
University of Oslo / Department of Economics / NCF

ECON3120/4120 Mathematics 2 – on the 2018–11–30 exam

• New this semester: The Faculty of Social Sciences has instructed a 66 percent reduction

in resources allocated to creating exam problem and grading guideline. The grading

guideline is the �rst to su�er. This note is not suited as a template for an exam paper,

nor is it tailored for future teaching.

The document re�ects what was expected in this particular semester, and which may

not be applicable to future semesters. In particular, what tests one is required to perform

before answering �no conclusion� may not apply for later.

• New spring 2018: restricting calculators to the scienti�c calculator Casio FX-85EX (as

well as a simpler arithmetic one).

• Weighting: at the committee's (and in case of appeals: the new grading committee's)

discretion. The problem set was written with the intention that a uniform weighting

over letter-enumerated items should be a feasible choice.

• Default percent score to grade conversion table for this course:
F (fail) E D C B A

0 to 39 40 to 44 45 to 54 55 to 74 75 to 90 91 to 100

The committee (and in case of appeals, the new committee) is free to deviate.

Correction after the exam, 2(c): deleted remarks about constant solution, as the exam question

ended up only asking for x ∈ (0, e).
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Problem 1 Let a, b, r be constants, all ∈ (0, 1/2). The equation system

(aLa + bLb)
√
K = wLert

La + Lb =
√
Kert

(S)

de�nes continuously di�erentiable functions K = K(t, w) and L = L(t, w) around the point

where (K,L, t, w) = (4, 1, 0, 2(a+ b)). (You shall not show this.)

(a) Di�erentiate the system (i.e., calculate di�erentials).

(b) Suppose that t increases from 0 to 1, and w increases from 2(a + b) to 2(a + b) + h. Use
the di�erentiated system from part (a) to approximate the change in L. (You must

use the di�erentiated system. You cannot expect score for eliminating
√
K from (S).)

Solution sketch

(a) Calculating di�erentials:

aLa + bLb

2
√
K

dK + (a2La−1 + b2Lb−1)
√
K dL = wert dL+ rwLert dt+ Lert dw

(aLa−1 + bLb−1) dL =
ert

2
√
K
dK + r

√
Kert dt

(b) Put K = 4, L = 1, t = 0, w = 2(a+ b), dt = 1 and dw = h to get the system

a+ b

4
dK + 2(a2 + b2) dL− 2(a+ b) dL = 2(a+ b)r + h

(a+ b) dL =
1

4
dK + 2r

which we solve for dL by eliminating 1
4K = (a+ b)dL− 2r:

(a+ b)2 dL− 2(a+ b)r + 2(a2 + b2) dL− 2(a+ b) dL = 2(a+ b)r + h

which simpli�es to (3a2 + 3b2 + 2ab− 2a− 2b)dL = h+ 4(a+ b)r, so that

∆L ≈ dL =
h+ 4(a+ b)r

3a2 + 3b2 + 2ab− 2a− 2b
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Problem 2

(a) For each constant k 6= 0 (positive or negative!), �nd the limits

i): lim
x→0+

1

xk lnx
, ii): lim

x→+∞

1

xk lnx
, and iii): lim

x→0+

1

xk(lnx)2018
.

(b) Show the following by antidi�erentiation (there is no score for di�erentiating the right-

hand sides):

i):

∫ 1

x

1

u · (1− lnu)
du = ln

(
1− lnx

)
(for 0 < x < e)

ii): 1
2

∫
ev · ln((1 + ev)2) dv = (1 + ev)(ln(1 + ev)− 1) + C.

(c) Find the general solution of the di�erential equation (valid for x ∈ (0, e)):

ẋ = x · (1− lnx) · et · ln((1 + et)2))

Solution sketch:

(a) i): lnx→ −∞. If k < 0 then xk → +∞, and we get �1/−∞�, equals 0. If k > 0, then

xk lnx is a zero-times-in�nity, and x−k

lnx is a �∞/(−∞)�; by l'Hôpital's rule, it tends

to −k limx→0+
x−k−1

x−1 = −k limx→0+ x
−k = −∞.

ii): For k > 0, this is 1/(∞ · ∞) = 0. For k < 0, x−k

lnx is a �∞/∞�, and we get

−k limx−k again; Now, it equals = |k| limx|k| and as x→∞, the answer is ∞.

iii): This is
(

limx→0+
1

x` lnx

)2018
where ` = k/2018 has the same sign as k.

