
LA 2019 lectures #5–#7

We have:

� Matrices and vectors basics
� Linear equation systems

◦ Theory, and Gaussian elimination

� A bit about the inverse:
◦ Definition

◦ If A has an inverse, call it A−1, then the equation system

AX = B has precisely one solution, X = A−1B.

◦ We can calculate A−1 by eliminating (A
∣∣I) down to (I

∣∣M)

Lecture #5:

� Determinants!
◦ “Definition” [loosely – what you need to know]

◦ Properties

◦ Two ways to calculate: matrix operations and cofactors.

◦ Formula for inverse.

Lecture #6: how to calculate inverses using the formula. Slide 25ff. 1



LA 2019 lect.#5: The determinant ... what and ... ?

What? A special function that takes a square (n× n) matrix as

input, and returns a number.
History: used for linear eq. systems before matrices! Nine Chapters of Mathematical Art, China, ≈ 200 BCE ...

Example: The determinant of
(
a b
c d

)
is ad− bc.

(What happens if a = f ′′xx, b = c = f ′′xy, d = f ′′yy?)

Does that number mean anything? It has an area/volume/

hypervolume interpretation you do not need to worry about.

For the curious: diagram next page.

Fact, more important in this course. Let A be n× n. Then:

A has an inverse iff its determinant is 6= 0

... and iff so, there is unique solution x to the system Ax = b.

(Math 3 gives a version “on steroids”, giving a very precise version of the counting rule.) 2



OPTIONAL for LA 2019 lect.#5: determinants & geometry

Geometry (OPTIONAL). If it helps your intuition – or curiosity:

The determinant of A equals ± the n-dimensional hypervolume of

the n-dim. parallelogram spanned by the columns of A.

Or by the rows of A. Illustration, n = 2 and n = 3:

Determinant = ± the

area, resp. the volume

Source: Wikibooks “Linear Algebra/Determinants as Size Functions”, diagrams derived by Nicholas Longo from

Jim Hefferon’s open-source linear algebra book, license: CC-BY-SA-2.5.

A square matrix A has an inverse as long as that “hypervolume”

does not collapse to zero:

n = 2 as long as the columns are not on the same line. n = 3: as

long as the columns are not in the same plane. Etc. 3

https://en.wikibooks.org/wiki/Linear_Algebra/Determinants_as_Size_Functions
http://joshua.smcvt.edu/linearalgebra
https://creativecommons.org/licenses/by-sa/2.5/deed.en


LA 2019 lect.#5: The determinant. How to define.

Notation: det A or |A| or “bar delimiters”:

∣∣∣∣a b

c d

∣∣∣∣ for det

(
a b

c d

)
.

Beware, it is not an absolute value – and could be negative.

How to define? There are n! = n(n− 1) · · · 2 · 1 ways to select n

elements with precisely one from each row and column. For each

selection, multiply the elements. Switch sign on half the products,

and add up. The “sign switching” follows this rule:

� The selection of all the main diagonal elements: do not switch.

� Every time two rows are interchanged: switch sign.

Example: 2× 2 and 3× 3, the “NE/SW” diagonal. Resp.:(
· ?
? ·

)
and

 · · ?
· ? ·
? · ·

. Would be the main diagonal if the 1st

and last row were interchanged. Precisely one interchange ↔
precisely one sign switch. Put a negative in front. 4



LA 2019 lect.#5: The determinant. Definition rarely used.

You will likely not use the definition except a very few cases:

� 1× 1: From the definition, the determinant is the element.

(Again: Not any absolute value! Not even writing the bars here ...)

� 2× 2: From the definition,

∣∣∣∣a b

c d

∣∣∣∣ = ad− bc.

Maybe also for the following, although they will also follow from

the rules to follow next slides:

� Triangular matrices: upper (resp. lower) triangular ↔ all

zeroes below (resp. above) the main diagonal:

Determinant = the product of the main diagonal elements.

(Why? Every other selection of precisely one element from

each row/col., contains a zero.)
� Some might use it on 3× 3?

◦ Skipping: “Sarrus rule” (only valid for 3× 3).
5



LA 2019 lect.#5: The Sarrus rule (skipped in lecture) I

The Sarrus rule for calculating 3× 3 determinants.

CAVEAT: NOT VALID for larger!

Look at the picture:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

To the left, matrix elements. To the right, the first two columns repeated.

Determinant =
a11a22a33 + a12a23a31 + a13a21a32

−
[
a13a22a31 + a11a23a32 + a12a21a33

]
� The blue ones (first line) are the triplets connected with lines

Northwest–Southeast.

� The red ones – which get subtracted, 2nd line – are the

triplets connected with dashes Northeast–Southwest.
6



LA 2019 lect.#5: The Sarrus rule (skipped in lecture) II

Example:

∣∣∣∣∣∣
1 2 4
−1 8 3
7 0 −5

∣∣∣∣∣∣. Becomes
1 2 4

... 1 2
−1 8 3

... −1 8
7 0 −5

... 7 0

when we write the elements and then repeat the first two columns.

The ones left as-is: start top-left, go south-east:
1 2 4

...

