Functores. What is a fouctou?
Concept: Grem two sets $D$ and $E$, a functor from $D$ to $E$ is a rule that teres elament in $D$, assigus one (precixily!) element in $E$.
Ex if \{youn poscion, time the exaun stants. weather 3

$\in\{$ on foot, bike, bus, tram, wetho,
taxi, stany home \& drit it $\zeta$
that defines a function.
A. function need not be descxibed as

$$
f(x)=[\text { something with } x] \text {. }
$$

Question for goo: Will the flow ring define a function You whilizge (K, L) to produce $(\mathbb{C}(\mathbb{C}, 4)$ mints of one tincal good. sold at unit price 1.

Unit costs C.w. Ton choose (k, c) b maximize $F\left(k_{0} 2\right)-c k-w L$.
Q: $(k, L)$ function of $(0, w)$ ?
$A: \ldots$
In Math 2. functions will outport numbers Cnobe: © is not a number.).
So in Moth 2 , we will ray that: pried F and $L$ unique for each $C e, m$ :
Two functions, $K=K(0, m), \quad L=L(0, \infty)$.
A function in Math a will take as input am $n$-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of numbers. (Vows on $n=2(\operatorname{con} n=1)$ )

Sometimes denoted $\times$ (bold. boole)
$x$ (notes)

Continnoms fanctions (nearly all in dlath 2).
İx a point $\vec{a}$ in the domain $D$ of $f$.
$f$ is conthrous at $\vec{a}$ if:
Gveen ang Chowever amalls posifire erroo- managio \& anownd the true mhae $f\left(s^{-}\right)$. I can wect thant by meraly nosticting $\vec{x}$ bo be clase to $a^{2}$.
"Example": if $f$ is conbonous ant $4 \%$, then gon on. gat mabitromeng aloce bog $f(\underbrace{0,3333, \ldots)}_{d \text { dugits. }}$
"Now-examplo": $\quad \operatorname{sugn} x=\left\{\begin{array}{cc}-1, & x<0 \\ 0, & x \geq 0 \\ 1, & x>0\end{array}\right.$
Some. finctions of a sungle vanable: $x$

* polyromials $c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{1} x^{n}$
* powe functions $x^{r}$, $r$ and cunstante
* exponential fundions $a^{*}, a \geq 0$ constent
* loganithme " Log $x$

All contrinons whenemer detmad.

$$
x^{e}+3 x
$$

* Comptritions of contruous tunctionse ex: 2 continnors whomever olafirsel.

The intermediate value theorem
Let $f$ be combunous $[$ of a guggle ramble]

$$
\text { "on" } "=0 n
$$

The contrive.
(an) interval $\left[a_{n} b\right]$.
Then $f$ atkins all vales between $f(a)$ ar $f(b)$.
Ex Does $x^{5}+x+x^{2}$ have a z ho?
Yes. $\quad f(-1)=-1 . \quad f(1)=3$

$$
<0 \quad>0 .
$$

Does not Say where. Does not tell whether ane on many.

- Claim who proof?

OK to claim continuity as long as comet.

Inverse functions: If bo each of rah ere there is on one $\times$ wale, the function $f$ is
one-to-are (honjoutal line hest") and has on invars $f^{-1}$.

Denvative? $\quad f\left(f^{-1}(x)\right)=x$
So $\quad f^{\prime}\left(f^{-1}(x)\right) \cdot\left(f^{-1}\right)^{\prime}=1$

$$
\left(f^{\prime \prime}\right)(x)=1 / f^{\prime}\left(f^{\prime}(x)\right.
$$

Exponential functions:


$$
f(x)=a^{x}, \quad g+p^{2}
$$


exponential growth



For $a>1$ : striction increasing (more in $\Rightarrow$ mow ont) and has $a_{n}$ inverse: $\log _{\text {a }}$
For $a<1:$ shortly decteasusy (more $\Rightarrow$ bess out) $\left(\log _{9},\right)$

