














In the interest of time: 
Rules for exponentials (ap+q etc.) 
only mentioned, not listed. 

(Here: 
End of lecture 1, start lecture 2.)









Addendum: analogous for several variables. 
Just put boldface or overarrow on x.



















Classifying stationary points – ambition for the (2019) exam (start lecture no. 4)

To do away with the most nitpicking details, this clari�es what you would be expected to manage on an exam.
Suppose we have found a stationary point x∗ to classify, for a C2 function f of n variables.

(I) If f is concave (resp. convex) � and can with �reasonable� skill and e�ort (see below!) be shown to be so � then you
are expected to conclude global max (resp. global min) even if the (II) below fails to conclude. Tools1:

• If n = 1: Second derivative. f ′′(x) ≤ 0 everywhere ⇐⇒ f concave. f ′′(x) ≥ 0 everywhere ⇐⇒ f convex.

• If n = 2: Let a = f ′′xx and c = f ′′yy and h = f ′′xxf
′′
yy −

(
f ′′xy

)2
. Convex ⇐⇒ a ≥ 0, c ≥ 0 and h ≥ 0 all hold

everywhere. Concave ⇐⇒ a ≤ 0, c ≤ 0 and h ≥ 0 all hold everywhere. Note �h ≥ 0� for both.

• Any n: sums of concaves are concave, and sums of convexes are convex.

(II) If item (I) does not apply, then we have the following tools:

• If n = 1: �rst derivative test, and/or f ′′(x∗) (evaluate at the point).

• If n = 2: Let A = f ′′xx(x
∗, y∗), B = f ′′xy(x

∗, y∗) and C = f ′′yy(x
∗, y∗) � note, we have inserted for the stationary

point and gotten three numbers A, B and C.

� If AC −B2 > 0, then either strict local max (if A < 0) or strict local min (if A > 0).

� If AC −B2 < 0, then saddle point (i.e. neither loc. max. nor loc. min)

� if AC = B2: you can stop and declare �no conclusion�.

Note this fact: If f has more than one stationary point, but �nitely many � then it cannot be concave nor convex, and you
can go to (II)! (Indeed, if a convex/concave function has two stationary points, then all the points in between are stationary.)

What is that «reasonable» thing? Two examples:
Example 1: f(x, y) = (x−y)4 has global minimum along the line y = x (f is zero there and positive otherwise), but let us use
the second derivatives to illustrate: f ′′xx(x, y) = f ′′yy(x, y) = 12(x− y)2 and so both f ′′xx and f ′′yy are everywhere nonnegative.

Also, f ′′xy(x, y) = −f ′′xx(x, y), so we have f ′′xxf
′′
yy −

(
f ′′xy

)2
= 0 everywhere. Therefore f is convex, and the entire line of

stationary points are global minima. Note, �AC −B2� is zero, but we can still conclude!

Example 2: F (x, y, z) = f(x, y) + g(z), f as in Example 1, g(z) = ez·(z−2). If g is convex and has a stationary point z∗, we
have global minimum at (t, t, z∗) for every t ∈ R (that is, on a line from (0, 0, z∗) in the y = x direction, z = z∗ �xed). Now,
g′(z) = 2(z − 1)ez·(z−2) (stationary point for z = 1) and g′′(z) = 2(2z2 − 4z + 3)ez·(z−2). Since 2z2 − 4z + 3 > 0, g is convex.
1Require f to be de�ned on a so-called convex set, but let's just assume no holes in the domain of f . For n = 1: interval!



Wolfram Alpha with the query 
 Hessian matrix of (function expression) 
returns the second derivatives in a matrix, and the "Hessian 
determinant" is the AC-B^2 thing. Click here for example.

https://www.wolframalpha.com/input/?i=Hessian+matrix+of+%28%28x%5E2-1%29%5E2%2B%28x%5E2y-x-1%29%5E2%29


CORRECTION

Plot: click here for link to Wolfram Alpha

https://www.wolframalpha.com/input/?i=stationary+points++%28%28x%5E2-1%29%5E2%2B%28x%5E2y-x-1%29%5E2%29
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