Using item i), the answers are (−∞)2018 = +∞ for k > 0, and 02018 = 0 for k < 0.

(b) i): Doing the inde�nite integral �rst, avoiding the need to substitute limits: Put z =
(1 − lnu); then dz = −du/u. We get −

∫
dz
z = D − ln |z| = D − ln |1 − lnu|. Now

insert for limits: the de�nite integral is − ln(1− ln 1) + ln(1− lnx) (since 0 < x < e),
equalling ln(1 − lnx). (One can substitute in the de�nite integral if one substitutes

for �everything u�, including the limits.)

ii): Substitute y = (1 + ev) with dy = evdv, and so we get 1
2

∫
ln(y2) dy. If one has

not already rewritten the ln of a square, then one should certainly do so now, to get∫
ln ydy, which is y ln y−y+C (it was on the board in a lecture, and an exam problem

given for a seminar required it). Substituting back yields the answer.

(c) Separable, with the exam question ruling out the constant solutions. Separate and

integrate:
∫

dx
x(1−lnx) =

∫
et ln((1 + et)2)dt. Using the antiderivatives from (b), we

have that − ln(1 − lnx) = Q + 2(1 + et)(ln(1 + et) − 1). Switch and exponentiate:

1−lnx = e−Q·
[

exp(1−ln(1+et)
]2(1+et)

= K ·
(

e
1+et

)2+2et
. So lnx = 1−K ·

(
e

1+et

)2+2et
,

where K is an arbitrary positive constant. Solution:

x = exp
{

1−K
( e

1 + et
)2+2et

}
, K > 0.
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Problem 3 Let t be a real constant. Let I be the 4× 4 identity matrix, and put

At =


1 t 0 2
0 −1 2 0
0 −2 1 0
−2 0 −t −1

 and 1 =


1
1
1
1


Throughout the problem, the prime symbol denotes matrix transpose.

(a) Calculate each of the following or explain why it does not exist:

i): A2
t ii): the determinant |A′tAt| iii): I1(I1)′ iv): (At1)′At1.

(Hint: none of your answers should contradict part (b).)

(b) Use part (a) to show that whenever the inverse A−1t exists, it is of the form sAt for some

real number s.

(c) Solve the equation system Atx = 1 when t is such that precisely one solution x exists.

Recall that if M is an invertible n× n matrix, where n > 1, then M−1 = 1
|M|C

′ where C has

elements cij = the cofactor of element (i, j) of M.

(d) If |M| = d (6= 0), what is then the determinant of C?

Solution sketch:

(a) is very much alike a TP question, and like the TP it has the trap that they might get

orders wrong in iii) (and calculate 1′1 rather than 11′).

i):


1− 4 t− t 2t− 2t 2− 2

0 (−1)2 − 2 · 2 −2 + 2 0
0 −(−2)− 2 −4 + 12 0

−2 + (−2) · (−1) −2t− 2(−t) −t− (−t) −4 + (−1)2

 = −3I

ii): |A′tAt| = |At|2 = |A2
t | = | − 3I| = (−3)4 = 81.

iii): I1 = 1, so we get 11′ which is the 4× 4 matrix of ones. (Likely it is OK to write

�the 4× 4 matrix of ones�, as long as it is clear that it is 4× 4 and not 1× 1.)

iv): This is the dot product of At1 with itself. At1 = (3 + t,−1 + 2,−2 + 1,−3− t)′,
which when dotted with itself equals 2(t+ 3)2 + 2.

(b) Because (−1
3At)At = I, we have A−1t = −1

3At.

(c) The unique solution is A−1t 1 = −1
3At1. Recycling calculations from (a)iv), this equals

−1
3

(
3 + t,−1 + 2,−2 + 1,−3− t

)′
=
(
− 1− t

3 ,−
1
3 ,

1
3 , 1 + t

3

)′
.

