LA lectures 2 and 3 (Matrices): Handwritten notes & slides

Like for vectors, there are some slides, and some handwritten.

This file compiles notes largely from LA lectures 2 and 3: handwritten parts first (largely opposite to lectures)

- PDF file pages 2–9: handwritten.
 - Lecture 3 started midway page 5.
 - Page 9 was the end of lecture 3, but could just as well be omitted; see notes for lecture 4 instead.
- Page 10 ff. are the slideset. Repaginated to fit PDF page numbers.
 - Update October 17th with a couple of "priority clarifications": boxes on green background slides 14 and 21

Matrices

Def: a matix of order uxn is a rectangular array of m rows and n columns of numbers.

 $\overrightarrow{H} = \begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix}$

Elements: the numbers, indexed by position, steading top-left. $h_{z_1} = 2e$

Can specify by elements. See stides.

Defs: Transpose: A : flip nowslood's, see sticles.

| Full matrix: Omn, mxn with all elements O
| Gene matrix): In nxn, equal to (seroes 1)
| elements (six) = 1, all others = 0.
| main dragonal of a square lnxn) matrix.

Equality; Scaling; Defined clement-wise. See slicles. A+B require A, B to have same order.

Rules: "nice". See sholes.

Vectors revisited: Row vector: Column reabor :

From how on: Vectors default to columns; Unless otherwise specified, " " means column vector.

Rows: X Transpose of column rector.

Might write, to some space: $\overrightarrow{X} = (1, 2, 3)$

Matrix multiplication. The matrix product IB is defined iff À is mxb, B is mxp # of alls # of nows. If so, $\vec{C} = \vec{A} \vec{B}$ is max P Ci: = Pi. kj , where i' = now number i from I Ki = Column number j from B Examples: the "bottom-leftmost" element of $\vec{I} = \vec{I} = (\vec{o}) (\vec{o})$ dement #(2,1) = (0,1) . (1,0) = 0 $\vec{I}_2 \vec{H} = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2018 & 9 & 25 \\ 22 & -1.4 & 5 \end{pmatrix}$ element #(2,1) = (0,1). (2018, 2e) = 2e 20.2018 - 9.1.4 +5.28 = -71 -7 (2018 2e (2018) 9 25)

Element (3,1)

TO18-25 + (0e)

Dot products as matrix products: same order
$$\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{v}$$
 (if \vec{u} , \vec{v} columnization)

Strictly speaking, this is a minor cheat - a common one that you are allowed to! The left-hand side is a number. The right-hand side is a one-by-one matrix, i.e. a box with a single number in it. It is common not to distinguish between such a matrix $\mathbf{A} = (a)$ and the number a. They are even used for scaling, e.g. $\mathbf{b}'\mathbf{M}\mathbf{b}$ v scales v by the number $\mathbf{b}'\mathbf{M}\mathbf{b}$. This does not involve any matrix product between \mathbf{b} and \mathbf{v} .

[Lecture #3 started here]

Multiplication "how to " (by example)

A B where
$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Top-left element; [top row] $\begin{cases} eft_{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$

$$= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Top-left element; Itop row] $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0$

$$A^{M}$$
 color A^{M} A^{M}

$$product = \begin{pmatrix} 12 & 6 & 3 & 0 \\ 4 & 2 & 0 & 0 \\ 0 & 6 & 0 & 6 \\ 20 & 12 & 14 & 0 \end{pmatrix}$$

Ex:
$$\overrightarrow{A}$$
 $\begin{pmatrix} 4 & 1 & 20 \\ 4 & 2 & 00 \\ 4 & 3 & 10 \end{pmatrix}$ changing a single element of \overrightarrow{B} Only 3rd column changes, into $\overrightarrow{A}\begin{pmatrix} 2 \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 0 \\ 4 \end{pmatrix}$

About rules for makix multiplication

* Some rules one "as you would expect", like \vec{A} $(\vec{R}+\vec{c}) = \vec{A}\vec{B} + \vec{A}\vec{c}$. See 3(1)

* Bewere what you are not allowed to.

