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University of Oslo / Department of Economics English version only

ECON3120/4120 Mathematics 2
November 28th 2019, 0900�1300 (4 hrs). There are 2 pages of problems to be solved.

Support material: �Rules and formulas� attachment, and both the approved calculators.

• You are required to state reasons for all your answers.

• You are permitted to use any information stated in an earlier enumerated item (e.g.

�(a)�) to solve a later one (e.g. �(c)�), regardless of whether you managed to answer

the former. A later item does not necessarily require answers from or information

given in a previous one.

Problem 1 Take for granted that the following equation system determines K and L as

continuously di�erentiable functions of (s, t) near the point where (s, t,K, L) = (0, 2, 1, 0):

tK + lnK + ln(1 + L) + L2 = 2

sL+K2 + eKL − t = 0

(a) Di�erentiate the system (i.e., calculate di�erentials).

(b) Calculate
∂K

∂t
(0, 2) and

∂L

∂t
(0, 2).

Problem 2 Let A =

(
1 −t
t 1

)
, B =

(
t 2 0
1 −1 1

)
, C =



t 2 0
1 −1 1
0 1 1


 and d =



−t
2
3




A, B, C and d depend on the constant t (real number).

Do not select a value for t; in particular, the answer to (a) will be a t-dependent matrix.

(a) Among the matrix products ABd, BCd, B2, C2 and d2, pick one that is well-de�ned

and calculate it (for every t).
(You can pick one you �nd easy to calculate. A harder one is not worth higher score.)

(b) For each of A, B, C and d: calculate its determinant or point out that it does not exist.

(c) Show that for every real t, the equation system Cx = d has at least one solution x.
(You are not asked to solve completely, but you are allowed to solve as far as you need in

order to answer the question.)
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Problem 3

(a) Show by antidi�erentiation that

∫
te−t/2 dt = C − 2(t+ 2)e−t/2.

(There is no score for di�erentiating the right-hand side.)

(b) For the di�erential equation ẋ =
ex − 1/e

ex
te−t/2, �nd the following particular solutions:

• the one satisfying x(−2) = −1
• the one satisfying x(−2) = 1.

(c) Use the substitution u = ln z to calculate

∫ ∞

1

ln z

z3/2
dz.

For full score, you must use this substitution. You can get partial score by using other

methods.

Problem 4 De�ne the C1 function h(t) =
e2qt − 2qt+ tq

ln(1 + t2)
for all t > 0.

Here, q ∈ (0, 1) is a constant.

(a) Show that lim
t→0+

h(t) and lim
t→+∞

h(t) both diverge to +∞, for every q ∈ (0, 1).

(Hint: For one of these limits, it might be useful that h(t) =
e2qt

ln(1 + t2)
·
(
1 +

tq − 2qt

e2qt

)
.)

(b) From part (a) it follows that h′(t1) < 0 for some t1 near 0, and that h′(t2) > 0 for some

large t2. (You are not asked to show this.)

Use this to show that h has at least one stationary point t∗. (Do not attempt to �nd t∗!)

(c) Take for granted that t∗ minimizes h. The minimum value V = h(t∗) depends on q. Find
an expression for V ′(q).

Problem 5 Consider the problem

max y2 + (x− 1)y subject to x2 + 18y ≤ 45, x ≥ 2, y ≥ 1/2 (K)

(a) • State the associated Kuhn�Tucker conditions, and

• show that some multiplier must be 6= 0 for these conditions to be satis�ed at an

admissible point (x, y). (�Admissible�: that satis�es the three constraints.)

(b) Are the Kuhn�Tucker conditions satis�ed at

• the point (x1, y1) = (3, 2)?

• the point (x2, y2) = (6, 1/2)?

