAT: NOT VALID for larger!

Look at the picture:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

To the left, matrix elements. To the right, the first two columns repeated.

Determinant =
a11a22a33 + a12a23a31 + a13a21a32

−
[
a13a22a31 + a11a23a32 + a12a21a33

]
� The blue ones (first line) are the triplets connected with lines

Northwest–Southeast.

� The red ones – which get subtracted, 2nd line – are the

triplets connected with dashes Northeast–Southwest.
25
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Example:

∣∣∣∣∣∣
1 2 4
−1 8 3
7 0 −5

∣∣∣∣∣∣. Becomes
1 2 4

... 1 2
−1 8 3

... −1 8
7 0 −5

... 7 0

when we write the elements and then repeat the first two columns.

The ones left as-is: start top-left, go south-east:
1 2 4

...

8 3
... −1

-5
... 7 0

cyan product: 1 · 8 · (−5) = −40
green product: 2 · 3 · 7 = 42
b/w product: 4 · (−1) · 0 = 0

The ones to subtract/change sign are the south-west connections:

4
... 1 2

8 3
... -1

7 0 -5
...

magenta product: 4 · 8 · 7 = 224
b/w product: 1 · 3 · 0 = 0

yellow product: 2 · (−1) · (−5) = 10

Determinant = −40 + 42 + 0 −
[
224 + 10

]
= −232.
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LA lectures 5&6: more eq. systems / determinants / inverses

By popular demand (II): More cofactor expansion

Recall expansion along the ith row:

� Pick one row number i (and stick to it!)

� For each element in the row, multiply it by its cofactor
(...remember what a “cofactor” is, and in particular: the chessboard for signs)

� Add up.

Or pick a column instead of a row.

3× 3 example from Tuesday’s class:

∣∣∣∣∣∣
4 3 p

1 t q

−2 −3 r

∣∣∣∣∣∣ by 3rd column.

Cofactor of element (1, 3): strike out first column and third row,

evaluate determinant of rest, (chessboard says: do not switch sign)∣∣∣∣∣∣ 1 t

−2 −3

∣∣∣∣∣∣. That is, the cofactor is −3 + 2t. (cont’d)
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LA lectures 5&6: more eq. systems / determinants / inverses

example cont’d:

Have already: the cofactor of the “p” element (1, 3) is 2t− 3.

The cofactor of the “q” element (2, 3) is −

∣∣∣∣ 4 3
−2 −3

∣∣∣∣ = 6; the

negative sign due to the chessboard.

The cofactor of the “r” element (3, 3) is

∣∣∣∣4 3
1 t

∣∣∣∣ = 4t− 3.

Multiply each by the element and add up:

p(2t− 3) + 6q+ r(4t− 3) = 2t(p+ 2r) − 3(p− 2q+ r).

� For |At| on slide 4, p = 2, q = −1, r = −4 and we get −12t.

� For the D3 on slide 12, p = q = r = t, so we get 6t2.

� As long as t 6= 0 so the At slide 4 has an inverse: Cramér’s

rule on the equation system At

(
x
y
z

)
=
(

p
q
r

)
, says that

z =
2t(p+2r)−3(p−2q+r)

−12t . 3rd variable ”z” because we replaced 3rd column. 28



LA lectures 5&6: more eq. systems / determinants / inverses

4× 4 example:

∣∣∣∣∣∣∣∣
1 2 4 −7
−1 8 3 3
7 0 −5 1
2 2 −3 5

∣∣∣∣∣∣∣∣ in a boring way, no “clever” shortcuts.

First: pick one row or column. I pick column 4. Need the four

cofactors (top to bottom, none involving column 4):

C14 = (−1)5

∣∣∣∣∣∣
−1 8 3
7 0 −5
2 2 −3

∣∣∣∣∣∣ C24 = (−1)6

∣∣∣∣∣∣
1 2 4
7 0 −5
2 2 −3

∣∣∣∣∣∣
C34 = (−1)7

∣∣∣∣∣∣
1 2 4
−1 8 3
2 2 −3

∣∣∣∣∣∣ C44 = (−1)8

∣∣∣∣∣∣
1 2 4
−1 8 3
7 0 −5

∣∣∣∣∣∣
The determinant will be −7 · C14 + 3 · C24 + 1 · C34 + 5 · C44.

But the cofactors involve 3× 3 determinants that must be

calculated. For example by cofactor expansion.
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LA lectures 5&6: more eq. systems / determinants / inverses

4× 4 example cont’d: since this is a cofactor expansion exercise,

use that method for every 3× 3 too. Arbitrary choices: first row for

the first two, second column for the last two.

C14 by first row: (−1)5

∣∣∣∣∣∣
−1 8 3
7 0 −5
2 2 −3

∣∣∣∣∣∣ =
(−1)5 ·

{
− 1 · its cofactor + 8 · its cofactor + 3 · its cofactor

}
,

all cofactors relative to that 3× 3 determinant (ignore for the

moment that there was ever a 4× 4).

(−1)5·
{
−1·(−1)1+1

∣∣∣∣0 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=0−(−10)

+8·(−1)1+2

∣∣∣∣7 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=−(−21+10)

+3 (−1)1+3

∣∣∣∣7 0
2 2

∣∣∣∣︸ ︷︷ ︸
=14−0

}

which equals 10 − 8 · 11 − 3 · 14 = −120, and so the “−7 · C14”

contribution is −7 · (−120) = 840. On to the three others. 30



LA lectures 5&6: more eq. systems / determinants / inverses

4× 4 example cont’d: C24 = (−1)6

∣∣∣∣∣∣
1 2 4
7 0 −5
2 2 −3

∣∣∣∣∣∣ by first row.

1 · (−1)2

∣∣∣∣ [what?]

∣∣∣∣+ 2 · (−1)3

∣∣∣∣ [what?]

∣∣∣∣+ 4 · (−1)4

∣∣∣∣ [what?]

∣∣∣∣
(Go ahead, fill in!)

1 · (−1)2

∣∣∣∣0 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=10

+2 · (−1)3

∣∣∣∣7 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=−11

+4 · (−1)4

∣∣∣∣7 0
2 2

∣∣∣∣︸ ︷︷ ︸
=14

which sums up to 10 + 22 + 56 = 88.

So the “3 · C24” contribution is 264. Then what next?
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LA lectures 5&6: more eq. systems / determinants / inverses

4× 4 example cont’d (this slide from class):

C34 = (−1)7

∣∣∣∣∣∣
1 2 4
−1 8 3
2 2 −3

∣∣∣∣∣∣ by second column:

(The first “−” is the (−1)7. The negative signs before the “2” are from the “chessboard of signs” for the 3× 3):

−

{
− 2

∣∣∣∣−1 3
2 −3

∣∣∣∣+ 8

∣∣∣∣1 4
2 −3

∣∣∣∣− 2

∣∣∣∣ 1 4
−1 3

∣∣∣∣}
= −

{
− 2(3 − 6) + 8(−3 − 8) − 2(3 + 4)

}
= 96.

Contribution to determinant: 1 · 96. Then finally the contribution 5 · C44:

C44 is the same determinant as in the Sarrus example: −232. (Time ran

out in class; finding it by expanding along the 2nd column  exercise!)

So the 4× 4 determinant is 840 + 264 + 96 + 5 · (−232) = 40.

(As one of you asked: once you have reduced it to 3× 3’s, you are free to

use Sarrus on those! Or row/column operations ...)
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