
University of Oslo / Department of Economics / NCF

ECON3120/4120 Mathematics 2 – on the 2018–06–08 exam

• New this semester: restricting calculators to the scienti�c calculator Casio FX-85EX
(as well as a simpler arithmetic one).

• Standard disclaimer: This note is not suited as a complete solution or as a template
for an exam paper. It was written as guidance for the grading process � however,
with additional notes and remarks for using the document in teaching later.

� The document re�ects what was expected in that particular semester, and which
may not be applicable to future semesters. In particular, what tests one is requi-
red to perform before answering �no conclusion� may not apply for later.

• Weighting: at the committee's (and in case of appeals: the new grading committee's)
discretion. The problem set was written with the intention that a uniform weighting
over letter-enumerated items should be a feasible choice.

• Default percent score to grade conversion table for this course:
F (fail) E D C B A
0 to 39 40 to 44 45 to 54 55 to 74 75 to 90 91 to 100

The committee (and in case of appeals, the new committee) is free to deviate.

Problems restated as given, followed by annotations boxed. The abbreviations �TP� (with
problem number) refers to this semester's compulsory term paper problem set.
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Problem 1 The equation system

xex−sy + ty + e−xy = 5

se−x + txy + est = 1

de�nes continuously di�erentiable functions x = x(s, t) and y = y(s, t) around the point
where (s, t, x, y) = (0, 2, 0, 2). (You shall not show this.)

(a) Di�erentiate the system (i.e., calculate di�erentials).

(b) Calculate
∂y

∂s
(0, 2).

On problem 1 Di�erentiating equation systems, and extracting derivatives from a
di�erentiated system, is a recurrent problem-type considered straightforward. It was
not covered in the term paper, being lectured later in the semester, but has been
covered in three of the full exam sets assigned for seminars.

(a) Di�erentiating out yields

−xyex−sy ds+ y dt+
(
(x+ 1)ex−sy − ye−xy

)
dx+

(
t− sxyex−sy − xe−xy

)
dy = 0(

e−x + test
)
ds+

(
xy + sest

)
dt+

(
− se−x + ty

)
dx+ tx dy = 0.

It is possible (but not at all required) to simplify the expressions. Also it is OK to
di�erentiate term by term without collecting coe�cients of ds/dt/dx/dy.

(b) Only a derivative at the point is asked for, so we can insert for (s, t, x, y) =
(0, 2, 0, 2). Furthermore, only a partial derivative wrt. s is asked for, so dt = 0.
Inserting, it simpli�es to

0 ds+
(
1− 2

)
dx+

(
2− 0− 0

)
dy = 0(

1 + 2
)
ds+

(
− 0 + 4

)
dx+ 0 dy = 0.

that is: 2dy = dx and 4dx = −3ds. Eliminating dx yields dy = −3
8
ds, so the answer

is −3/8.
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Problem 2 De�ne for each real number t the matrices

A =

 1 2 3
4 5 6
−2 −1 0

 and Bt =

0 0 3
1 2 0
4 0 t

 .

(a) Calculate BtBt
′ and Bt(A − sI), where s is a real constant, I is the 3 × 3 identity

matrix, and the prime sign denotes matrix transpose.

(b) • Use the following (there is no score for other methods!) to calculate A−1 or show
that it does not exist: solve AX = I by Gaussian elimination.

• Find B−1t or show that it does not exist, without using the method of the previous
bullet item. (E.g., you can calculate cofactors.)

On problem 2 Compared to the term paper problem set: Matrix multiplication is
considered a basic problem (TP3(a)) where the grave errors are elementwise multi-
plication and assuming commutativity. (And: it is intentional that those who do not
know what �identity matrix� or �transpose� mean, must spend time to look it up in
the book). Inverting by Gaussian elimination as mandatory method was given in TP
3(b). Here they are also asked to use a di�erent method.

(a) BtBt
′ =

0 0 3
1 2 0
4 0 t

0 1 4
0 2 0
3 0 t

 =

32 0 3t
0 12 + 22 4 · 1
3t 4 · 1 42 + t2

 =

 9 0 3t
0 5 4
3t 4 16 + t2

.

