Recall that for homogeneous functions:

"Kino wi one level curve.
know them all":
If \vec{u} and \vec{b} are on the same level comer $f=C$ then, each $t>0$:
$t \vec{u}$ and $b \vec{b}$ are on the Samar level amer $f=D$.

These ave functions that have this property $\rho *$) but that ane hot homogemeons.

Def: A moho f is homathetic if \rightarrow hole.
[The domain must be so that if $\vec{x} \in D$ then $t \vec{x}^{-P} \in D, a l l t \pm 0$]
Alternatively s if f is a an a - to -one [ire. invertible J trapoformation of a homogeneous.

In "most" applications tond for Hath 2 exam promposes - we only consiclen homothetic f that are shicty uncreosing tromsformations of homogeneons tumctions

Example:

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} \ln x_{1}+\ldots+a_{n} \ln x_{n}
$$

Whan? $e^{f(\vec{x})}=x_{2}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}} \quad($ Cobb - Doaghs $)$
is homogeneous, degeer $a_{1}+\ldots t a_{n}$.

Or from the definition:

$$
\begin{aligned}
& f(6 \vec{x})=a_{1} \ln \left(t x_{1}\right)+\ldots+a_{n} \ln \left(t x_{n}\right) \\
& =a_{1} \ln x_{1}+\ldots .+a_{n} \ln x_{n}+\left(a_{1} t+n+a_{n}\right) \ln t . \\
& \text { If } f\left(\vec{b}^{3}\right)=f(b) \text { then } \\
& f(t \rightarrow)=f\left(\min _{0}\right) \quad+\left(a_{1}+\ldots+a_{n}\right) l_{n} t \\
& =f(\vec{r})+\text { sance }=f(t \vec{r})
\end{aligned}
$$

Example $\left(\ln \left(1+\sqrt[35]{x_{1}^{2}+x_{2}^{2}+\ldots x-x_{n}^{2}}\right)\right)^{3}$

- Recall differentials: $d \ln x=\frac{1}{x} d x$ etc.
- Example: For $f>0, x>0: \quad E l_{x} f=\frac{\operatorname{dn} f}{\ln x}$

The elasticity of substitution
Consider a level curve $F(x, y)=C$ for F
 assume:
decreasing in the x y and convex

Question:
Move along the level carve so much that the MRS changes by 1 os.
How much does relative factor use y / k change?

Def: The elasticity of substitution between y and x is $\sigma_{y, x}=E l_{\operatorname{ARS}} y / x$ (along the level camera)

$$
=\frac{d \ln V_{x}}{d \ln \frac{F_{x}^{\prime}}{F_{y}^{\prime}}}
$$

Fact: $\quad \sigma_{y, x}=\sigma_{x, y} \quad$ because $\frac{d \ln x / y}{d \ln \operatorname{Figf}_{x}}=\frac{d(-\ln 4 / x)}{d\left(-\ln \operatorname{F}_{x}^{\prime} f_{y}\right)}$
How to calculate?

- Formula, or
- Man ipulate differenhals

Next example: the latter. (Exercise: same function. use the forminta)

Example: The CES class of fractions,

$$
F(k, L)=A \cdot\left(a k^{-a}+b L^{-Q}\right)^{-m / a}
$$

Show that $\sigma_{\text {aLk }}$ is constant.
Proof: $F_{k}^{\prime}=A \cdot\left(-\frac{m}{Q}\right)\left(a k^{-a}+b L^{-Q}\right)^{-\frac{1}{Q}-1} \cdot a \cdot(-Q) k^{-1-Q}$

$$
\begin{aligned}
F_{L}^{\prime} & =A \cdot\left(-\frac{a}{Q}\right)\left(a K^{-Q}+b L^{-Q}\right) \quad b \cdot(-Q) L^{-1-a} \\
M R S & =\frac{a}{b} \cdot\left(\frac{L}{k}\right)^{B+1} \\
\sigma & =\frac{d \ln 4 / k}{d \ln M R S}=\frac{d \ln 4 / k}{d\left(\ln a+(Q+1) \ln \frac{a}{a}\right)}=\frac{d \ln 6 / 6}{(Q+1) \ln 6 / C} \\
& =\frac{1}{Q+1}
\end{aligned}
$$

Limits

Q1: What do we man by $\lim _{x \rightarrow a} f(x)=L$

$$
\left[\text { av: } \lim _{x \rightarrow \infty^{+}}, \lim _{x \rightarrow-\infty}, \ldots\right]
$$

Q2 : How to compute?

A1: We can get (the value of) $f(x)$ as Close to L as we might wan to,
by merely destructing x to be close to a.