= AB + BA except by connectable

... hot even when both A, B are hxn.

- Don't divide by matrices

$$\Rightarrow \vec{A}^2 = \vec{0}$$
 does not imply $\vec{A} = \vec{0}$.

> squaring only possible for uxn.

SEU: if \vec{C} has an inverse \vec{C}^{-1} , then $\vec{A}\vec{C} = \vec{D}\vec{C} \iff \vec{A} = \vec{D}$.

Briefly on inverse matrices. Defin: Given a matrix A. If there exists a matrix \vec{B} s.f. $\vec{A}\vec{B} = \vec{B}\vec{A} = \vec{I}$ then we call B the inverse of A, and devote it A. Fact 2: Only square matrices can possibly have inverses. Fact 2: If A is nxn and $\overrightarrow{AB} = \overrightarrow{1}$ then \$ - ' exists and equals \$. Example: Because (21)(a 5)=(a 5) = (a 26+d) $= \overrightarrow{I}_2 \cdot f \quad \alpha = d = 1, \quad b = 0, \quad c = -2 : \quad \left(\begin{array}{c} 1 & 0 \\ 2 & 1 \end{array}\right)^{-1} = \left(\begin{array}{c} 1 & 0 \\ -2 & 1 \end{array}\right)$ (Wan 1 ... at and a late (-21) (21)

Yikes, missed the scan. It says you need not calculate reverse order of multiplication.

LA lecture 2: Matrices: what for?

What? a rectangular array of \mathfrak{m} rows and \mathfrak{n} columns of numbers.

What is it good for? (Putting numbers in boxes, huh? Apart from compact notation as bookkeeping tool?)

We shall write the linear equation system

$$\begin{aligned} a_{11}x_1+\ldots+a_{1n}x_n&=b_1\\ &\vdots &\vdots &a_{m1}x_1+\ldots+a_{mn}x_n&=b_m \end{aligned} \text{ as } \mathbf{A}\mathbf{x}=\mathbf{b}$$

• Yesterday: manipulation tools for vectors (budgets, ...). Now: manipulation tools for matrices, and then: use them to solve and/or characterize the solution/solvability of $\mathbf{A}\mathbf{x} = \mathbf{b}$.

(Other courses? If a random vector X has covariance matrix W, then the random variable $Y=c\cdot X$ (with c nonrandom) has variance $c\cdot (Wc)$...)

LA lecture 2: Matrices: definition

Definition: a matrix of *order* $\mathfrak{m} \times \mathfrak{n}$ (read: " \mathfrak{m} by \mathfrak{n} ") is a rectangular array of \mathfrak{m} rows and \mathfrak{n} columns of numbers.

• **Example:** This example matrix is 2×3 :

$$\mathbf{H} = \begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix}$$

- Elements: The numbers, indexed by (rownumber, column number), indexing counted from top-left.
- **Notation:** We write a_{ij} for the elements of **A**. (" $a_{i,j}$ " if needed). Example: for **H** above, $h_{21} = 2e$.
- Specification by elements: We can specify a matrix by specifying the elements individually.

Examples: write down the 3×2 matrices U and V defined by $u_{ij} = i - j$ and $v_{ij} = (-1)^{i+j}$.

LA lecture 2: Matrices: equality, transpose

from previous page:

$$\mathbf{U} = \begin{pmatrix} 1 - 1 & 1 - 2 \\ 2 - 1 & 2 - 2 \\ 3 - 1 & 3 - 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 2 & 1 \end{pmatrix}, \quad \mathbf{V} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}$$

Equality: element-wise. We have $\mathbf{A} = \mathbf{B}$ iff $a_{ij} = b_{ij}$, all i, j (orders must be the same).

Definition: the *transpose* \mathbf{A}' of the $m \times n$ matrix $\mathbf{A} = (a_{ij})$ is $n \times m$ with elements $b_{ij} = a_{ji}$. We call \mathbf{A} *symmetric* if $\mathbf{A}' = \mathbf{A}$.