For $a \neq 1: a^{x}$ attains all positive washes.
$Q=\frac{d}{d x} a^{x} ?$

$$
\frac{d}{d x} \log _{a} x
$$

Th; DR: a $a^{x} a \quad$ resp $\frac{1}{x \ln a}$ where $\ln =$ loge,

$$
e=\lim _{n \rightarrow \infty}\left(16 \frac{1}{n}\right)^{n}=2.718281828459045
$$

$$
\frac{d}{d x} a^{x}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=a^{x} f^{\prime}(a)
$$

The unomber a: the base number that makes $f^{\prime}(o)=1$.
Now, because of functiontimerese function:

$$
a^{\log _{2} x}=x \quad e^{\ln a}=a \ldots
$$

Can write $a^{x}=e^{x \ln a}$ with derivations $\frac{e^{x h a}}{a^{x}} \ln a$
The loganthm: Let $a>1$. Qoph:


$$
\text { Fact: } \log _{a} x=\frac{\ln x}{\ln a}
$$

So fo $-\frac{d}{d x} \log _{0} x$, we on lu need $\frac{d}{d x} \ln x$.
Now $e^{\operatorname{lor} x}=x$. $\frac{d}{d x}$ both sickles.

$$
\underbrace{e^{\ln x}}_{x} \cdot(\ln x)^{\prime}=\left(\operatorname{so}(\ln x)^{\prime}=\frac{1}{x}\right.
$$

Some mules for logs:
$\log _{a}\left(x y^{z}\right)=\log _{a} x+\log _{a} y^{z}=\log _{a} x+z \log _{a} y$. only mentioned, not listed.
$\log _{.}(x / y)=\log _{x} x-\log _{x} y$
(put $z=-1$ )
$\log _{a}(x+y)=$ no simple mile! Do not thy to write as sam of togs...

$$
\log _{a} 1=0, \quad \log _{a} a=1
$$

Logarithmic differentiation: If $f(x)>0$, then $\frac{d}{d x} \operatorname{mn} f(x)=\frac{1}{f(x)} f^{\prime}(x)$, so $f^{\prime}(x)=f(x)(\ln f(x))^{\prime}$

$$
\begin{aligned}
E_{x}: & \frac{d}{d x} x^{-x}=x^{-x} \cdot \frac{d}{d x}(-x \ln x)=\ldots \\
& \frac{\partial}{\partial k} k^{\alpha} L^{\beta}=k^{\alpha} L^{\beta} \cdot \frac{\partial}{\partial k}(\alpha \ln k+\beta \ln L)=\frac{k}{k} k^{\alpha} L^{\beta}
\end{aligned}
$$

Compound utarest.
Q:A credit card changes $2 \%$ p on month.
What is the effective animal nate?
We have: $k<1\rangle=t_{0} 1.02^{12}$. Note, $1.02^{12}>1.24$ year, $A:\left(1.02^{12}-1\right) \cdot 100 \%$
Q: 'A credit canc changes" $25 \% / 6$ effective annual robe", but compounds interest mouthing.
What is the monthlong rate $p$ in $\%$ ?

$$
\text { Take } \sqrt[12]{ }
$$

$$
\begin{aligned}
K_{0}\left(1+\frac{p}{100}\right)^{12} & =1.25 k_{0} \quad \text { Take is } \\
1+P / 100 & =(1.25)^{1 / 12} \quad \text { and.... }
\end{aligned}
$$

 Increasing in $n$.
What happens as $n \rightarrow+\infty$ ? Fact: $\rightarrow e^{r}$
$\rightarrow$
"Continuously compounded interest".
Q: What does "at rake $0.24 /$ year." mean?

$$
1.24^{t} ? \text { or } e^{0.24 t} \text { ? }
$$

$A_{2}=$ Read the context.
$A_{2}$ : Don't worry in Math 2.