Interpretation:
"error margins"

- One-srided limets: $\lim _{x \rightarrow a^{*}}$ from the right
$\lim _{x \rightarrow \infty} a^{-}$fom the left.
- As $x \rightarrow+\infty$: "large and positine in place of "close to a"

As $x \rightarrow-\infty: " l a n g e$ and hegatire"
Termainology: We say that $\lim _{x \rightarrow 0} f(x)$ exists $(a, \rightarrow-\infty)$
if $L=\lim _{x \rightarrow a} f(x)$ is on woll-defund numbe.
Also we sag: $f(x)$ conrenges to L as $x \rightarrow a_{0}$
If it doesn't convenge to anng $L \in \mathbb{R}$: diranges
Sill we winte, e.g. $\lim _{x \rightarrow 0} x^{-2}=+\infty$
[Sometmes yon cam find "exists ar $=+\infty$ "....]

Noble : $\lim _{x \rightarrow 0} \frac{1}{x}$ does not uderege to $t \infty$ "
(But if surely divinges:)

A2: How to Compenbe?

- Continuous functions $(a t a \in \mathbb{R})$

$$
\lim _{x \rightarrow a} f(x)=f\left(\lim _{x \rightarrow a} x\right)=f(a)
$$

$$
E_{x}: \lim _{x \rightarrow 4} \frac{x-1}{x^{2}+1}=\frac{4-1}{4^{2}+1}=\frac{3}{17}
$$

- As long as both $L=\lim _{x \rightarrow a} f(x)$ and $M=\lim _{x \rightarrow a} g(x)$ exist:
(sums): $\lim _{x \rightarrow a}(f(x) \pm g(x))=L \pm M$ fordunds $\lim _{x \rightarrow a}(f(x) g(x))=L m$
abs? "Ok" if L, M also tor more later!
- If we know that $L=\lim _{x \rightarrow 2} f(x)$ exists
but don't know about $\lim _{x \rightarrow \infty} g(x)$
Sums l "still wal formula":

$$
\lim _{x \rightarrow a}(f(x) \pm g(x))=L \pm \lim _{x \rightarrow \infty} g(x)
$$

- If $\lim _{x \rightarrow 0} g(x)$ exists: ok.
- If $\lim _{x \rightarrow \infty} g(x)=+\infty ; L \pm \infty$
$-\infty:<\bar{t} \infty$
- If deranges othenusize:
so does him (fug)
products): still valid prourded $L \neq 0$.
Beware " 0 . $\infty^{\text {". }}$
(ration) "Beware " $\frac{0}{0} "$ and " $\pm \frac{\infty}{\infty}$ ".

Indeterminate forms" lumits that $\rightarrow " \frac{0}{0}$ " ar " $\frac{\infty \text { " }}{\infty}$ on " ∞. 0 " on " $\infty-\infty$ " n...

Ex: What is $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{3}-5 x^{2}+3 x+9}$?
Ting to unsent $x=3$; yuelds $\frac{0}{5}$,
For polymomeials: If p(a) =0 them $p(x):(x-a)$ is jooby momiel.
Long diwision:
winthen haghostomoch to lowest

$$
\begin{aligned}
& \left(x^{2}-9\right):(x-3)=x+3 \\
& \left.\frac{x^{2}-3 x}{0 x^{2}+3 x-9} \frac{\left(x^{3}-5 x^{2}+3 x+9\right):(x-3)}{0} \right\rvert\, \frac{x^{3}-3 x^{3}}{-2 x^{2}+3 x+4}
\end{aligned}
$$

So $\frac{x^{2}-9}{x^{3}-5 x^{2}+3 x+9}=\frac{(x-3)(x+3)}{(x-3)\left(x^{2}-2 x+3\right)}$
and $\lim _{x \rightarrow a}[$ thens $]=\lim _{x \rightarrow 3} \frac{x+3}{x^{2}-2 x+3}=\frac{6}{6}$
divenges

- For more general Rmotions:

L'Hôpital's nule I): If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
Cand if the latter does not exibt, menther doos the former)

Example: as previocas.