[The prime symbol is not a derivative. No confusion as long as we keep linear algebra and analysis separated!]

• **Example:** if
$$\mathbf{H} = \begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix}$$
, then $\mathbf{H}' = \begin{pmatrix} 2018 & 2e \\ 9 & -1.4 \\ 25 & 5 \end{pmatrix}$

• Exercise: Explain why $(\mathbf{A}')' = \mathbf{A}$.

LA lecture 2: Vectors as matrices. Rows & columns.

Vectors recast: A row vector is a $1 \times n$ matrix. A column vector is an $m \times 1$ matrix.

- The transpose of a row vector is a column vector.
 The transpose of a column vector is a row vector.
- Vectors default to columns from now on.

To specify a row vector, I will use a prime.

- **Example:** The first row of the example matrix \mathbf{H} is $\mathbf{r}_1' = (2018 \ 9 \ 25)$. Here, \mathbf{r}_1 is a column, namely $\mathbf{r}_1 = \begin{pmatrix} 2018 \ 9 \ 25 \end{pmatrix}$.
- To save space, you can specify a column x as e.g. $x = (1 \ 2 \ 3)'$. (Or, comma-separated.)

Noticed? We can specify a matrix by its rows or its columns.

• Example: H is given by its rows $\mathbf{r}_1' = (2018 \ 9 \ 25)$ and $\mathbf{r}_2' = (2e \ -1.4 \ 5)$. (*Enumeration matters!!*) Alternatively, by its columns $\mathbf{c}_1 = (\begin{smallmatrix} 2018 \\ 2e \end{smallmatrix})$, $\mathbf{c}_2 = (\begin{smallmatrix} 9 \\ -1.4 \end{smallmatrix})$ and $\mathbf{c}_3 = (\begin{smallmatrix} 25 \\ 5 \end{smallmatrix})$.

LA lecture 2: square matrices will turn out quite significant

Definitions: ("square" and "identity" are musts!)

- A matrix S is square if it is $n \times n$. The elements s_{ii} (i.e., s_{ij} with i = j) are called the main diagonal elements.
- A (necessarily square) matrix S is called *symmetric* if S' = S.
- A (necessarily symmetric) matrix \mathbf{D} is *diagonal* if $d_{ij} = 0$ whenever $i \neq j$ (the "off-diagonal" elements are zero)
- The *identity matrix* I_n of order $n \times n$ is diagonal with elements = 1 on the main diagonal.

$$\begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}; \qquad \begin{pmatrix} 14 & 0 & 0 \\ 0 & -e & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(asterisks indicate the main diagonal; a diagonal matrix; I_3 .)

We often say "order n identity" rather than " $n \times n$ ", and write I without subscript if order is understood.

LA lecture 2: Matrices: scaling and addition.

First:

Definition: The order $m \times n$ **zero (/null) matrix 0_{mn} (denoted simply 0 if order is understood), has all elements equal to zero.**

Scaling is defined element-wise: $C=\alpha B$ has elements $c_{\mathfrak{i}\mathfrak{j}}=\alpha b_{\mathfrak{i}\mathfrak{j}}.$

Addition is defined element-wise, provided **A** and **B** of same order: C = A + B has elements $c_{ij} = a_{ij} + b_{ij}$. And: A - B = A + (-B).

$$lpha 0 = 0$$
 and $0A = 0$ and $1A = A$

$$(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})=\mathbf{C}+(\mathbf{B}+\mathbf{A}). \text{ Write: } \mathbf{A}+\mathbf{B}+\mathbf{C}.$$

$$(\alpha + \beta)(\mathbf{A} + \lambda \mathbf{B} + \mathbf{0}) = (\alpha \lambda + \beta \lambda)\mathbf{B} + \alpha \mathbf{A} + \beta \mathbf{A}$$

Subtraction: $\mathbf{A} - \mathbf{B} = \mathbf{A} + (-1)\mathbf{B}$. And $\mathbf{A} - (-\mathbf{B}) = \mathbf{A} + \mathbf{B}$.