Bt(A− sI) =

0 0 3
1 2 0
4 0 t

 1 2 3
4 5 6
−2 −1 0

− sBt =

 −6 −3 0
1 + 8 2 + 10 3 + 12
4− 2t 8− t 12

− sBt

=

 −6 −3 −3s
9− s 12− 2s 15

4− 2t− 4s 8− t 12− st



(b) • Elementary row operations on the augmented coe�cient matrix: 1 2 3 | 1 0 0

4 5 6 | 0 1 0

−2 −1 0 | 0 0 1

 ←−−4+

←−−−−

2

+

∼

1 2 3 | 1 0 0

0 −3 −6 | −4 1 0

0 3 6 | 2 0 1


←−+

and then the last row becomes the impossible (0 0 0 | − 2 1 1). No
solution, and thus A−1 does not exist.
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• By cofactor expansion, |Bt| = 3
∣∣ 1 2
4 0

∣∣ = −24 6= 0, so Bt has an inverse for all
t. Using cofactors, we get

B−1t =
−1
24

 2t −(t− 0) 0− 8
0 0− 12 0

0− 6 −(0− 3) 0

′ = −1
24

 2t 0 −6
−t −12 3
−8 0 0


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Problem 3

(a) • Calculate

∫
q e9q dq

• Calculate

∫ ∞
r

s−9 ln s ds (where r > 0).

(b) Find the general solution of the di�erential equation ẋ(t) +
x(t)

t
=

3

t
.

On problem 3 Integration and di�erential equations have appeared in most exams
in this course, a fact that has been communicated in seminar problem assignments.

(a) • Use integration by parts with u = q, v′ = e9q. (It is hardly required to
make explicit the p = 9q substitution.) We get q · 1

9
e9q −

∫
1 · 1

9
e9q dq =

C +
(
q
9
− 1

81

)
e9q.

• The integral is by de�nition equal to lim
R→+∞

∫ R

r

s−9 ln s ds. With now u′ = s−9,
v = ln s, we get

lim
R→+∞

([s−8 · ln s
−8

]R
r
−
∫ R

r

1

−8
s−8 · 1

s
ds
)
= lim

R→+∞

[s−8 ln s
−8

− s−8

(−8)2
]R
r

limR→+∞R
−8 = 0. We need limR→+∞

lnR
R8 , which is an �∞∞� form. l'Hôpital's

rule yields limR→+∞
R−1

8R7 = 0, and the answer becomes
(
ln r
8

+ 1
64

)
r−8.

(b) This di�erential equation can be solved both as linear (as it stands) as well as
separable (as ẋ = 3−x

t
). Either method is of course perfectly �ne. The following

chooses to treat it as separable: then we have a constant solution x ≡ 3, and
otherwise dx

3−x = dt
t
, which we can integrate as − ln |3−x| = K+ln |t|, which yields

3 − x = ±e−K/|t|. The general solution is therefore x(t) = 3−D/t. Here D is an
arbitrary constant; D = 0 corresponds to the constant solution, and D 6= 0 to
±e−K ; the manipulations of ±{absolute values} is arguably not the most critical
part of the answer.
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Problem 4 De�ne for x > 0 and all real y the functions f and h by

f(x, y) = (y − ey−x) · ln(1 + x2)

x
and h(x) = f ′x(x, x) =

2(x− 1)

1 + x2
+

ln(1 + x2)

x2

(a) • Show that lim
x→0+

h(x) = −1.

• Find lim
x→+∞

h(x).

(b) • Show that h(w) = 0 for at least one w ∈ (0, 1). (You are not asked to compute
w.)

• Let w ∈ (0, 1) be such that h(w) = 0 as in the previous bullet item. Take for
granted that f ′′xx(w,w) > 0.
Show that (x, y) = (w,w) is a saddle point for f .

(c) Consider the maximization problem

max f(x, y) subject to y ≥ x, x ≥ 1 (P)

• State the Kuhn�Tucker conditions associated with the problem (P).

• Show that if the Kuhn�Tucker conditions are satis�ed at (x, y), then x = y.