Max and mut

Fix a function $f$.
A maximum (resp. minimum) for $f$ is a point $x^{*}$
such that $f\left(x^{*}\right) \geqslant f(x)$, all $x$
resp $\leqslant$
It is strict of "> "resp "r", all $x \neq x$ "
Note, terminology: max/min is the input.
The maximal tminimal $f$ is the maximum value
We also use notation like

$$
\left.V C_{r}\right)=\max _{x} \quad f(x,-)
$$

\&
exoagnous namable
"Vale functor"
Andolgonsly for $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \quad, \quad x^{n}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$

Local moxtimm (start ines (min):
$x^{*}$ is a local maklmm if there exist a no boundarypornter nerghbownherd of $x^{*}$ - i.e. a small open set centered at $x^{\text {to }}$ - such that when we restmet. $f$ to $U_{n} x^{*}$ becomes a max resp mum.

Ex:


Addendum: analogous for several variables. Just put boldface or overarrow on x .

To drstughish: "prevous page" max, "global max" "mon

Note, a global max lan is also local.
Tomundoge: Clocal) exteme point: (loo) mow on mun extrema value ifC
$(\operatorname{loca}()$
Questions about max I min. Fix a function $f$.
$\rightarrow$ Do we know whathan any maximin exist (s)?
$\rightarrow$ What could they be like? Behanowmen the graph".

$$
\rightarrow \ldots \text { in Math } 2 \text { ? }
$$

$\rightarrow$ How to find a short list of possible points?
$\rightarrow$ And then, how to decade which of these are incledd mas I mm points?
$\rightarrow$ If: $V(r)=\max _{\vec{x}} f(\vec{x}, r):$ Behanamo of $V$ ? $V^{\prime}(r)$ ?

For existence, the extreme value theorem:
Let $S$ be nonempty, closed and bounded.
closed and bounded.
contains all $R$ in a boundeal box in $\mathbb{R}^{n}$
of its bounding points
If $f$ is continuous on $S$, it has both a max ayer $S$ and $g$ min oren

Non-examples:

$$
\begin{aligned}
& \ln x \text { on }[0,1\} \\
& k^{\alpha} L^{0} \text { on }\{(k, \alpha) ; k \geqslant 0,<\geq 0\}
\end{aligned}
$$

Example: Let $\alpha \geqslant 0, \beta \geqslant 0, \quad \beta>0, k^{\alpha} L^{\beta}$ on the set

$$
\{(k, b) ; K=0,<\geq 0, \quad c K+w L=m\}
$$

o- on the set

$$
\leq m\}
$$

So: The problems

$$
\begin{aligned}
\operatorname{and} \max k^{\alpha} L^{\beta} \text { s.t } \quad 0 k+w k & =m \\
& \leqslant \operatorname{mon}
\end{aligned}
$$

both have solution.

* What kind of poimts?
- Discontinuity points
- Non-differnhability poingts
- Stationang points: $\frac{\partial f}{\partial x_{i}}=0$, alli
- Bowndary points $\downarrow$ noter endpoints for single-vamable optimization.

Math 2 relevamce?
-... mo.
$|x|$ has min for $x=0$.

$$
Y E S!
$$

TES. Lagrange/kuhn-Trider.

Srugle ranable: $f(x), \quad f$ continuously differentiable defied on an interval.

Candidate points for max/ mm :

- endpoints if $f$ defined there
- stationary points. where $f^{\prime}(x)=0$.
$\backsim[3$ means:
Example: $f(x)=e^{-x^{2}}$ on the set $[-1,2]$. Endpoktis incluafer
Candiclate points form maximin:

$$
\begin{aligned}
& x=-1 \\
& x=2 \\
& \text { any } x \text { sit. } \quad-2 x e^{-x^{2}}=0, \text { ie } x=0 .
\end{aligned}
$$

Lect.3, Then the "how to tel" part. Vanous methocls

- The extreme value theorem applies here. Evaluate $f(-1), f(0)$ (largest), $f(2)$ (smallest)

$$
x=0 \text { glow. max } \quad x=2 \text { glob. inning Node: }
$$

- The first-denirative test "single variable out",
- The second-daviratire lest.

The first-derirative test (single variable an by)

Check the sion of $f^{\prime}$.
Wite $f^{\prime}$ as faotroslrakes, segh chagnam.
The example: $\quad f^{\prime}(x)=-2 \times \underbrace{e^{-x}}_{>0}$.