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{3}-5 x^{2}+3 x+9} \quad=\frac{0}{0} \\
= & \lim _{x \rightarrow 3} \frac{2 x}{3 x^{2}-10 x+3}=\frac{6}{0} \quad \text { dredges }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: } \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}={ }^{4} \frac{0}{0} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{1}=e^{0}=1 \\
& \text { Ex: } \quad \lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}="_{0}^{0} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\frac{0^{\prime}}{0} \quad \text { Can use } e^{\prime H} \text { Hospital's } \\
& \text { rule agon } \\
& =\frac{1}{2} \text { from prenons ex. }
\end{aligned}
$$

Move l'tôpitol's inkle: The formula $\lim \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$
holds for "on", but also for " $\pm \frac{\infty}{\infty}$ ".
Provilece "O$"$ or " $\pm \frac{\infty}{\infty}$ ": Mule

- applies to $\lim _{x \rightarrow a^{+}}$an $\lim _{x \rightarrow a^{-}}$
- applies to $\lim _{x \rightarrow-\infty}$ an $\lim _{x \rightarrow \infty}$
- Can be adapted to " $0 . \infty^{n}$

$$
\begin{gathered}
\text { wite as " } 0-\frac{1}{o} " \\
\text { on " } \frac{1}{\infty} \cdot \infty "
\end{gathered}
$$

" 1 " "
wite as $e^{\infty \ln 1}$
ie: Fan $\lim _{f} f(x)^{g(x)}$ where $f \rightarrow 1, g \rightarrow \infty$
Wite $e^{\lim g(x) \ln f(x)}$

$$
\begin{aligned}
& \text { "o " } \\
& 0_{\infty} \\
& \alpha_{0}
\end{aligned}
$$

wite as $e^{0 \ln 0}$
wattle as $e^{0 \ln \infty}$
$\theta\left(B u t\right.$ ∞ - θ° could be unkinand t ${ }^{9}$

Example: $\lim _{x \rightarrow+\infty} x^{-1 / x}=e^{\lim _{x \rightarrow+\infty}\left(-\frac{1}{x} \ln x\right)}, \quad \frac{\ln x}{x} \Rightarrow \frac{\infty}{\infty}$.
So $\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$
Answer $=e^{-0}=1$
important case: Let $P>0, a>0$ (constants)
Then $\lim _{x \rightarrow+\infty} \frac{x^{p}}{e^{a x}}=0$. The exponential dominates polynomial growth.

Also: For any $r>0, \lim _{x \rightarrow+\infty} \frac{\ln x}{x^{r}}=0$.
Prot: $\frac{d}{\infty}$, e'topipital omen.

Example:

$$
\lim _{x \rightarrow \infty} \frac{x^{\pi}(\ln x)^{e}}{x^{-2019} e^{x / 2019}}
$$

Had it been " x^{e} " rather than $(\ln x)^{e}$
We would have $\lim _{x \rightarrow+\infty} \frac{x^{2019+\pi+e}}{e^{x / 2019}}=0$
because exponential decay bails the power.
"Fancy fix": Since $x \geq \ln x$ (all x, but what

$$
0 \leqslant \frac{x^{\pi}(\ln x)^{e}}{x^{-2019} e^{x / 2019}} \leqslant \frac{x^{\pi+e}}{x^{-2019} e^{x / 2019}}=\frac{x^{2019+\pi+e}}{e^{x / 2019}}
$$

$$
\text { which } \rightarrow 0
$$

$\prod_{\text {This line added }}^{\text {afterwards }}\left(\left[.\right.\right.$. the $\left(\frac{\ln x}{x}\right)^{e} \frac{x^{\pi+e}}{\ldots}$ means I've expanded by $\left.\frac{x^{e}}{x^{e}}\right)$
[Revised - a bit more text added] of discussion in class

One page became nearly two after writing out in more detail. Next page bottom: I added a twist to the $\ln (3 x) / \ln \left(5 x^{2}\right)$ problem - letting $x->0^{+}$rather than to infinity.

Example without with l'Hôplel:
(a) Find $\lim _{x \rightarrow+\infty} \frac{2019 x^{2018}+x^{2019}}{e^{-x}+x^{2019}} \quad$ without e l'busprtal.
(b) Find $\lim _{x \rightarrow+\infty}\left(\frac{1}{x} \ln \left(1+x^{ \pm 2019} e^{x}\right)\right)$, cases ii) expanemat $=2019$
(a) The fastest-growning terms? $2019^{\text {th }}$ power. Multiply by $\frac{x^{-2019}}{x^{-2019}}: \frac{\left(2019 x^{2019}+x^{2019}\right) x^{-2019}}{\left(e^{-x}+x^{2019}\right) x^{-2019}}=\frac{\frac{2019}{x}+1}{x^{-2019} e^{-x}+1}$
Take $\lim _{x \rightarrow+\infty}: \quad \frac{2019}{x} \rightarrow 0, \quad x^{-2019} e^{-x} \rightarrow 0, \quad$ answer: $: \frac{\Delta+1}{0+1}=1$.
(b) Case $i)$: Since $1+x^{2019} e^{x} \rightarrow+\infty, \frac{\ln \left(1+x^{2019} e^{x}\right)}{x} \rightarrow x^{2019} x^{2019} x^{\prime \prime}$ Q' Hop.tal: $\lim _{x \rightarrow+0} \frac{\frac{2019 x^{2018} e^{x}+x^{2019} e^{x}}{1+x^{2019} e^{x}}}{1}$
arriving af the lint from (as), ustrich
$\left[\begin{array}{ll}\text { ax. } \\ \text { Cont }\end{array}\right]$
Case ii): We need to check whether $\ln .\left(1+x^{-2019} a^{x}\right) \rightarrow \infty$
$\Leftrightarrow \lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{2019}}=+\infty$, which it tax : exp growth laminates the pore paction.