8 3
... −1

-5
... 7 0

cyan product: 1 · 8 · (−5) = −40
green product: 2 · 3 · 7 = 42
b/w product: 4 · (−1) · 0 = 0

The ones to subtract/change sign are the south-west connections:

4
... 1 2

8 3
... -1

7 0 -5
...

magenta product: 4 · 8 · 7 = 224
b/w product: 1 · 3 · 0 = 0

yellow product: 2 · (−1) · (−5) = 10

Determinant = −40 + 42 + 0 −
[
224 + 10

]
= −232.
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LA 2019 lect.#5: The determinant. Cofactors

The cofactor κij of element (i, j) of A, is formed by

� Deleting row i and column j from A (that is, the row and

column of said element)

� Calculating the determinant of the rest ((n− 1)× (n− 1))

� Multiplying by (−1)i+j.

Example: The cofactor κ23 of element (2, 3) of

 3 9 −2

−1 5 777
−11 4 7

 is

(note how nothing magenta appears):

(−1)5

∣∣∣∣ 3 9
−11 4

∣∣∣∣ = −(12 − (−99)) = −111.

The “(−1)i+j”: chessboard


+ − + − + . . .
− + − + − . . .
+ − + − + . . .
− + − + − . . .
...

. . .
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LA 2019 lect.#5: The determinant. Cofactor expansion:

Fact: For any i = 1, . . .n, we have |A| = ai1κi1 + . . . + ainκin.

IOW, we can calculate the determinant as follows:

� Pick one row number i (and stick to it!)

� For each element in the row, multiply it by its cofactor

� Add up.

This is called cofactor expansion along the ith row.

Example:

∣∣∣∣∣∣
3 9 −2
2 5 −1

−11 4 7

∣∣∣∣∣∣ along the 2nd row: 2κ21 + 5κ22 + (−1)κ23

Need κ21 = (−1)2+1

∣∣∣∣9 −2
4 7

∣∣∣∣ = −(63 − (−8)) = −71

and κ22 = [you go ahead!]: (−1)2+2

∣∣∣∣ 3 −2
−11 7

∣∣∣∣ = −1

and κ23 = [from previous slide] = −111

Answer: 2 · (−71) + 5 · (−1) − 1 · (−111) = −36. 9



LA 2019 lect.#5: The determinant. Cofactor expansion:

Fact: |A ′| = |A|. So we have |A| = a1jκ1j+ . . .+anjκnj, for any j.

That is cofactor expansion along the jth column.

Example:

∣∣∣∣∣∣∣∣
3 9 −2 1
2 5 −1 0

−11 4 7 0
0 0 −1 1

∣∣∣∣∣∣∣∣ along the 4th column.

1 · (−1)1+4

∣∣∣∣∣∣
2 5 −1

−11 4 7
0 0 −1

∣∣∣∣∣∣︸ ︷︷ ︸
expand along 3rd row

+0 + 0 + 1 · (−1)4+4

∣∣∣∣∣∣
3 9 −2
2 5 −1

−11 4 7

∣∣∣∣∣∣︸ ︷︷ ︸
=−36, prev. slide

= (−1)5 · (−1)

∣∣∣∣ 2 5
−11 4

∣∣∣∣− 36 = 8 + 55 − 36 = 27

You can choose which row or which column. If there is one with a

lot of zeroes, if often pays off to choose that one. (Although, ...)

In particular: A zero row or column ⇒ zero determinant!
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LA 2019 lect.#5: The determinant. Rules.

For n× n matrices, the following rules apply:

(H1&2) Cofactor expansion applies along any row/column.

(H2) |A ′| = |A|.

(H3) |AB| = |A| : · |B|. (Beware: both must be square, not just AB.)

(H4) If one row/column is zero, the determinant is zero.
◦ Also if two rows / two columns are proportional, by (H6)

(H5) If you scale one row by t, then you scale the determinant by

t. Same with “column”.
(H6) The determinant does not change if a scaling α of a row is

added to a different row. Same with “column”.
(also H4) So if two rows are proportional, then |A| = 0. Or if “two

columns are proportional”. But not “a row and a column”.

(H7) Interchange two rows of A, and you switch sign on the

determinant (but keep the absolute value!). Same with “two

columns”. But do not try to interchange a row with a column! 11



LA 2019 lect.#5: The determinant. Rules: Warnings

Note: There is no simple rule for |A+ B|.

Exercises: What is |tIn|? What is |tA|?

Beware the common error! Answers: tn resp. tn|A|.

Why? Scaling just one row by t will scale the determinant by t;

and, scaling the entire matrix ↔ scaling every one of them.

For n× n matrices, there are n rows.

12



LA 2019 lect.#5: The determinant. Elementary row operations

Recall that in Gaussian elimination, we had three operations on

rows. On determinants, they do the following:

� Interchange two rows: switches sign.

� Scale a row: scales the determinant.

� Add a scaling of a row to another: no change.