This diagram bells wa: globimax for $x=0$.
loo. minn for $x=1, x=2$
Diagram does not tell which point is glob. min. Evaluate $f(2)=e^{-4}<f(-1)=e^{-1}$.
Then $x=2$ is globoid min, since:
For $x \in[0,2) ; \lambda$, so $f(x)>f(2)$
Fur $x \in[-1,0]$ : so $f(x) \geq f(-1)>f(2)$

Second dentatires ( $>1$ vanuble will be move unvobed)
$f^{\prime \prime}=$ the devirative of the derivative

- If $f^{\prime \prime} \leqslant 0$ everywhere. $f$ is concave and any stationaing point will be global maximatum.
- If $f^{\prime \prime} \geqslant 0$ cone.. ce.
and <compat>...<compat>...<compat>... ..... glob. minn
Local version: Let $f^{\prime}\left(x^{*}\right)=0$
If $f^{\prime \prime}\left(x^{*}\right)<0$, resp $>0$
$x^{*}$ is strict local max
resp strict local maim.
From the example $f(x)=e^{-x^{2}}, f^{\prime}(x)=-2 x e^{-x^{2}}$
stationam pt. $x=0 . \quad f^{\prime \prime}(0)=-2 e^{-0^{2}}=-2<0$.
$\Rightarrow$ strict los. max.
(The question about value function properties: late.)
$n$ rancibles (Main focus: $n=2$.)
- Existence: Extreme antre theorem
- What points ot hour to final:

$\rightarrow$ interion points: stakionang. $\frac{\partial f}{\partial x_{i}}\left(\vec{k}^{*}\right)=0$, all $\therefore$
- Classify : Concavity t convexity; second denvatives.

Classification:
Fact: If $f$ is concave (resp. convex) than any statronang point is globe. max

Clear. glob. mason)
Shall caver:

- $2^{n d}$ daniratires antevia form $n=2$
- When $n>2$ : sum of concave Cnesp convex

Critenia for concarity lconvoxitg, $n=2$.
Let $h(x, y)=f_{x x}^{\prime \prime}(x, y) f_{y y}^{\prime \prime}(x, y)-\left(f_{x y}^{\prime \prime}(x, y)\right)^{2}$
If everywhers:

$$
\left.\begin{array}{r}
\text { eveywhere } \\
h \geqslant 0 \\
f^{\prime \prime}=0 \\
f_{4 y}^{\prime \prime} \geqslant 0
\end{array}\right\} \Rightarrow \text { connex }
$$

$$
\left.\begin{array}{r}
h \geq 0 \\
f_{x x}^{\prime \prime} \leq 0 \\
f_{\text {yiy }}^{\prime \prime} \leq 0
\end{array}\right\} \Rightarrow
$$

Ex: $f(x, y)=x^{4}$ is conrex. (hode: $\left.f_{y y}^{\prime \prime} \equiv 0, f_{x y}^{\prime \prime}\right)$
Local $2^{\text {nd }}$ ondm cond's: Let $\left(x^{*}, 4^{* *}\right)$ be a stationony poinat.

- If $h\left(x^{*}, y^{*}\right)>0$ then $\left(x^{*}, y^{*}\right)$ is a
strict local axtheme pount:
a strict loc. max if $f_{x x}^{\prime \prime}\left(x_{x}, y^{*}\right)<0$
a shactiver. min in $\left.f_{x, ~}^{\prime \prime} x^{*}, y^{*}\right)>0$
- If $h\left(x^{*}, y^{*}\right)<0$ then $\left(x^{*}, y^{*}\right)$ is a sadde point:

Saddle point = stattrnang point that is neuther loc. mak nor loc mus.
-" "o comahscom" it h(se, $\left.y^{*}\right)=0$.