(End of problem set. Attachment: Rules and formulas.)
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Attachment: Rules and formulas

A. Exponentials and logarithms For base numbers b > 0 with b 6= 1:

b−x = 1/bx bx±y = bx · b±y bx+yz = bx ·
(
by)z(A1)

for x > 0, y > 0: blogb x = x logb
(
x · yz

)
= logb x+ z logb y logb x =

logc x

logc b
(A2)

We write ln for the natural logarithm loge where e = lim
n→+∞

(1 + 1
n)
n ≈ 2.718281828.

B. Limits Notational convention in this course: when limx→a, x is never equal to a. For
example, in the de�nition f ′(a) = limh→0

f(a+h)−f(a)
h , we let h→ 0 without touching zero.

For a limit to exist (it �converges�), it must be �nite, but we write e.g. limx→0 x
−2 = +∞

(�diverges� to +∞, not converges). Limits that diverge but not to ±∞ are not signi�cant in
Math 2 (example: limn→+∞(−1)n, n runs through the natural numbers only).

Rules If ` = lim
x→a

f(x) and m = lim
x→a

g(x) both exist (implying: are �nite):

lim
x→a

(
f(x)± g(x)

)
= `±m, lim

x→a
(
f(x)g(x)

)
= `m, lim

x→a
f(x)

g(x)
=

`

m
if m 6= 0(B1)

Same validity if the �x→ a� are replaced by x→ a+ or x→ a− or x→ −∞ or x→ +∞.
When ` exists and m does not, the �rst formula holds in the sense that `+[does not exist] does
not exist, `± (+∞) = `±∞ etc.; for the second formula, we can write ` · (+∞) =∞ · sign `
if ` 6= 0 but this inference is invalid if ` = 0. For the third, we have `/(±∞) = 0.

Continuity A function is continuous at some a in its domain, if limx→a f(x) exists and equals
f(limx→a x) = f(a), i.e. limits can be computed inside the function. It is continuous if it is
continuous at every a in its domain. Compositions of continuous functions are continuous.
Note, in Math 2 one does not need to argue that a particular function is continuous where it
is de�ned � as long as one does not make incorrect claims.

l’Hôpital’s rule If the limits lim
x→a

f(x) and lim
x→a

g(x) are both zero, or both diverge to in�nity:

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)
g′(x)

(�nite or in�nite; the former diverges if the latter diverges)(B2)

Same validity if the �x → a� are replaced by x → a+ or x → a− or x → −∞ or x → +∞.
You must justify the validity when using l'Hôpital's rule; e.g. as the overbraces in the following
signi�cant examples: For p > 0 and q > 0, using continuity of tp and the di�erentiation rules:

lim
x→+∞

xp

eqx
=
(
=�+∞/+∞�︷ ︸︸ ︷
lim

x→+∞
x

eqx/p

)p
=
(

lim
x→+∞

d
dxx

d
dxe

qx/p

)p
=
(

lim
x→+∞

1
q
pe
qx/p

)p
= 0p = 0(B3)

lim
x→+∞

(lnx)p

xq
=
(
=�+∞/+∞�︷ ︸︸ ︷
lim

x→+∞
lnx

xq/p

)p
=
(

lim
x→+∞

1/x
q
px

q/p−1

)p
=
(p
q

lim
x→+∞

x−q/p
)p

= 0p = 0(B4)

lim
x→0+

xq
∣∣lnx

∣∣p =
∣∣∣

=�−∞/+∞�︷ ︸︸ ︷
lim
x→0+

lnx

x−q/p

∣∣∣
p
=
∣∣∣ lim
x→0+

1/x

− q
px
−1−q/p

∣∣∣
p
=
∣∣∣p
q

lim
x→0+

xq/p
∣∣∣
p
= 0p = 0(B5)

lim f(x) = elim ln f(x) if f(x) > 0; in particular useful if lim f(x) is �1∞�, �∞0�, �00�.(B6)

Rules and formulas, page I



C. Derivatives, differentials, elasticities Provided di�erentiability and no division by 0:

d

dx

(
f(x)± g(x)