Let now a > 0 be a constant and consider the function g(x) = (a−ea−x) · ln(1+x2)
x

for x > 0.
(That is, g(x) = f(x, a), with a > 0 taken as constant.) Take for granted that g has a
global minimum point x∗.

(d) The minimum value V = g(x∗) depends on a. Find an expression for V ′(a).

On problem 4 This problem is not unlike parts of Problem 1 (and 4, for (c)) of
the December 2017 exam. Like that problem, signi�cant parts correspond to questions
in TP problems 1 and 2 � though, herein with functions that should be easier to
handle than in the TP, given the information. It is intentional that errors in the more
complicated derivative f ′x should not cause much trouble other than getting a wrong
expression in the Kuhn�Tucker conditions: the function f ′x(x, x) = h(x) is given as a
formula; in (b), the sign of f ′′xx(w,w) is given while the cross-derivatives do not matter;
parts (c) and (d) can be solved only with the partial derivative wrt. the y variable.

(a) [cf. TP1(a) and TP2(b) �rst question]

• The limit as x→ 0+: the �rst term of h tends to −2 by inserting x = 0. The
second term becomes a �0

0
� form (it is essential to check and claim applica-

bility of l'Hôpital's rule!). Using l'Hôpital's rule, we get limx→0+
2x/(1+x2)

2x
=

limx→0+
1

1+x2 = 1. So h tends to −2 + 1 = −1 as it should.
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• For the limit as x→ +∞, both terms are �∞∞�. The second term again becomes
the limit of (x2 + 1)−1, but which now tends to 0. The �rst term tends to 0

too, either by l'Hôpital or by x−1
x2+1

= 1−1/x
x+1/x

→ 1−0
+∞−0 = 0. Answer: 0.

(b) • [cf. TP2(b) (parts)] As h(0+) = −1, we have h < 0 for all small enough
x < 0. To use the intermediate value theorem on the (continuous!) function h,
calculate h(1) = 0 + ln 2 > 0. Therefore, there exists a zero w ∈ (0, 1).

• [cf. TP1(d)] Note that before applying the second-derivative test, one needs
to verify that (w,w) is indeed a stationary point. By part (b) we have 0 =

h(w) = f ′x(w,w), so we calculate f ′y(x, y) = (1− ey−x) ln(1+x2)
x

which is indeed
zero when x = y, so we have a stationary point at (w,w).

For the second-derivative test, we calculate f ′′yy(x, y) = −ey−x ln(1+x2)
x

which
is < 0 on the domain of f . We are given that f ′′xx(w,w) > 0, and so
f ′′xx(w,w)f

′′
yy(w,w) < 0, and a saddle point no matter what f ′′xy(w,w).

(c) • [cf. TP1(f)] Rewrite the constraints into x − y ≤ 0 and 1 − x ≤ 0. The
Lagrangian is f(x, y)− λ(x− y)− µ(1− x), and the Kuhn�Tucker conditions
become the following (where they are free to include admissibility as well):

0 =
(
(x+ 1)ey−x − y

) ln(1 + x2)

x2
+ 2

y − ey−x

1 + x2
− λ+ µ (1)

0 = (1− ey−x) ln(1 + x2)

x
+ λ (2)

λ ≥ 0 with λ = 0 if y > x (3)

µ ≥ 0 with λ = 0 if x > 1. (4)

• Suppose for contradiction that the conditions hold at a point where x 6= y
(i.e. x < y). Inserting λ = 0 (by (3)), the easier expression is (2): 0 =

(1 − ey−x) ln(1+x2)
x

which implies 0 = 1 − ey−x as x (and thus ln(1 + x2)) is
nonzero. But then y = x.

Alternatively, one can split by λ: if λ > 0, then x = y by (3). If λ = 0, (2)
yields y = x as above.

(d) [cf. TP1(b)] The piece of theory to consider is the envelope theorem: V ′(a) can
be found by di�erentiating partially wrt. a (in this case: the second variable
of f !) and afterwards inserting for x∗. The derivative is V ′(a) = f ′y(x∗, a) =

(1− ea−x∗)
ln(1 + x2∗)

x∗
.
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