## Classifying stationary points - ambition for the (2019) exam (start lecture no. 4)

To do away with the most nitpicking details, this clarifies what you would be expected to manage on an exam. Suppose we have found a stationary point $\mathbf{x}^{*}$ to classify, for a $C^{2}$ function $f$ of $n$ variables.
(I) If $f$ is concave (resp. convex) - and can with《reasonable»skill and effort (see below!) be shown to be so - then you are expected to conclude global max (resp. global min) even if the (II) below fails to conclude. Tools ${ }^{1}$ :

- If $n=1$ : Second derivative. $f^{\prime \prime}(x) \leq 0$ everywhere $\Longleftrightarrow f$ concave. $f^{\prime \prime}(x) \geq 0$ everywhere $\Longleftrightarrow f$ convex.
- If $n=2$ : Let $a=f_{x x}^{\prime \prime}$ and $c=f_{y y}^{\prime \prime}$ and $h=f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-\left(f_{x y}^{\prime \prime}\right)^{2}$. Convex $\Longleftrightarrow a \geq 0, c \geq 0$ and $h \geq 0$ all hold everywhere. Concave $\Longleftrightarrow a \leq 0, c \leq 0$ and $h \geq 0$ all hold everywhere. Note $« h \geq 0 »$ for both.
- Any $n$ : sums of concaves are concave, and sums of convexes are convex.
(II) If item (I) does not apply, then we have the following tools:
- If $n=1$ : first derivative test, and/or $f^{\prime \prime}\left(x^{*}\right)$ (evaluate at the point).
- If $n=2$ : Let $A=f_{x x}^{\prime \prime}\left(x^{*}, y^{*}\right), B=f_{x y}^{\prime \prime}\left(x^{*}, y^{*}\right)$ and $C=f_{y y}^{\prime \prime}\left(x^{*}, y^{*}\right)$ - note, we have inserted for the stationary point and gotten three numbers $A, B$ and $C$.
- If $A C-B^{2}>0$, then either strict local max (if $A<0$ ) or strict local min (if $A>0$ ).
- If $A C-B^{2}<0$, then saddle point (i.e. neither loc. max. nor loc. min)
- if $A C=B^{2}$ : you can stop and declare «no conclusion».

Note this fact: If $f$ has more than one stationary point, but finitely many - then it cannot be concave nor convex, and you can go to (II)! (Indeed, if a convex/concave function has two stationary points, then all the points in between are stationary.)

## What is that «reasonable» thing? Two examples:

Example 1: $f(x, y)=(x-y)^{4}$ has global minimum along the line $y=x$ ( $f$ is zero there and positive otherwise), but let us use the second derivatives to illustrate: $f_{x x}^{\prime \prime}(x, y)=f_{y y}^{\prime \prime}(x, y)=12(x-y)^{2}$ and so both $f_{x x}^{\prime \prime}$ and $f_{y y}^{\prime \prime}$ are everywhere nonnegative. Also, $f_{x y}^{\prime \prime}(x, y)=-f_{x x}^{\prime \prime}(x, y)$, so we have $f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-\left(f_{x y}^{\prime \prime}\right)^{2}=0$ everywhere. Therefore $f$ is convex, and the entire line of stationary points are global minima. Note, $« A C-B^{2} »$ is zero, but we can still conclude!
Example 2: $F(x, y, z)=f(x, y)+g(z), f$ as in Example $1, g(z)=e^{z \cdot(z-2)}$. If $g$ is convex and has a stationary point $z^{*}$, we have global minimum at $\left(t, t, z^{*}\right)$ for every $t \in \mathbf{R}$ (that is, on a line from $\left(0,0, z^{*}\right)$ in the $y=x$ direction, $z=z^{*}$ fixed). Now, $g^{\prime}(z)=2(z-1) e^{z \cdot(z-2)}$ (stationary point for $z=1$ ) and $g^{\prime \prime}(z)=2\left(2 z^{2}-4 z+3\right) e^{z \cdot(z-2)}$. Since $2 z^{2}-4 z+3>0, g$ is convex.