)
= f ′(x)± g′(x), d

dx
g(f(x)) = g′(f(x))f ′(x)(C1)

d

dx

(
f(x)g(x)

)
= f ′(x)g(x) + f(x)g′(x)

d

dx

f(x)

g(x)
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
(C2)

d

dx
xr = rxr−1,

d

dx
|x| = x

|x| =
|x|
x
,

d

dx
ex = ex,

d

dx
ln |x| = 1

x
(C3)

For bx, respectively logb x: Write as ex ln b resp. lnx
ln b . If f(x) > 0, then f ′(x) = f(x) ddx ln f(x).

For inverse functions: d
dxf
−1(x) = 1

f ′(f−1(x))
.

Partial derivatives ∂f
∂xi

: similar rules.

The differential: if z = f(x1, . . . , xn), we de�ne the di�erential dz to be:
∂f
∂x1

(x1, . . . , xn) dx1 + · · ·+ ∂f
∂xn

(x1, . . . , xn) dxn. Di�erentials obey rules similar to derivatives.

Elasticities: Elxf(x) =
x

f(x)f
′(x) for f(x) 6= 0. Can be written as Elxf(x) =

d ln |f(x)|
d ln |x| (which

equals d ln f(x)
d lnx if f > 0 and x > 0). Rules, assuming functions and arguments positive:

Elx

(
f(x) · g(x)r

)
=
d ln f(x) + d

(
r ln g(x)

)

d lnx
= Elxf(x) + rElxg(x)(C4)

Elx

(
f(x) · g(x)h(x)

)
= Elxf(x) + h(x) ·

[
Elxg(x) + ln g(x) · Elxh(x)

]
(C5)

Elxg(f(x)) =
d ln g(u)

d lnu

∣∣∣
u=f(x)

· d ln f(x)
d lnx

(C6)

Elx

(
f(x) + g(x)

)
=
x(f ′(x) + g′(x)
f(x) + g(x)

=
f(x)Elxf(x) + g(x)Elxg(x)

f(x) + g(x)
(C7)

For functions of several variables, Elxi denotes partial elasticity in this course.

Implicit derivatives If (x, z) satis�es F (x1, . . . , xn, z) = C, then
∑

i F
′
xi(x, z)dxi+F

′
z(x, z)dz

= 0 and as long as F ′z(x, z) 6= 0, the equation determines z = g(x) with ∂g
∂xi

= −F ′xi (x,z)
F ′z(x,z)

.

If two equations F (x,K, L) = C and G(x,K, L) = D determine continuously di�erentiable
functions K = K(x) and L = L(x), then the following recipe gives their partial derivatives:

• Di�erentiate the equation system (i.e. calculate di�erentials). Obtain

F ′K(x,K, L) dK + F ′L(x,K, L) dL+
∑

i

F ′xi(x,K, L) dxi = 0

G′K(x,K, L) dK +G′L(x,K, L) dL+
∑

i

G′xi(x,K, L) dxi = 0

• This is a linear equation system in dK and dL, when everything else is taken as constant.
Solve it to obtain the following (you are not required to use matrix notation):

(
dK
dL

)
= −A−1

∑

i

(
F ′xi(x,K, L)
G′xi(x,K, L)

)
dxi where A =

(
F ′K(x,K, L) F ′L(x,K, L)
G′K(x,K, L) G′L(x,K, L)

)
(C8)

• This gives the forms dK =
∑

i κi dxi and dL =
∑

i λi dxi. Then
∂K
∂xi

= κi and
∂L
∂xi

= λi.
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D. Optimization etc. Several of the following statements omit a requirement that the set
S be �convex�, as that is beyond Mathematics 2. (Convex subsets of R = the intervals.)

Some terminology: �open� resp. �closed� set: includes none resp. all of its boundary points.
A �maximum� resp. �minimum� for f : an x∗ (i.e. a point) such that for all x we have
f(x) ≤ f(x∗) (resp. ≥ f(x∗)). The output f(x∗) is called the maximum/minimum value.