Example:

∣∣∣∣∣∣
222 333 444
555 666 777

1111 2222 3333

∣∣∣∣∣∣ = 111 · 111 · 1111 ·

∣∣∣∣∣∣
2 3 4
5 6 7
1 2 3

∣∣∣∣∣∣
and

∣∣∣∣∣∣∣
2 3 4

5 6 7

1 2 3

∣∣∣∣∣∣∣ ←−−1

+

←−−−−

−1

+

=

∣∣∣∣∣∣∣
1 1 1

4 4 4

1 2 3

∣∣∣∣∣∣∣ = 0

Exam: You can be asked, e.g. “Calculate this without using

cofactor expansion.”
13



LA 2019 lect.#5: The determinant. Elementary column op’s

For determinants we can also do the same operations on columns.

But do not apply column operations to equation systems!

Example:

∣∣∣∣∣∣∣
· 1/11· 1/11

22 33 14

55 66 13

11 22 1

∣∣∣∣∣∣∣ = 112

∣∣∣∣∣∣∣
y−2 +

y
−1 +

2 3 14

5 6 13

1 2 1

∣∣∣∣∣∣∣ = 121

∣∣∣∣∣∣∣
2 −1 12

5 −4 8

1 0 0

∣∣∣∣∣∣∣
which by cofactor expansion (along what, you think?) equals

= 121

∣∣∣∣−1 12
−4 8

∣∣∣∣ = −121 · 4 ·
∣∣∣∣1 3
1 2

∣∣∣∣ (WHY?). Answer: 484.

(Worried you might be asked to calculate this w/o cofactor expansion?

Not this one, for then you would in the end need to apply the definition

on a 3× 3, and ... but previous slide: an “easy” zero. Or we could ask

that for something that ends up in β · |αI|.) 14



LA 2019 lect.#5: The determinant. Debugging hint?

Observation (not a typical exam question, but maybe good for “debugging your determinants”):

Let precisely one element of A be “t”. Then the determinant is of

the form αt+ β.

� Generally, the determinant function is affine in each element:

Cofactor expansion: aijκij+ [no aij elsewhere].

So for a, b1 and t: each of these enters (and linearly!) in

precisely one element. As a function of t: γt+ δ, etc.

� The determinant is linear in each row and in each column.

So c1 enters (as a first-order term) twice but both are in the

same row. Do cofactor expansion along that row, and you see

that the determinant must be of the form ηc1 + ε.

But a parameter that enters in several rows/columns, may have

higher order. (Ex.: |λIn −A| is an nth order polynomial in λ.)

15



LA 2019 lect.#5: The determinant: applications

Two applications in this course [not stressed in class]

Fix a function f ∈ C2 of n variables: f(x). Let H be the so-called Hessian

matrix: hij =
∂2f

∂xi∂xj
(symmetric matrix, depends on x)

� Second-order approximation around x∗: the 2nd-order term will

become 1
2 (x− x∗)

′H∗(x− x∗) where H∗ indicates that it is

evaluated at x∗. Prime denotes transpose; if you don’t like that (with derivatives in the picture):

1
2 (x− x∗) · (H∗(x− x∗)). Note H∗() means product, not “of”.

� Behind the scenes, this underlies the 2nd derivatives test in n

variables, and concavity/convexity tests. Case n = 2 in Math2:

◦ The Hessian determinant |H| equals the “AC− B2” from your

first Math course’s 2nd derivative test. (Math2 does not require you to use

matrix formulation in your 2nd derivative tests, but the content is the same anyway!)

◦ If both the |H| and the top-left element A are > 0:

� everywhere, the function is convex

� merely at some stationary point, then this is strict local min.

◦ (Why do we have opposite signs |H| > 0 > A for concavity/max? Switch sign on f and thus on A;

but since n = 2, then |−H| = (−1)2|H|, no sign change! More than 2 variables: Math3!) 16



LA 2019: slides altered after lecture 5.

The draft slides had “extra” examples not covered in class.

� The first example now became the inverse example for lecture

6, and is moved.

� The next 4× 4 example was never covered. Left in.

Recall expansion along the ith row:

� Pick one row number i (and stick to it!)

� For each element in the row, multiply it by its cofactor
(...remember what a “cofactor” is, and in particular: the chessboard for signs)

� Add up.

Or pick a column instead of a row.

17



Supplementary: 4× 4 cofactor expansion ex. from 2018. (I)

4× 4 example:

∣∣∣∣∣∣∣∣
1 2 4 −7
−1 8 3 3
7 0 −5 1
2 2 −3 5

∣∣∣∣∣∣∣∣ in a boring way, no “clever” shortcuts.

First: pick one row or column. I pick column 4. Need the four

cofactors (top to bottom, none involving column 4):

κ14 = (−1)5

∣∣∣∣∣∣
−1 8 3
7 0 −5
2 2 −3

∣∣∣∣∣∣ κ24 = (−1)6

∣∣∣∣∣∣
1 2 4
7 0 −5
2 2 −3

∣∣∣∣∣∣
κ34 = (−1)7

∣∣∣∣∣∣
1 2 4
−1 8 3
2 2 −3

∣∣∣∣∣∣ κ44 = (−1)8

∣∣∣∣∣∣
1 2 4
−1 8 3
7 0 −5

∣∣∣∣∣∣
The determinant will be −7 · κ14 + 3 · κ24 + 1 · κ34 + 5 · κ44.