[^0]Example: Find and classify the stantomany poerets
of

$$
\begin{aligned}
& f(x, y)=\left(x^{2}-1\right)^{2}+\left(x^{2} y-x-1\right)^{2} \\
& f_{x}^{\prime}(x, y)=2\left(x^{2}-1\right) \cdot 2 x+2\left(x^{2} y-x-1\right) \cdot(2 x y-1) \\
& f_{y}^{\prime}(x, y)= \\
& \quad 2\left(x^{2} y-x-1\right) \cdot x^{2} . \\
& f_{y}^{\prime}(x, y)=0 \Leftrightarrow \quad x^{2}=0 \quad \text { on } \quad x^{2} y-x-1=0
\end{aligned}
$$

Case $x=0$. Then $f_{x}^{\prime}(0, g)=2 \cdot(-1) \cdot(-1) \neq 0$ no st pt here!

Case $x^{2} y-x=1=0$. Then $f_{x}^{\prime}(x, y)=4 x\left(x^{2}-1\right)$.
Three subbases: $x=0 \quad$ (impossable!), $x=1, x=-1$.

$$
x=1 \text { : then } y=2 ; \quad x=-1 \text { : than } y=0 \text {. }
$$

Two points: ( $-1,0$ ) and $(2,2)$.
To dassifg:

$$
\begin{aligned}
& f_{x x}^{\prime \prime}(x, y)=4 y \cdot(\underbrace{\left(x^{2} y-x-1\right.}_{=0})+\underbrace{4\left(x^{2}-1\right)}_{=0}+8 x^{2}+2(2 x y-1)^{2} \\
& \text { At stationer p }
\end{aligned}
$$

At stationery plo:
so we get $8+2(2 \times y-1)^{2}>8>0$
(\#mot loo max!)

$$
f_{x y}^{\prime \prime}(x, y)=2 x^{2} \underbrace{(2 x y-1)}_{\text {This I forget }}+4 x(\underbrace{\left.x^{2} y-x-1\right)}_{=0 \text { at on d }}
$$


So the $A C-B^{2}=16+4\left(2 x_{y}-1\right)-\left(2\left(2 x_{y-1}\right)\right)^{2}=16>0$.
Both ane strict local man.
Indeed, they are global min: $f(x, y)=\left(x^{2}-1\right)^{2}+\left(x^{2} y-x-1\right)^{2}$ with global min $\Leftrightarrow x^{\prime}-1=0$ AND $x^{2} y-x-1=0$

- prearely those two points!

Notes Two strict local min \& no other stafionong points

- comntemtritive? Would bo unporsoble if $n=1$

Properties of the value function
Ex: We solved max $\left(e^{-x^{2}}-r x\right)$ for $r=0$.
For $\quad \approx 0: V(r) \approx V(0)+r V^{\prime}(0)$.
Can I find b' (0) without solesing VCr) for
Yes.
The envelope theorem: Suppose $\vec{x}^{*}={ }^{*}$ solves
$m a x$
$\vec{x}$
/mm $f(\vec{x}, r)$ lang fixed $r$.
$V(r)=f\left(\vec{x}^{*}(r), r\right)$. Then

$$
\begin{aligned}
& V(r)=f\left(\vec{x}^{\prime \prime}(r), r\right) \ldots f^{\prime} \cdot \frac{d x_{n}^{*}}{d r}+\frac{\partial f}{\partial r}\left(\vec{x}^{*}, r\right) . \\
& V^{\prime}(r)=f_{n}^{\prime} \cdot \frac{d x_{1}^{*}}{d r}+\ldots \text { the For. }
\end{aligned}
$$

Also true for saddle points.
For single raniable : tho that for endpoint max 1 min.
In the example: $V^{\prime}(r)=\left.\frac{\partial}{\partial r}\left(e^{-x^{2}}-r x\right)\right|_{x=x^{*}}=-x^{*}$.

$$
v^{\prime}(0)=x^{*}(0)=0
$$

Constramed maximni. Tocky: equalty cometranets.
Problom: ban $x^{\prime} f(\vec{x})$ subpect to $\quad\left\{\begin{array}{c}g_{1}(\vec{x})=b_{1} \\ \vdots \\ g_{m}(\vec{x})=b_{m}\end{array}\right.$