E.g., the max/min for f(x) = ax2+ bx+ c (if a 6= 0), is x∗ = −b
2a ; the max/min value is c− b2

4a .

Two existence theorems: Let f be (de�ned and) continuous on the entire set S.

(D1) The extreme value theorem: If S ⊂ Rn is closed, bounded and nonempty, then the
continuous function f has both a maximum and a minimum over S.

(D2) The intermediate value theorem: If n = 1 and S = [a, b] (interval, endpoints contained),
then the continuous function f attains every value between f(a) and f(b) at least once.

Convex and concave function of one variable: Let f be C1, de�ned on an interval.
f is convex (respectively: concave) if f ′ is nondecreasing (resp. nonincreasing) everywhere.
If f is also C2, then it is convex (respectively: concave) if f ′′ ≥ 0 (resp. ≤ 0) everywhere.

Convex and concave function of two variables: Let f be C2 on S ⊆ R2.
Let h(x, y) = f ′′xx(x, y)f

′′
yy(x, y)−

(
f ′′xy(x, y)

)2
(the so-called Hessian determinant.)

If and only if h ≥ 0 and f ′′xx ≥ 0 and f ′′yy ≥ 0 on all of S, then f is convex on S(D3)

If and only if h ≥ 0 and f ′′xx ≤ 0 and f ′′yy ≤ 0 on all of S, then f is concave on S(D4)

If h(x, y) > 0 at some given point, then f ′′xx(x, y) and f
′′
yy(x, y) are nonzero and of same sign:

If h(x, y) > 0 and f ′′xx(x, y) > 0 then f is strictly convex on some open set around (x, y)(D5)

If h(x, y) > 0 > f ′′xx(x, y) then f is strictly concave on some open set around (x, y)(D6)

Convex and concave function of n variables: The following are su�cient (but not necessary)
for convexity/concavity. Let α ≥ 0 and β ≥ 0 be constants.

If f and g are both convex (resp. concave), then αf + βg is convex (resp. concave)(D7)

Unconstrained optimization (i.e. on open set S). First-order condition: stationary point, i.e.
∂f/∂xi equal zero at x∗, all i = 1, . . . , n. Assuming stationary point x∗:

• Global second-order condition: If the function is convex (resp. concave), a stationary
point x∗ is a global min (resp. global max).

• Local second-order condition for n = 2 variables: Let (x∗, y∗) be a stationary point.
If (D5) (resp. (D6)) holds at (x∗, y∗), it is a strict local min (resp. strict local max).
If h(x∗, y∗) < 0, it is neither (a �saddle point�); if h(x∗, y∗) = 0, Math 2 cannot classify.

• 1 variable, f ′(x∗) = 0: f ′′(x∗) > 0⇒ strict local min. f ′′(x∗) < 0⇒ strict local max.

• For 1 variable, the �rst-derivative test (a sign diagram is possibly useful):
Increase x across x∗. If f ′(x) changes sign from negative to positive (resp. positive to
negative), then x∗ is local min (resp. local max). If furthermore x∗ is the only change
of sign of f ′ in the domain of f , the min (resp. max) is global.
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Constrained optimization Problem type: max f(x) subject to constraints gj(x) ≤ bj or = bj
(m constraints, n variables) Form the Lagrangian L(x) = f(x)−∑m

j=1 λj(gj(x)− bj).
Conditions � on the exam, they must be written out!

• Equality-only constraints, m < n: The Lagrange conditions for a point x∗ to solve the
problem, are that there exist numbers λ1, . . . , λm such that x is a stationary point for
L, and the constraints hold. n+m equations for x and the λj .
These conditions are the same for the problem with �min� in place of �max�.