But the cofactors involve 3× 3 determinants that must be

calculated. For example by cofactor expansion.
18



Supplementary: 4× 4 cofactor expansion ex. from 2018. (II)

4× 4 example cont’d: since this is a cofactor expansion exercise,

use that method for every 3× 3 too. Arbitrary choices: first row for

the first two, second column for the last two.

κ14 by first row: (−1)5

∣∣∣∣∣∣
−1 8 3
7 0 −5
2 2 −3

∣∣∣∣∣∣ =
(−1)5 ·

{
− 1 · its cofactor + 8 · its cofactor + 3 · its cofactor

}
,

all cofactors relative to that 3× 3 determinant (ignore for the

moment that there was ever a 4× 4).

(−1)5·
{
−1·(−1)1+1

∣∣∣∣0 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=0−(−10)

+8·(−1)1+2

∣∣∣∣7 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=−(−21+10)

+3 (−1)1+3

∣∣∣∣7 0
2 2

∣∣∣∣︸ ︷︷ ︸
=14−0

}

which equals 10 − 8 · 11 − 3 · 14 = −120, and so the “−7 · κ14”

contribution is −7 · (−120) = 840. On to the three others. 19



Supplementary: 4× 4 cofactor expansion ex. from 2018. (III)

4× 4 example cont’d: κ24 = (−1)6

∣∣∣∣∣∣
1 2 4
7 0 −5
2 2 −3

∣∣∣∣∣∣ by first row.

1 · (−1)2

∣∣∣∣ [what?]

∣∣∣∣+ 2 · (−1)3

∣∣∣∣ [what?]

∣∣∣∣+ 4 · (−1)4

∣∣∣∣ [what?]

∣∣∣∣
(Go ahead, fill in!)

1 · (−1)2

∣∣∣∣0 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=10

+2 · (−1)3

∣∣∣∣7 −5
2 −3

∣∣∣∣︸ ︷︷ ︸
=−11

+4 · (−1)4

∣∣∣∣7 0
2 2

∣∣∣∣︸ ︷︷ ︸
=14

which sum up to 10 + 22 + 56 = 88.

So the “3 · κ24” contribution is 264. Then what next?
20



Supplementary: 4× 4 cofactor expansion ex. from 2018. (IV)

4× 4 example cont’d: κ34 = (−1)7

∣∣∣∣∣∣
1 2 4
−1 8 3
2 2 −3

∣∣∣∣∣∣ by second column:

(The first “−” is the (−1)7. The negative signs before the “2” are from the “chessboard of signs” for the 3× 3):

−

{
− 2

∣∣∣∣−1 3
2 −3

∣∣∣∣+ 8

∣∣∣∣1 4
2 −3

∣∣∣∣− 2

∣∣∣∣ 1 4
−1 3

∣∣∣∣}
= −

{
− 2(3 − 6) + 8(−3 − 8) − 2(3 + 4)

}
= 96.

Contribution to determinant: 1 · 96. Then finally the contribution 5 · κ44:

κ44 is the same determinant as in the Sarrus example: −232. (Time ran

out in class; finding it by expanding along the 2nd column  exercise!)

So the 4× 4 determinant is 840 + 264 + 96 + 5 · (−232) = 40.

(And if you like Sarrus: yes, you can use it once you have reduced it to

3× 3’s.)

21



LA 2019 lect.#5: Back to the inverse

Back to the inverse: We have:

� Definition (and for square matrices, suffices to check ...)

� Exists iff A square AND |A| 6= 0.

� How to find by Gaussian elimination

Next:

� A general formula based on cofactors

� Example(s) Lecture #5 instead covered Cramér briefly.

Inversion by cofactors: examples in lecture #6.

� Rules! Old ones and some more.

22



LA 2019 lect.#5: The inverse: a formula

A formula for the inverse: (book uses C and ...)

Fix A (square). Let K have elements κij, where κij is the cofactor

of element (i, j) of A. Then K ′A = AK ′ = |A| I, so:

Provided |A| 6= 0, A−1 = 1
|A|

K ′ (beware: transpose!)

Terminology (not exam relevant): K ′ =: adj(A), abbreviation for

“adjugate”. Or “adjunct” / “classical adjoint”.

“Workload” for K ′:

n2 cofactors, each cofactor is

± an (n− 1)× (n− 1) determinant, each determinant is

a sum of (n− 1)! terms, ...

Beauty is in the eye of the beholder? (clickable – won’t compute the inverse of this, but ...)

23
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LA 2019 lect.#5: The inverse: about the formula

[not stressed in class] Just browsed through, and you won’t be asked to reproduce this “proof” (which

it really isn’t, we have only postulated that cofactor expansion works). But see if you can follow the steps!