Then we have " $\frac{\infty}{\infty}$ " and cam use l'tu'pital to opt

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{\frac{-2019 x^{-2020} e^{x}+x^{-2019} e^{x}}{1+x^{-2019} e^{x}}}{1} \quad \text { agurn, multiply then } \\
& \text { log } \frac{e^{-x}}{e^{-x}} \text { there two coubl have }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow+\infty} \frac{-2019 x^{-2020}+x^{-2019}}{e^{-x}+x^{-2019}} \text {. Much line (a); multiply by } \frac{x^{2019}}{x^{2019}}
\end{aligned}
$$

$=\lim _{x \rightarrow+\infty} \frac{-2019 / x+1}{x^{2019} e^{-x}+1}$. Again, the \exp wins: $\left(x^{2019} e^{-x}\right) \rightarrow 0$

$$
=\frac{0+1}{0+1}=1 .
$$

Ex: In class - next page - I dud $\lim _{x \rightarrow+\infty} \frac{\ln 3 x}{\ln 5 x^{2}}$. Let me do the example
added
hater l'tápital method too, but torn a thant: $h_{x \rightarrow 0^{+}}$instence. Still $\frac{\infty}{\infty}$, so: later

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln \left(\frac{3 x)}{\ln \left(5 x^{2}\right)}\right.}{\lim _{x \rightarrow \infty} \frac{1 / x}{10 x / 5 x^{2}}} \lim _{x \rightarrow 0^{+}} \frac{1}{2}=\frac{1}{2}
$$

Ex: $\lim _{x \rightarrow+\infty} \frac{\ln (3 x)}{\ln \left(5 x^{2}\right)}=\lim _{x \rightarrow+\infty} \frac{\ln 3+\ln x}{\ln 5+\ln x}=\lim _{x \rightarrow+\infty} \frac{\frac{\ln 3}{\ln x}+1}{\frac{\ln 5}{\ln x}+2}=\frac{1}{2}$
"Pitfalls" of l'tûpital's me:

- Ton MUST check - and on the exam Claim to have checked - that you get" $\frac{0}{0}$ "or $\pm \frac{\infty}{\infty}$ "
\rightarrow It's $\frac{f^{\prime}(x)}{g^{\prime}(x)}$, not $\left(\frac{t}{g}\right)^{\prime}$.
- Sometiones l'Häpital wont "kelp" - expressisus ming ht "get worse".
- Sometimes you have to reunite first and then l'luspral andlor: in between successive appheations ... and that " ∞ - $\infty^{4} \ldots$?
$\infty-\infty$ examples:
(a) $\lim _{x \rightarrow-\infty}\left(e^{-x}+x^{3}+x^{2}\right)$
(b) $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+p x+q}-x\right)$
(a) As $x \rightarrow-\infty, e^{-x} \rightarrow+\infty \quad$ "as $\lim _{z \rightarrow+\infty} e^{z: "} i \quad$ "fast".
-1. - $x^{3}+x^{2} \rightarrow-\infty$ not so fast.
Wirte $e^{-x} \cdot[1+\underbrace{\left(x^{3}+x^{2}\right)}_{-\infty, \infty} e^{x}] \Rightarrow{ }^{n}+\infty \cdot[1+0]$ "

$$
\begin{aligned}
& \text { langest ander } \leftarrow \text { poignimial } \underset{\text { exponer }}{\rightarrow} \\
& \text { dominales as } x \rightarrow-\infty \\
& \rightarrow \infty
\end{aligned}
$$

(b) For "such" problems, $\sqrt{a}-\sqrt{b}=\frac{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}{\sqrt{a}+\sqrt{b}}=\frac{a-b}{\sqrt{a}+\sqrt{b}}$

We get $\lim _{x \rightarrow+\infty} \frac{x^{2}+p x+q-x^{2}}{\sqrt{x^{2}+p x+q}+x}=\lim _{x \rightarrow+\infty} \frac{p+q / x}{\sqrt{1+\frac{p}{x}+\frac{q}{x^{2}}}+1}=\frac{p}{2}$