• Inequality-only constraints: The Kuhn�Tucker conditions for x∗ to maximize, are that
there exist nonnegative numbers λ1 ≥ 0, . . . , λm ≥ 0, such that x∗ is a stationary point
for L, and that if gj(x

∗) < bj then λj = 0. That is:

∂L

∂xi
(x∗) = 0 for every i, and for every j: λj ≥ 0 and if gj(x

∗) < bj then λj = 0(D8)

Also the constraints must hold, and you are free to include them or not if asked for the
�Kuhn�Tucker conditions�. (Equivalent formulations are OK.)

Necessity/su�ciency etc.:

• In this course you can take the Lagrange / Kuhn�Tucker conditions as necessary.

• Su�cient conditions: Suppose x∗ satis�es the Lagrange resp. Kuhn�Tucker conditions
with numbers λ1, . . . , λm. Then x∗ solves the maximization problem if:

x∗ maximizes L subject to to the constraints.

This in particular holds if L is concave in x.
(D9)

• If condition (D9) can not be used, then you can compare values provided you have
established existence (e.g. by the extreme value theorem (D1)).

• (Omitted at least in 2019: Local second-order condition for the Lagrange problem.
(D10) Equation number advances by one for placeholder.)

Value functions, derivatives (envelope theorem), shadow prices. If f depends on x (choice
variable) and r (exogenous), then � assuming maximum exists � the maximum valuemaxx f(x, r)
is a function V (r), and the (possibly) maximum (point) x∗ depends on r as well.
The same applies when there are (possibly r-dependent) constraints.

The envelope theorem: in the (possibly constrained) optimization problem, suppose f , the gj
and the bj depend on r. To the precision level of this course:

∂V

∂ri
(r) =

∂f

∂ri
(x∗, r)−

m∑

j=1

λj

( ∂g
∂ri

(x∗, r)− ∂b

∂ri
(r)
)

(D11)

The formula holds for stationary saddle points too, not just max/min. Special cases:

• Unconstrained: m = 0, remove the sum to get ∂V
∂ri

(r) = ∂f
∂ri

(x∗, r).

• Unconstrained, one variable: It also holds for endpoint max/min.

• If there is no r-dependence in f nor gj nor bj , then the value depends on the bj constants,
V = V (b). Then ∂V

∂bj
(b) = λj (the shadow price interpretation).
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E. Integration. All functions on this page are of a single variable t, bounded and piecewise
continuous � until speci�ed otherwise in the Leibniz rule.

Terminology. If F ′ = f on the domain of f , then F is an antiderivative of f . The inde�nite
integral

∫
f(t) dt equals F (t) + C, i.e. the general antiderivative of f ; here, C is an arbitrary

constant. The de�nite integral
∫ b
a f(t) dt equals F (b)− F (a).

Area. When b ≥ a and f ≥ 0 on (a, b), the de�nite integral
∫ b
a f(t)dt equals the area delimited

by the �rst axis and the graph of f between a and b. When f can take either sign, it equals
the part of the area above the axis, minus the part of the area under the axis.

Rules. Derivatives rules (see (C1)�(C3)) can be applied in reverse. For α, β constant:

Sums and scalings:

∫ (
αf(t) + βg(t)

)
dt = α

∫
f(t)dt+ β

∫
g(t)dt(E1)

except:

∫ (
f(t)− f(t)

)
dt =

∫
0 dt = C (rather than zero)(E2)

Integration by parts:

∫
f ′(t)g(t) dt = f(t)g(t)−

∫
f(t)g′(t) dt(E3)

Integration by substitution:

∫
f ′(u(t))u′(t) dt =

∫
f(u) du = F (u(t)) + C(E4)

... in de�nite integrals:

∫ b

a
f ′(u(t))u′(t) dt =

∫ u(b)

u(a)
f(u) du(E5)

You will not be asked to integrate � t−γ
(t−α)(t−β)� when α 6= β, but if it shows up due to your own

calculations: rewrite into α−γ
α−β · 1

t−α −
β−γ
α−β · 1

t−β . (When α = β: write t−γ
(t−α)2 as 1

t−α + α−γ
(t−α)2 .)