Downscaling: $\frac{1}{\alpha}\mathbf{A}$ is OK for $\alpha \neq 0$.

and for transposition: $(\alpha A)' = \alpha A'$ and (A + B)' = A' + B'. 15

LA lecture 2: matrix multiplication I

The matrix product $\mathbf{A}\mathbf{B}$ is defined only iff

the number of columns of (the left) ${\bf A}$ equals the number of rows of (the right) ${\bf B}$.

That is: A is $\mathfrak{m} \times \mathfrak{n}$ and B is $\mathfrak{n} \times \mathfrak{p}$. (Note where the " \mathfrak{n} " occurs!)

Definition: The product ${\bf C}={\bf A}{\bf B}$ of an $m\times n$ matrix ${\bf A}$ and $n\times p$ matrix ${\bf B}$, is $m\times p$ with

$$egin{aligned} c_{ij} &= \mathbf{r}_i \cdot \mathbf{k}_j, & \text{where} \\ \mathbf{r}_i' & \text{is the ith row of } \mathbf{A}, \text{ and} \\ \mathbf{k}_j & \text{is the kth column of } \mathbf{B}. \end{aligned}$$

Examples / not? Let
$$\mathbf{H} = \begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix}$$
 and $\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Which are well-defined of $\mathbf{I}_2\mathbf{I}_2$, $\mathbf{H}\mathbf{I}_2$, $\mathbf{I}_2\mathbf{H}$, $\mathbf{H}\mathbf{H}$, $\mathbf{H}\mathbf{H}'$, $\mathbf{H}'\mathbf{H}$?

LA lecture 2: matrix multiplication II

Cont'd: Let
$$\mathbf{H} = \begin{pmatrix} 2018 & 9 & 25 \\ 2e & -1.4 & 5 \end{pmatrix}$$
 and $\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Of each of those which are well-defined among $\mathbf{I}_2\mathbf{I}_2$, $\mathbf{H}\mathbf{I}_2$, $\mathbf{I}_2\mathbf{H}$, $\mathbf{H}\mathbf{H}$, $\mathbf{H}\mathbf{H}'$, $\mathbf{H}'\mathbf{H}$: calculate the "bottom–leftmost" element.

Example (small): Could AB be a 1×1 matrix? Hint: dot product?

Example ("big"?): Calculate
$$\mathbf{AB}$$
 where $\mathbf{A} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 2 & 2 & \dots & 2 \end{pmatrix}$ has 2018 columns and \mathbf{B} is 2018 \times 3 with all elements b_{ij} equal to 1.

LA lectures 2&3: matrix multiplication "howto"

What is the third row of the following matrix product? What is the fourth column? Then, start calculating from top-left:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 4 & -5 & 6 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 & 0 \\ 4 & 2 & 0 & 0 \\ 4 & 3 & 1 & 0 \end{pmatrix} = \begin{pmatrix} ? & ? & ? & 0 \\ ? & ? & ? & 0 \\ 0 & 0 & 0 & 0 \\ ? & ? & ? & 0 \end{pmatrix}$$

How to calculate? For the first column of the product, you need the left matrix and the first column of the right:

the left matrix and the first column of the right:
$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
4 & -5 & 6
\end{pmatrix}
\begin{pmatrix}
4 \\
4 \\
4
\end{pmatrix}
=
\begin{pmatrix}
4 + 4 + 4 \\
0 + 4 + 0 \\
0 + 0 + 0 \\
16 - 20 + 24
\end{pmatrix}$$

Then on to the second column. Though you know a few "0" elements.