Again: If |A| 6= 0, A−1 = 1
|A|

adj (A) where adj(A) := K ′

Why? The following is an exercise in determinant rules:

� Recall cofactor expansion by ith row: |A| =
∑n

`=1 ai`κi`

� If instead we picked the cofactors from another (“alien”) row

h 6= i, then we actually have
∑n

`=1 ai`κh` = 0.
Why? Since cofactors of row h do not depend on elements in row h, then this is the determinant of the

matrix we get by replacing row h by a copy of row i. But that has two equal rows!

� To check AK ′ = |A| I, check each element (i, j); it equals

row #i from A dot row #j from K (because the prime!)

i.e.
∑n

`=1 ai`κj`, which equals:

|A| if i = j (i.e. on the main diagonal), and 0 otherwise.

� Exercise: check element (i, j) of K ′A. (Verifies that you only

need to calculate “one of the products”, if A is square.) 24



LA 2019 lect.#6: Calculate cofactors. 3× 3 example (I)

Problem: Calculate the cofactors of A =

 4 3 p

1 t q

−2 −3 r


This slide: two example cofactors:

The “p” element (1, 3): strike out first row and third column,

evaluate determinant of rest, (chessboard says: do not switch sign)∣∣∣∣∣∣ 1 t

−2 −3

∣∣∣∣∣∣. That is, the cofactor is −3 + 2t.

The “q” element (2, 3): strike out second row and third column,

“chessboard sign”: (−1)2+3 = −1, cofactor = −

∣∣∣∣ 4 3
−2 −3

∣∣∣∣ = 6.

Next: The full matrix K. Blue elements: the ones calculated this

slide. Red negative signs from the chessboard. 25



LA 2019 lect.#6: Calculate cofactors. 3× 3 example (II)

A =

 4 3 p

1 t q

−2 −3 r

, want the matrix K of cofactors:

K =



∣∣∣∣ t q

−3 r

∣∣∣∣ −

∣∣∣∣ 1 q

−2 r

∣∣∣∣ 2t− 3

−

∣∣∣∣ 3 p

−3 r

∣∣∣∣ ∣∣∣∣ 4 p

−2 r

∣∣∣∣ 6

∣∣∣∣3 p

t q

∣∣∣∣ −

∣∣∣∣ t q

−3 r

∣∣∣∣ ∣∣∣∣4 3
1 t

∣∣∣∣


=

 rt+ 3q −r− 2q 2t− 3
−3r− 3p 4r+ 2p 6
4q− pt −rt− 3p 4t− 3


For A−1, transpose into K ′ and scale by by 1

|A|
: For |A|:

26



LA 2019 lect.#6: 3× 3 example (III): inverse by cofactors

A =

 4 3 p

1 t q

−2 −3 r

, cofactors: K =

 rt+ 3q −r− 2q 2t− 3
−3r− 3p 4r+ 2p 6
4q− pt −rt− 3p 4t− 3


Then A−1 = 1

|A|
K ′. How to calculate |A|?

By cofactor expansion,

� pick one row number i or one column number j;

� dot row number i of A with row i of K

or: dot column j of A with column j of K.

� example: column #3.

|A| =
(

p
q
r

)
·
(

2t−3
6

4t−3

)
= p(2t− 3) + 6q+ r(4t− 3).

Yields

A−1 = 1
p(2t−3)+6q+r(4t−3)

 rt+ 3q −3r− 3p 4q− pt
−r− 2q 4r+ 2p −rt− 3p
2t− 3 6 4t− 3


27



LA 2019 lect.#6: The inverse by cofactors: 2× 2

How does this formula give the expression for

(
a b

c d

)−1

?

Clarification of wording: “Find an expression for” means, roughly:

“valid as long as exists”. This problem intended as example.

On to work: Remembering to transpose, cofactors are as follows:

of the “a” element: d of the “c” element: −b

of the “b” element: −c of the “d” element: a

(the “−”s for the cofactors of elements (2, 1) and (1, 2): “chessboard”.)

And so the answer is the familiar(?) 1
ad−bc

(
d −b
−c a

)
Back to wording: If asked for “an expression for the inverse”, this is the

answer – because it is an expression valid as long as the inverse exists.

(Then, writing “as long as ad 6= bc” not required, but won’t hurt.)
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LA 2019 lect.#6: The inverse by cofactors: 4× 4 example

Example (on board but different symbols): Use the formula to find an

expression for


p1 0 0 p2

0 p4 p3 0
0 p2 p1 0
p3 0 0 p4


−1

(16 cofactors, each 3× 3 – but we are in some luck ...)

Symmetries! Let ϕ = | p1 p2
p3 p4 |, the determinant of “the corners put

together”. Also happens to equal the “middle 2× 2 block” (check sign!).

“The cofactors of the corners” have a common factor ϕ: We have

κ11 = p4ϕ and κ44 = p1ϕ. Beware signs: κ14 = −p3ϕ and κ41 = −p2ϕ.

“The cofactors of the middle block” have a common factor ϕ: We have

κ22 = p1ϕ, κ33 = p4ϕ and (beware signs) κ23 = −p2ϕ, κ32 = −p3ϕ.