Extension: improper integrals. The above assumes bounded integrand and bounded interval.
Otherwise, the integral is de�ned as limits, provided they exist. When the integrand f is
unbounded only near a and/or near b > a:

∫ b

a
f(t) dt = lim

R→a+

∫ c

R
f(t) dt+ lim

S→b−

∫ S

c
f(t) dt (both limits need to exist)(E6)

If f unbounded only near c ∈ (a, b), apply (E6) on each term
∫ c
a f(t) dt and

∫ b
c f(t) dt.

For in�nite intervals:
∫ b

−∞
f(t) dt = lim

R→−∞

∫ b

R
f(t) dt,

∫ +∞

a
f(t) dt = lim

S→+∞

∫ S

a
f(t) dt(E7)

These rules/de�nitions can be combined by splitting into integrals with only one limit transi-
tion each. E.g.

∫ +∞
−∞ f(t) dt =

∫ c
−∞ f(t) dt+

∫ +∞
c f(t) dt for any c.

The Leibniz rule for differentiating integral expressions. Let f be a function of two variables
(x, t) and note that for purposes of integration wrt. t, x is treated as constant. The formula

d

dx

∫ v(x)

u(x)
f(x, t) dt = f(x, v(x))v′(x)− f(x, u(x))u′(x) +

∫ v(x)

u(x)
f ′x(x, t) dt(E8)

is valid in Mathematics 2; also for improper integrals with in�nity treated as constant.
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F. Differential equations. A particular solution is a function that satis�es the di�erential
equation. The general solution is the set of all particular solutions. You are expected to verify
any proposed particular solution. To �nd solutions, you are expected to handle the following
two types of (ordinary �rst-order) di�erential equations for the unknown x = x(t):

Linear differential equations ẋ(t) + a(t)x(t) = b(t). Let A be an antiderivative of a. Then
d
dt

(
eA(t)x(t)

)
= (ẋ(t) + a(t)x(t))eA(t), which = b(t)eA(t), and so eA(t)x(t) =

∫
b(t)eA(t) dt and

x(t) = Ce−A(t) + e−A(t)
∫
b(t)eA(t) dt(F1)

Writing a constant C allows the integral to be any antiderivative, and so the right-hand side is
the sum of any given particular solution e−A(t)

∫
b(t)eA(t) dt and the general solution Ce−A(t)

of the corresponding homogeneous equation (obtained by replacing b by the zero function).
For a particular solution: �nd C. Example with t0 and x(t0) = x0 given: if a 6= 0 and b are
constants, then x(t) = (x0 − b/a)e−a(t−t0) + b/a is of the form (F1) and satis�es x(t0) = x0.

Separable differential equations ẋ(t) = f(t)g(x(t)) (or, which can be rewritten that way).
Note, g depends on x only. The general solution is found by (i) any zero z of g is a constant
particular solution x(t) ≡ z, and (ii) for g 6= 0, separate into dx

g(x) = f(t) dt, integrate
∫

1

g(x)
dx =

∫
f(t) dt which yields H(x) = F (t) + C,(F2)

solving the resulting algebraic equation for x and collecting the contributions from (i) and (ii).
For a particular solution satisfying x(t0) = x0: If g(x0) = 0 (case (i)), the particular solution
is x(t) ≡ x0. Otherwise (case (ii)), �nd C as H(x0)− F (t0) and solve for x.

G. Approximations. Taylor polynomials. Let f be a Ck function of a single variable.
Its kth order approximation around t = a, is the kth order polynomial

pk,a(t) = f(a) + f ′(a) · (t− a) + 1

2
f ′′(a)(t− a)2 + · · ·+ 1

k!
f (k)(a) · (t− a)k(G1)

where f (j) denotes the jth derivative
(
d
dt

)j
f and j! denotes j·(j−1)·· · ··1. If f is also Ck+1, then

for each t there exists a c between t and a such that f(t)−pk,a(t) = f (k+1)(c) · 1
(k+1)!(t−a)k+1.