LA lectures 2&3: multiplication rules

Rules: Let α and β be numbers. Suppose A being $m \times n$, and suppose for each formula that A,B and C have orders such that sums and products *are well-defined*. Then:

$$\begin{array}{ll} \mathbf{0}_{k,m}\mathbf{A} = \mathbf{0}_{k,n} \text{ and } \mathbf{A}\mathbf{0}_{n,p} = \mathbf{0}_{m,p}. & \text{(Note: orders of "0"!)} \\ \mathbf{I}_m\mathbf{A} = \mathbf{A} = \mathbf{A}\mathbf{I}_n & \text{(Note: orders of "T"!)} \\ (\alpha\mathbf{A})(\beta\mathbf{B}) = (\alpha\beta)\mathbf{A}\mathbf{B}, & \text{we drop the parentheses: } \alpha\beta \ \mathbf{A}\mathbf{B}. \\ \mathbf{A}(\mathbf{B}+\mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C} & \text{and } (\mathbf{A}+\mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C} \\ \bullet & \text{Note: } \mathbf{A}\mathbf{B} + \beta\mathbf{B} = (\mathbf{A}+\beta\mathbf{I}_n)\mathbf{B} & (\mathbf{A} \text{ necessarily } n \times n. \\ & \text{Take care } \textit{not} \text{ to write the ill-defined "A plus β" times $\mathbf{B}.)} \\ \mathbf{A}(\mathbf{B}\mathbf{C}) = (\mathbf{A}\mathbf{B})\mathbf{C}, & \text{we drop the parentheses: } \mathbf{A}\mathbf{B}\mathbf{C}. \\ (\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}', \text{ so also } (\mathbf{A}\mathbf{B}\mathbf{C})' = \mathbf{C}'\mathbf{B}'\mathbf{A}' \\ \end{array}$$

Multiplication of squares: AA exists iff A is square. For square matrices, we write A^k for the k-fold product $AA \cdots A$ $(k \in \mathbb{N})$.

Small exercise: Explain why **AA**['] always exists and is symmetric.

LA lectures 2&3: matrix multiplication: INVALID operations

Take care not to apply bogus rules:

- Matrix multiplication is *not* performed element-wise, not even when A, B both $n \times n$. (Exercise: what if both are diagonal?)
- Except "by coincidence", $AB \neq BA$.
 - Even when both products are well-defined and of the same order i.e., both $\bf A$ and $\bf B$ are $n\times n$ the products are usually unequal. (Calculate: $\bf A=(\begin{smallmatrix}1&0\\0&0\end{smallmatrix}), \, \bf B=(\begin{smallmatrix}0&1\\0&0\end{smallmatrix}) \, \dots \, ?)$
 - Exercise: for numbers we have $\alpha^2 \beta^2 = (\alpha \beta)(\alpha + \beta)$ and formulae for squares of sums/differences are they valid if α and β are replaced by $n \times n$ matrices A and B?
- ullet Do not divide by matrices! Leave AC=DC as-is ... for now.
 - Later: criteria for when that is indeed \iff A = D. But even then, you cannot slash C off CA = BC nor from ACA = BCB.
 - (But 1×1 s that are (non-zero!) numbers? ... ?)
- It is possible that $A^2 = 0$ even when all $a_{ij} \neq 0$. Example: $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. (But $A'A \neq 0$ for $A \neq 0$, cf. dot product.)

Some terminology, linear transformations and eq. systems

This slide quickly brushed over in lecture 3 and is not crucial. (One important item that was originally here, is also in lecture 4 slides.)

Terminology: multiplication "does not commute"; Fix C. To get \mathbf{LCR} , we "left-multiply by \mathbf{L} " and "right-multiply by \mathbf{R} ". (Alternative phrases: pre-multiply/post-multiply.)

Matrix multiplication can be thought of as linear transformation, and the *only* linear transformatios ("functions") from \mathbb{R}^n to \mathbb{R}^m , are by some matrix multiplication taking x in and returning Ax.

- The Math2-relevant consequence: The only possible linear equations for $\mathfrak n$ unknowns x, are of the form Ax = b.
- Lecture 4: an algorithm to solve.