“The cofactors of the greens are all zero!” Each has two proportional rows

or two proportional columns. Example: κ12 = −

∣∣∣∣ 0 p4 0
0 p6 0
p7 0 p8

∣∣∣∣ = 0. Remains:

� Put together the elements into K ′ (remember to transpose!)

� Calculate the determinant. We have all the cofactors.
29



LA 2019 lect.#6: The inverse by cofactors: examples (IV)

cont’d: The determinant is (say!) p1κ11 + 0 + 0 + p3κ41

(Q: why no “−” before p3?) – which = p1p4ϕ− p3p2ϕ = ϕ2.

Stacking up cofactors, transposing:

K ′ =


p4ϕ 0 0 −p2ϕ

0 p1ϕ −p3ϕ 0
0 −p2ϕ p4ϕ 0

−p3ϕ 0 0 p1ϕ


and the expression for the inverse is:

1

ϕ


p4 0 0 −p2

0 p1 −p3 0
0 −p2 p4 0

−p3 0 0 p1


Exercise: verify! (Multiply and see that you get the identity.)

(When multiplying to verify: do you spot why the corners ! inverse of the

corners and the middle block ! inverse of the middle block?) 30



LA 2019 lect.#6: The inverse: facts and rules (I)

Terminology: “invertible” ↔ has an inverse.

But also: A square matrix is called non-singular if it has an inverse,

and singular if it does not.
(“Singular” is fairly common. You can use “non-invertible” on the exam.)

Rules for the inverse. Known already:

(H8) If A is square and furthermore either AM = I or MA = I,

then A−1 exists and equals M.
(H9) ... and if so: M−1 exists and equals A. Consequently:

◦ If A is invertible, then so is A−1, and (A−1)−1 = A.

(H10) A is invertible ⇔ square and |A| 6= 0.

(H12) If so: formula A−1 = 1
|A|

adj (A) where adj(A) := K ′

(H13) [part]... and the Gaussian elm’n method for A−1.

A few more rules next slide and we will be done with all formulae

but eq. systems in (H13) and (H14) (Cramér’s rule):
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LA 2019 lect.#6: The inverse: facts and rules (II)

More rules for the inverse.

(also H10) Iff exists: |A−1| = 1/|A|. (Because 1 = |I| = |AA−1| = |A| |A−1|)

(also H8) (A ′)−1 = (A−1) ′ provided any of them exists.

(also H9) Let k ∈ N. Then Ak is invertible iff A is, and if so:

(Ak)−1 = (A−1)k . Which we denote A−k.

◦ Easy to check. Determinant 6= 0 and A . . .AA−1 . . .A−1 = I

◦ (Often seen notation, not exam relevant: A0 = I, cf. α0 = 1.)

(H11) If A and B are both n× n, then either (AB)−1 = B−1A−1

or neither side exists. Note reverse order!
◦ Similarly, (ABC)−1 = C−1B−1A−1 or neither side exists. And

also: (cA)−1 = A−1(cI)−1 = 1
c
A−1 if c 6= 0.

◦ “Proof”: Easy to check if well-defined: (AB)(B−1A−1) = I.

◦ Beware: (AB)−1 could exist even if A and B ′ are m× n with

m 6= n.

� Or more factors, e.g. x ′Ax is 1× 1 and has an inverse iff 6= 0
� (Not curriculum: That’s why you in e.g. econometrics may see “large” products (...)−1

not written out. BTW, it requires m < n, impossible if m > n.)
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LA 2019 lect.#6 auxiliary book problems examples

Example cases based on some book problems.

� Let |X ′X| 6= 0. Show that A = I−X(X ′X)−1X ′ satisfies A = A2.

What can we say about |A|?

◦ X not assumed square, cannot simplify A!

But: A2 = I− 2X(X ′X)−1X ′ +X(X ′X)−1X ′X(X ′X)−1X ′

which = I+ (−2 + 1)X(X ′X)−1X ′ because X ′X(X ′X)−1 = I.
◦ |A| = |A2|, so in Math 2 we can tell that |A| is zero or one.

Actually zero! A proof that uses only Math2, but is too tricky for a Math2 exam: Suppose for

contradiction that A−1 exists: Then A−1A2 = A−1A, and A = I. And so 0 = X(X′X)−1X′.
Right-multiply by X to get: 0 = X(X′X)−1X′X = XI. But X = 0⇒ |X′X| = 0, contradiction.

� Suppose some power Bk is 0. Then B−1 does not exist, but

(I− B)−1 does and equals I+ B+ . . . + Bk−1. (Cf. geometric series.)

◦ |Bk| = |B|k and also = |0|.

◦ Calculate (I+ B+ . . . + Bk−1)(I− B) = [. . .] = I− Bk = I.

� Suppose M = PDP−1. Then Mk = PDkP−1, all k ∈ N.

Show: Valid even for negative integers k iff |D| 6= 0.
Typically want: D diagonal. Explain: Why is this convenient?
(Computes Mk when k large or ... sometimes even non-integer. Curriculum at BI Norwegian Business

School and NTNU øk.ad. Application: k = 1/2 to standardize a random vector with covariance matrix M.) 33



LA 2019 lect.#7: back to equation systems

We have:

� Matrices and vectors basics
� Linear equation systems

◦ Theory

◦ How to solve

◦ Theory

◦ Calculations

� Inverses
◦ Theory

◦ Calculations

� Determinants

Remaining: back to eq. systems with square coefficient matrix

� Cramér’s rule: Formula for a single element of the solution.
◦ (Under the hood, no need to spend time on: just a different

guise of the formula for the inverse.)

