Linear equation systems:

$$
\vec{A} \vec{F}=\vec{B}
$$

Method: Gaussian Eliminakon.
First: if when an equation sags
$0=$ [something nonzero]:
Stop, declare "no solution'.

- If and when on equation says

$$
0=0
$$

delete it.
[If nothing left: Al \vec{x} solve.]
Operations to use
"augmented coefficient "
\rightarrow on eq. system on on ($\vec{A}: \vec{B})$

* Interchange (switch \quad equations of $(\vec{A}: \vec{B})$
* Scale an eq. on a row by a nonzero number.
* add a scaling of one eq. or one vow to another e_{q} (row.

Algorithm ! cookbook
Start with top-left element:
(1) If necessary \& possible:
$1^{\text {st nonzero }}$
Interchange to get a nonzero leading element \rightarrow if not possible: move one step right.
(2) Scale to leaching 1 .
(3) Eliminate below leaching 1: by
adding a scaling of the row to the ones below
(4) Move down - right. On the pant starting with that element: Do (1) - (3)
(5) (1) - (4) repeated until "stacrease": Lenses Li

- each rout has a leading one
- ... with only 0 below it.

Now you can "solve bottom -up".
(6) Elunirale upwards See example.

Example: (matrix notation)

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 3 \\
1 & 1 & 1
\end{array}\right) \vec{x}=\left(\begin{array}{l}
4 \\
4 \\
2
\end{array}\right) \\
& (\vec{A} \vdots \vec{b})=\left(\begin{array}{lll:l}
0 & 1 & 2 & 4 \\
0 & 1 & 3 & 4 \\
1 & 1 & 1 & 2
\end{array}\right) \\
& \sim\left(\begin{array}{ccc:c}
1 & 1 & 1 & 2 \\
0 & 1 & 3 & 4 \\
0 & 1 & 2 & 4
\end{array}\right)-1 \sim\left(\begin{array}{ccc:c}
1 & 1 & 1 & 2 \\
0 & 1 & 3 & 4 \\
0 & 0 & -1 & 0
\end{array}\right) \cdot(-1)
\end{aligned}
$$

$$
\begin{aligned}
& z=0, \quad y=4, \\
& x=z-4=-2 \text {. } \\
& \sim\left(\begin{array}{lll:l:l}
1 & 1 & 0 & 2 \\
0 & 1 & 0 & 4 & 4 \\
0 & 0 & \varnothing & 0
\end{array}\right) \\
& \sim\left(\begin{array}{lll:c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \rightarrow \text { the solution. }
\end{aligned}
$$

ie the eq. system $\left.\vec{I}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\begin{array}{c}-z \\ u \\ 0\end{array}\right)$

Example Matrix inversion
For each $t \in \mathbb{R}$, find the inverse of

$$
\vec{A}=\left(\begin{array}{lll}
t & 2 & 3 \\
1 & 1 & 1 \\
2 & 1 & 4
\end{array}\right) \quad i t \text { ct exits. }
$$

$$
\begin{aligned}
& \vec{A} \vec{X}=\vec{I} \\
& \left(\begin{array}{ccc:ccc}
t & 2 & 3 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
2 & 1 & 4 & 1 & 0 & 0 \\
1
\end{array}\right) \quad \begin{array}{ccc}
\text { Could : } & -2 \\
\text { first: framer }
\end{array} \\
& \left.\sim \quad \begin{array}{lll:lll}
1 & 1 & 1 & 0 & 1 & 0
\end{array}\right]-t{ }^{-2} \\
& \sim\left(\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 2-t & 3-t & 1 & -t & 0 \\
0 & -1 & 2 & 0 & -2 & 1
\end{array}\right)_{-(-1)} \text { then } 10
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left(\begin{array}{ccc:ccc}
1 & 1 & i & 0 & 1 & 0 \\
0 & 1 & -2 & 0 & 2 & -1 \\
0 & 2-t & 3-t & 1 & -t & 0
\end{array}\right) t+2 \\
& \sim\left(\begin{array}{ccc:ccc}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 & 2 & -1 \\
0 & 0 & 7-3 t & 1 & t-4 & 2-t
\end{array}\right)=\frac{1}{7-3 t} \quad \text { for } 7-3 t=0 \\
& \text { If } z=3 t \text { : last eq says } 0=\text { nonzen. } \\
& \sim\left(\begin{array}{ccc:ccc}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 & 2 & -1 \\
0 & 0 & 1 & \frac{1}{7-3 \epsilon} & \frac{t-4}{7-3 \epsilon} & \frac{2-t}{7-3 \epsilon}
\end{array}\right) \leftarrow \begin{array}{ll}
4 \\
2 & -1
\end{array} \\
& \sim\left(\begin{array}{llllll}
1 & 1 & 0 & \frac{-1}{7-3 t} & \frac{11-4 t}{7-3 t} & \frac{t-2}{7-3 t} \\
0 & 1 & 0 & \frac{2}{z-3 t} & 2 \frac{3-2 t}{7-3 t} & \frac{t-3}{7-3 t} \\
0 & 0 & 1 & \frac{1}{7-3 t} & \frac{t-4}{7-3 t} & \frac{2-t}{7-3 t}
\end{array}\right)-1 \quad \text { erecture }
\end{aligned}
$$

This slide fixed after lecture.