(d) d ·M−1 = C′, so |C| = |d ·M−1| = dn/d = dn−1.
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Problem 4 Let c > 0 be a constant. Let u be a continuously di�erentiable function of two

variables. Consider the maximization problem

max u(x, y) subject to the constraint c− u(1− x, 1− y) = 0 (L)

and the nonlinear programming problem

max u(x, y) subject to c− u(1− x, 1− y) ≤ 0, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 (K)

(Note: �0 ≤ x ≤ 1� forms two constraints x ≥ 0 and x ≤ 1, and similar for �0 ≤ y ≤ 1�.)

(a) i): State the Lagrange conditions associated with problem (L), and state the Kuhn�

Tucker conditions associated with problem (K).

(Possible hint if the �u� in a constraint is confusing: write �rst as c−g(x, y) = 0 (resp.
≤ 0), and insert afterwards, so that you in the end get conditions with derivatives of

only u, not of �g�.)

ii): True or false? �The point (x, y) = (12 ,
1
2) will satisfy the Lagrange conditions associa-

ted with problem (L), as long as the constraint holds.�

(Do not expect score for an unsubstantiated guess!)

(b) Let in this part u(x, y) = 2(e+ x)− e2(1−x) − (1 + e)e1−2y and c = 0.

i): Show that the point (x, y) = (12 ,
1
2) is indeed optimal for problem (K).

(If unable to do (K), then for partial score: show optimality for (L) instead.)

ii): If c is decreased from 0 to −0.03, approximately how much does the optimal value

change? (You can take the optimality from part i) for granted regardless of

whether you managed to show it. If you did problem (L) in i), you can consider (L)

here too.)

Solution sketch Let L(x, y) = u(x, y) − λ · (c − u(1 − x, 1 − y)) and let K(x, y) =
L(x, y) + αx + βy − γ(x − 1) − δ(y − 1) be the respective Lagrangians. The �rst partial

derivatives of L are u′x(x, y)− λu′x(1− x, 1− y) and u′y(x, y)− λu′y(1− x, 1− y). (For K:

will follow.)

(a) i): Lagrange conditions: u′x(x, y) = λu′x(1− x, 1− y), u′y(x, y) = λu′y(1− x, 1− y)
and the constraint u(1− x, 1− y) = c.

Kuhn�Tucker conditions:

0 = u′x(x, y)− λu′x(1− x, 1− y) + α− γ
0 = u′y(x, y)− λu′y(1− x, 1− y) + β − δ
λ ≥ 0 with λ = 0 if u(1− x, 1− y) > c

α ≥ 0 with α = 0 if x > 0

β ≥ 0 with β = 0 if y > 0

γ ≥ 0 with γ = 0 if x < 1

δ ≥ 0 with δ = 0 if y < 1
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They are free to include admissibility or not. Also, they can use alternative

formulations, for example

u′x(x, y)− λu′x(1− x, 1− y)


≤ 0 if x = 0

≥ 0 if x = 1

= 0 if x ∈ (0, 1)

u′y(x, y)− λu′y(1− x, 1− y)


≤ 0 if y = 0

≥ 0 if y = 1

= 0 if y ∈ (0, 1)

λ ≥ 0 with λ = 0 if u(1− x, 1− y) > c

ii): True: Putting x = y = 1/2, conditions say u′x(12 ,
1
2) = λu′x(12 ,

1
2), u′y(12 ,

1
2) =

λu′y(12 ,
1
2) and u(12 ,

1
2) = c; the two �rst hold (with λ = 1), so it is OK i� the

constraint holds.

(b) i): We have u(12 ,
1
2) = 2e + 1 − e − (1 + e)e0 = 0, so that constraint is active.

The others are not. The Kuhn�Tucker conditions hold with λ = 1 and all other

multipliers vanishing. Since this u is concave � being a sum of concave functions

� we have found the solution.

(That argument goes for problem (L) as well.)

Note that the extreme value theorem is not su�cient � it only shows existence of

a solution, but not that there exists only one point that satis�es the conditions.

It might be acceptable � depending on how the argument is done � to draw an

Edgeworth box and making a graphical argument about single-touching (�convex

sets� terminology is not curriculum).

ii): λ = 1, so the change is ≈ 0.03. I suggest not to stress the sign, as the usual

formulation in this course would be the opposite sign.

5