In n variables: when k = 2, we have

f(x) ≈ f(a) +
n∑

i=1

(xi − ai)
∂f

∂xi
(a) +

1

2

n∑

i=1

n∑

j=1

(xi − ai)(xj − aj)
∂2f

∂xi∂xj
(a)(G2)

or in matrix notation, where the · denotes dot product:

f(x) ≈ f(a) +∇f(a) z+ 1
2 z · (Ha z

)
where z = x− a (column vector),(G3)

∇f(a) =
(
f ′1(a), . . . , f

′
n(a)

)
is the gradient (the row vector of �rst derivatives) at a,

Ha is the Hessian matrix at a: the n× n matrix with elements hij =
∂2f

∂xi ∂xj
(a).

For k = 1, delete the quadratic terms to get f(x) ≈ f(a) +∑n
i=1(xi − ai) ∂f∂xi (a).

For k > 2 in n variables: To approximate f at a given x near a, let g(t) = f(tx+(1− t)a), so
that f(x) = g(1) and f(a) = g(0); then, use the single-variable approximation around t = 0.
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H. Linear algebra and linear equation systems. This note denotes matrices by bold-
face capitals or denotes them by their elements: a matrixA =

(
aij
)
i,j

ofm rows and n columns
has order m × n. Minuscle boldface v indicates order m × 1, a column vector. Order 1 × n
means a row vector and is denoted by u′ where u is n × 1 and the prime symbol ′ denotes
matrix transpose: if A =

(
aij
)
i,j

is m× n, then A′ = B is the n×m matrix with bij = aji.

We write 0 = 0m,n for a matrix with all elements being zero and I = In for the (square) n×n
matrix with elements = 1 on the main diagonal (i.e. if i = j) and 0 elsewhere.
If A is 1x1 we typically don't distinguish between the matrix A and the number a11.

Scaling and addition. A matrix (and hence a vector) can be scaled by a number t, by scaling
each element with t. We write −A for (−1)A. Two matrices of the same order (hence also
two vectors of the same order) are added element-wise.

Rules for scalings and sums. Scalings and sums of m×n matrices obey the rules A+0 = A;
A+B = B+A; (A+B) +C = A+ (B+C) (so we drop the parentheses); A+ (−A) = 0;
t(A+B) = tA+ tB; (s+ t)A = sA+ tA. Subtraction is de�ned as A−B = A+ (−B).

Products. For n-vectors u and v, the dot product u · v is de�ned as u1v1 + · · ·+ unvn. Also
we de�ne u′ · v′ = u · v for row vectors of same order.
The matrix product AB is de�ned i� A resp. B have orders m × n resp. n × p, and is the
m×p matrix C = (cij) with cij = ri ·bj , where r′i is the ith row of A and bj is the jth column
of B. �Matrix division� is not de�ned, though a 1× 1 might be considered as a number.

Rules: products and transposition. Provided the matrix orders admit the operations, we have
(AB)C = A(BC) (so we drop these parentheses); ImA = AIn = A; A(B+C) = AB+AC;
(A+B)C = AC+BC; (A′)′ = A; (A+B)′ = A′ +B′; (tA)′ = tA′; and, (AB)′ = B′A′.

Linear equation systems, general facts. A linear equation system AX = B has either no
solution, unique (= precisely one) solution, or in�nitely many solutions.
If some solution X∗ exists, the general solution � i.e. the set of all solutions � is of the form
X∗ plus the general solution of corresponding homogeneous equation system AX = 0.
A homogeneous system AX = 0 has at least one solution, namely the trivial solution X = 0.