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \quad n>m
$$

Lagrange's method producas, Candudala points for acl? Not veally, but in Math 2 : Take et as neessan Fo.c.
How to: Form the Legrangian

$$
\begin{aligned}
L(\vec{x})= & f(\vec{x})^{-}-\lambda_{1}\left(g_{1}\left(x_{x}\right)-b,\right) \\
& -\lambda_{m}\left(g_{m}(\vec{x})-t_{m}\right)
\end{aligned}
$$

Conditions: $\quad \frac{\partial L}{\partial x_{i}}=0, \quad$ all $i=1 \ldots \mathrm{~m}$

$$
g_{j}(\vec{k})=b_{j} \quad a l l j=1, \ldots, m
$$

(Tip: elimmake the $\lambda_{i}$.)

Example:

$$
x^{2}+y^{2}+2 z^{2}=4
$$

manx/main $x^{2}+y^{2}+z^{2}$ subject to $x+y+z=3$

- Show that these problems hare al solution. and hind them using Lagrange's methool.
Continuous function, closed and bounded set $\neq \varnothing \leftrightarrow(1,1,1)$ if lx loo $\lg 1$ an col 1 too Cannae, the not
$\Rightarrow$. max a man both exit
To find:

$$
\begin{aligned}
L(x, y, z)=x^{2}+y^{2}+z^{2} & -\lambda\left(x^{2}+y^{2}+2 z^{2}-4\right) \\
& -\mu(x+y+z-3)
\end{aligned}
$$

Conditions:

$$
\begin{align*}
0= & 2 x-2 \lambda x-\mu \\
0= & 2 y-2 \lambda y-\mu \\
0= & 2 z-4 \lambda z-\mu  \tag{IT}\\
& x^{2}+y^{2}+2 z^{2}=4 \\
& x+y+z=3
\end{align*}
$$

subtract I
(然) Rom $\frac{\text { IT }}{\text { E TI }}$ anat
(II') $0=2(y-x)-2 \lambda(y-x) \quad$ when $=2(1-\lambda)(y-x)$
(III') $0=2(z-x)-2 \lambda(2 z-x)$
(II') $\Rightarrow y=x$ ar $\lambda=1$.
Case $y=x$. (IV) then becomes $2 x^{2}+2 z^{2}=4$

$$
\text { (V) - } 2 x+z=3
$$

ingest $z=3-2 x$ in to $x^{2}+z^{2}=2$

$$
x^{2}+9-12 x+4 x^{2}=2
$$

CORRECTION
Comected!
here Was

$$
\begin{aligned}
& \text { here was 1. } \\
& \text { the mol } \\
& 5 x^{2}-12 x+7=0 \Leftrightarrow x=\frac{1}{10}(12 \pm \sqrt{144-140})
\end{aligned}
$$

$x_{1}=1$ yields $y_{1}=1$ and $z_{1}=3-2 x_{1}=1, f(1,1,1)=3$.
$x_{2}=\frac{7}{5}$ yields $y_{2}=\frac{7}{5}$ anal $z_{2}=\frac{15-14}{5}=\frac{1}{5} \quad f\left(\frac{7}{5}, \frac{7}{5}, \frac{1}{5}\right)=\frac{103}{25}(3423)$
conacryay. Case $\lambda=1$; (III') yield $2(z-x)-2(2 z-x)=0 \Leftrightarrow z=0$.
Where! With $z=0$, constroments $x^{2}+y^{2}=4 \quad \& \quad x+9=3$.
Insert: $\quad x^{2}+9-6 x+x^{2}=4, \quad$ "b$-4 a c$ " $=36-40$
No solution hare!
So: $\min$ for $(x, y, z)=(1,1,1)$
max for $(x, y, z)=\left(\frac{7}{5}, \frac{2}{5}, \frac{3}{3}\right)$


[^0]:    ${ }^{1}$ Require $f$ to be defined on a so-called convex set, but let's just assume no holes in the domain of $f$. For $n=1$ : interval!

