Linear equation systems:
A
$$\overline{x} = \overline{B}$$

Kethod: Gansson Elimination.

First: When an equation says
 $O = C$ something nongero]:
Stop, declare "no solution".
 \cdot if and when an equation says
 $O = O$
 $delele$ it.
 E if nothing left: $MR \xrightarrow{\times} solve.$]
 $Openations$ to use
 $Gometricent$ "any mented
 $Openations$ to use
 $Gometricent$ "
 $Som eq. system or on ($\overline{A} : \overline{B}$)
 $*$ interchange / surtich
equations
 $*$ interchange / surtich
 $equations$ rows of $(\overline{A} : \overline{B})$
 $*$ solve a nonzero number.
 $*$ add a scaling of one eq. or on wor.$

Now you can "solve bottom - up".
() Eliminale upwards See example:

$$\begin{aligned}
& (matrix uotation) \\
& (0 & 1 & 2 \\
& 0 & 1 & 3 \\
& 1 & 1 & 1 \\
\end{aligned}$$

$$\begin{aligned}
& (\overrightarrow{A}:\overrightarrow{b}) = \begin{pmatrix} 0 & 1 & 2 & | & 4 \\
& 0 & 1 & 3 & | & 4 \\
& 1 & 1 & 1 & 2 \\
& (\overrightarrow{A}:\overrightarrow{b}) = \begin{pmatrix} 0 & 1 & 2 & | & 4 \\
& 0 & 1 & 3 & | & 4 \\
& 1 & 1 & 1 & 2 \\
& (\overrightarrow{a}:\overrightarrow{b}) = \begin{pmatrix} 0 & 1 & 2 & | & 4 \\
& 0 & 1 & 3 & | & 4 \\
& 0 & 1 & 3 & | & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 1 & 2 & 1 & 4 \\
& 0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -1 & 0 \\
& & (0 & 0 & -$$

$$\begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 7 \\ 0 & 0 & 7 \\ 0 & 0 & 7 \\ 0 & 0 & 7 \\ 0 & 0 & 7 \\ 0 & 0 & 7 \\ 0 & 0 & 7 \\ 0 & 0 \\ 0 &$$

Example Matrix inversion For each E = R, find the inverse of $\vec{A} = \vec{T}$ $\frac{1}{4} \frac{1}{2} \frac{1}{3} \frac{1}{1} \frac{1}{0} \frac{1}{0} \frac{1}{4}$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 & 2 & -1 \\ 0 & 2-6 & 3-6 & 1 & -4 & 0 \end{pmatrix} \begin{pmatrix} t-2 \\ 0 & 1 & -2 & 0 & 2 & -1 \\ 0 & 0 & 7-36 & 1 & 6-4 & 2-6 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 2 & -1 \\ 0 & 0 & 7-36 & 1 & 6-4 & 2-6 & -\frac{1}{2-36} & for & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36 & 1 & 7-36 & 1 & 7-36=0 \\ 14 & 7-36$$

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 & 2 & -1 \\ 0 & 0 & 1 & \frac{1}{2-3\epsilon} & \frac{2-\epsilon}{2-3\epsilon} & 2 & -1 \\ 2 & -1 & \frac{1}{2-3\epsilon} & \frac{2-\epsilon}{2-3\epsilon} & 2 & -1 \\ \end{pmatrix}$$

 $\begin{pmatrix} 1 & 1 & 0 & \frac{-1}{7-3\epsilon} & \frac{11-4\epsilon}{7-3\epsilon} & \frac{\epsilon-2}{7-3\epsilon} \\ 0 & 1 & 0 & \frac{2}{7-3\epsilon} & \frac{3-2\epsilon}{7-3\epsilon} & \frac{\epsilon-3}{7-3\epsilon} \\ 0 & 0 & 1 & \frac{1}{7-3\epsilon} & \frac{\epsilon-4}{7-3\epsilon} & \frac{2-4}{7-3\epsilon} \\ 1 & \frac{1}{7-3\epsilon} & \frac{\epsilon-4}{7-3\epsilon} & \frac{2-4}{7-3\epsilon} \\ 1 & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{2-4}{7-3\epsilon} \\ 1 & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} \\ 1 & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} \\ 1 & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon} \\ 1 & \frac{1}{7-3\epsilon} & \frac{1}{7-3\epsilon}$

This slide fixed after lecture.