� Determinants and equation systems: a common problem type. 34



LA 2019 lecture #5 (briefly) and #7: unique solutions A−1B,

A−1b, and Cramér’s rule.

Assumed until nearly the end: A is square, n× n.

� For this slide assume A invertible.
◦ (H13) Then AX = B has unique solution X = A−1B.

◦ ... gives you a formula in terms of A−1 (lengthy to calculate?)

Case: n eq’s uniquely determining n variables as A−1b

(H14) Cramér’s rule gives a formula for each individual element of

a unique solution x: assume b a vector and |A| 6= 0.

� Form the determinant Dj by replacing column j of A by b.

and calculating the resulting determinant, goes without saying?

� Then xj = Dj/|A| . (Well-defined, nonzero denominator)

Usage example: In a suitably big linear macro model [link to ECON2310],

what if you are only interested in output Y? Or only consumption C? 35

https://folk.uio.no/hmehlum/econ2310h19/seminar2019.html


LA 2019 lect.#5&7: Cramér’s rule, example

Example: this system.

 4 3 2
1 t −1
−2 −3 −4


︸ ︷︷ ︸

=At

xy
z

 =

tt
t

.

Q1: What is D3?

Q2: What is |At|?

Q3: If t = 4, what is z?

Slide altered post lect.#5: For Q1&2, cofactor expand by col. 3,

details slides 25–26. The cofactors: κ13 =

∣∣∣∣ 1 t

−2 −3

∣∣∣∣ = −3 + 2t;

κ23 = −1

∣∣∣∣ 4 3
−2 −3

∣∣∣∣ = 12 − 6 = 6 and, κ33 =

∣∣∣∣4 3
1 t

∣∣∣∣ = 4t− 3

A1: Replace column 3 of A by the RHS = (t, t, t) ′. Cofactor

expand: D3 = tκ13 + tκ23 + tκ33 = t · [−3 + 2t+ 6 + 4t− 3] = 6t2

A2: 2κ13 + (−1)κ23 + (−4)κ33 = 4t− 6 − 6 + 12 − 16t = −12t

A3: When t = 4, D3 = 96 and |A| = −48 6= 0, so z = −2. 36



LA 2019 lect.#5&7: equation systems: Cramér, warning

Exercise: find the FLAWS in the arguments:

(I) “Let A be n× n, and suppose that b is in fact one of the

columns A, namely number j. Then Dj = |A|, and so xj must

be =
Dj

|A|
= 1.”

(II) “If the RHS were replaced by (1, 1, 1) ′, then D3 would be 6t

and so D3
|At|

= −1
2 . The solution would always have z = −1

2 .”

The flaw: Cramér’s rule requires |A| 6= 0! If that were verified, the

arguments would be valid. ((II): OK iff t 6= 0, so OK for t = 4.)

Exercise: What can you actually say about xj in case (I)?

(Do you even know that a solution exists?)

Answer: there is a solution with xj = 1 and all other xi = 0 (check

it!) – but if |A| = 0, that solution is not unique; and, depending on

A, there could be solutions with xj 6= 1 (dumb example: 0x = 0). 37



LA 2019 lect.#7: The determinant, and equation systems I

Back to the example from Cramér’s rule.

Example problem: (has been frequent exam-type question)

Consider for each real constant t the matrix and the vector

At =

 4 3 2
1 t −1
−2 −3 −4

 , bt = t

1
1
1

.

Questions:

(a) Calculate the determinant of At, each t ∈ R.

(b) For what t ∈ R will the equation system Atx = bt have (i) no

solution, (ii) precisely one solution, resp. (iii) several solutions?
Note: does not ask to “solve”. (But the wording does not forbid solving either, so if that is all you know ...)

(a): We did that under the Cramér example slide 36: −12t.

(b): Unique solution iff t 6= 0. For t = 0: several solutions (why?

None or infinitely many, and since b0 = 0, there is at least one.)
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LA 2019 lect.#7: The determinant, and equation systems II

Example variant 1:

What if the first row of At were replaced by (4444, 4443, 4442)?

Recall that we can use elementary row operations for determinants,

and note that both row 1 and row 3 “decrease by one as we move

to the right”; the difference is 4446(1, 1, 1). Indeed, compute∣∣∣∣∣∣∣
R− 2 R− 3 R− 4

1 t −1

−2 −3 −4

∣∣∣∣∣∣∣
←−

−1

+

=

∣∣∣∣∣∣
R R R

1 t −1
−2 −3 −4

∣∣∣∣∣∣ = R·
∣∣∣∣∣∣

1 1 1
1 t −1
−2 −3 −4

∣∣∣∣∣∣
For the |At| from the previous slide, we had R = 6 and got −12t.

On this, we have R = 4446 and get a determinant equal to
4446

6 · (−12t) = −4446 · 2t (or, just compute it! Exercise: use row

operations as long as you can).

But this determinant too, is zero only iff t = 0 – and so part (b)

would have the same answer for the variation on this page. 39



LA 2019 lect.#7: The determinant, and equation systems III

Example variant 2: with (kAt)
k in place of At. Here, k ∈ N a

constant.

(a): |(kAt)
k| = |kAt|

k = (k3|At|)
k = (−12tk3)k. Did you remember the “3”?

(b): Same argument and same answer as the two previous slides!

Example variant 3: Replace bt by (1, 2, c) ′ (and, back to k = 1).

Q: How does that change anything, for each c ∈ R?

A: (a) unchanged. (b): still unique solution for t 6= 0. For t = 0,

Math2’s only tool is starting to solve the inhomogeneous system: 4 3 2
∣∣ 1

1 0 −1
∣∣∣ 2

−2 −3 −4
∣∣ c

 ←−
−4

+

←−−−−
2

+

∼

0 3 6
∣∣ −7

1 0 −1
∣∣∣ 2

0 −3 − 6
∣∣ c+ 4

 ←−+

Corrections after lecture: the LHS “6” and “−6”.

First row then says 0 = c− 3. Infinitely many solutions iff t = 0 &

c = 3. If t = 0 6= c− 3: no solution. (Is it perfectly clear why?) 40



LA 2019 lect.#7: The determinant, and equation systems IV

Example variant 4: What if you were also asked for the degrees of

freedom?

Unique solution, hence no degrees of freedom, if t 6= 0 – this goes no

matter what the RHS is! Therefore, for case t = 0, I change the example

to general RHS = (α, β, γ) ′. The previous slide is a special case too.

Doing the same operations: 4 3 2
∣∣ α

1 0 −1
∣∣∣ β

−2 −3 −4
∣∣ γ

 ←−
−4

+

←−−−−
2

+

∼

0 3 6
∣∣ α− 4β

1 0 −1
∣∣∣ β

0 −3 − 6
∣∣ γ+ 2β

 ←−+

First row now says 0 = α− 2β+ γ; if so, choose x3 freely and see there

is indeed solution. So: If t = 0 = α− 2β+ γ, solution with one degree of

freedom. No solution if t = 0 6= α− 2β+ γ.

Note: only case with the maximum n degrees of freedom, is 0x = 0.

Here n = 3, so for t = 0: “One or two, at a glance.” (Even: “one at a

glance”, because n− 1 degrees would imply all rows proportional ...) 41



LA 2019 lect.#7: The determinant, and equation systems V

Example variant 5: Let M =

 4 3 2
1 0 −1
−2 −3 −4

 , v =

 1
−2
1

.
(M is A0 from the Cramér ex.)

(a) Calculate Mv.

(b) Why does it follow from part (a) that |M| = 0? You are not

allowed to calculate the determinant by other means.

(a) [The “easy” part, cheap points. Matrix multiplication yields 0.]

(b) Mv = 0 for some nonzero vector v; hence the eq. system

Mx = 0 has more than one solution, and (as M square), |M| = 0.

Note: If w solves the homogeneous system Mx = 0 then cw also

does, any c ∈ R – but if w = 0, this is no more than one vector!

For our nonzero v, all the cv make infinitely many solutions.
42



LA 2019 lect.#7: The determinant, and equation systems VI

Example (too tricky for exam?) yeah ... consider this optional.

Can determinants say anything about whether there is a solution

to the eq. system (4 eq’s, 3 unknowns, RHS=column) with

augmented coefficient matrix


4 3 2

∣∣ 1
1 0 −1

∣∣∣ 2
−2 −3 −4

∣∣ 3
1 1 1

∣∣ c

 ?

Yes. Fact: if the augmented coefficient matrix has an inverse, then
no solution exists. Note: does not say “iff”!

Why? An exercise in matrix manipulation:

Generally, Ax− b can be written as Mz, where M = the augmented

coefficient matrix (A|b) (“written without the separator bar”) and

z ′ = (x ′,−1) is the n+ 1-vector with x first and element n+ 1 being

−1. To have Ax− b = 0, we want Mz = 0, and if |M| 6= 0, then this is

only possible for z = 0. But zn+1 = −1!

If |M| = 0: eliminate on to contradiction or square coeff. matrix.
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LA 2019 lect.#7: more eq. systems / determinants / inverses

Not an exam question by itself, but potentially useful for the exam –

especially the last “But”, where lots of errors are made:

Can determinants say anything if fewer eq’s than var’s?

Yes. If there are m equations, coeff. matrix = A, and we can find a

nonzero m×m determinant from m columns from A, then:

� choose the other variables free; “move them over to the RHS”

� now we have an m×m with nonzero determinant, in the m

variables corresponding to the column numbers.

� (We knew this already for the situation when we have

row-echelon form (“staircase”) – but it holds more generally.)

Theory note: If there are fewer eq’s than var’s, then there cannot

be unique solution!

But: There does not have to exist any solution at all!
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