Gaussian elimination. On the augmented coe�cient matrix (A
...B), delete on sight null rows

(i.e. equations that say zero = zero), and apply the elementary row operations:

• Interchanging rows (i.e. equations);

• Scaling a row (i.e. an eq.) by a nonzero number (this to get leading 1's);

• Adding a scaling of one row (i.e. an eq.) to another (this to eliminate below leading 1's)

If and when an equation reads zero = something nonzero, you can declare �no solution�.
Otherwise: If and when you have arrived at row-echelon form where each row has a leading 1
somewhere on the left-hand side, the corresponding variable numbers will be determined once
the remaining d ∈ {0, 1, ...} variables are chosen freely; �solution with d degrees of freedom�.
Special case: d = 0 and unique solution. Then you can eliminate all the way to the left-hand
side being I. That is, an equation system of the form IX = M, with unique solution X = M.
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Determinants and rules for determinants. If A is n × n, we can de�ne its determinant , a
function denoted det(A) or |A|. We say that |A| has order n (or even n×n). The full de�nition
is omitted (not needed!), but: |A| is the sum of n! terms, each being ± the product of precisely
one element from each row&column, the �±� chosen according to (H7) and |In| = 1.

Let A and B both be n× n. Then the following rules apply:

(H1) The cofactor expansion rule determines an order n determinant as a sum of n deter-
minants each of order n − 1: For n = 1, the determinant is the (only!) element of the
matrix. For n > 1, let kij be the cofactor of element i, j, de�ned as (−1)i+j times the
(n− 1)× (n− 1) determinant formed by deleting row i and column j from the matrix.

• Fix any row i; then |A| = ai1ki1 + · · ·+ ainkin

This is called cofactor expansion along the ith row. (Fact: independent of choice of i.)

(H2) |A′| = |A|. Hence cofactor expansion can be performed by arbitrary column as well:
|A| = a1jk1j + · · ·+ anjknj (cofactor expansion along jth column), any j = 1, . . . , n.

(H3) |AB| = |A| · |B|.

(H4) IfA has a row (/a column) of zeroes, or two proportional rows (/columns), then |A| = 0.

(H5) If B is formed from A by scaling one single row (/column) by t, then |B| = t|A|.
In particular, |tA| = tn|A| (scaling all n rows by t).

(H6) If B is formed from A by adding to row #i a scaling of another row #` 6= i (/to column
#j a scaling of another column #` 6= j), then |B| = |A|.

(H7) If B is formed from A by interchanging two rows (/two columns), then |B| = −|A|.

Inverses and rules for inverses. Cramér’s rule. A matrix M is called the inverse of A and
denoted A−1, if AM = MA = I. Then we call A invertible. It must necessarily be square.

The following rules apply if A is n× n (otherwise it cannot be invertible) and B has n rows:

(H8) If AM = In or MA = In then A is invertible with A−1 uniquely given by M.
If so, then (since (AM)′ = M′A′ also is = In): A

′ will be invertible with inverse M′.

(H9) If A is invertible, then M = A−1 is invertible, and with inverse (A−1)−1 = A. Also, for
any natural number k: Ak will be invertible with inverse (A−1)k (this denoted A−k).

(H10) A is invertible if and only if |A| 6= 0. If so, then (by (H3)) |A−1| = 1/|A|.

(H11) AB is invertible if and only if A and B are both invertible. If so, (AB)−1 = B−1A−1.
If furthermore t 6= 0 then tA = A(tI) is invertible with inverse (t−1I−1)A−1 = t−1A−1.

(H12) Formula: LetK = (kij) be the matrix of cofactors ofA (i.e.: each kij as de�ned in (H1)).
Then AK′ = |A| I. So (by (H8) and (H10)): if A is invertible, then A−1 = 1

|A| K
′.

(H13) If and only if A is invertible, then the equation system AX = B has a unique solution
(of same order n× p as B, since A is square), and given by X = A−1B. In particular:
AX = I has unique solution X = A−1 (by (H8)) i� A invertible, no solution if not.

(H14) Cramér's rule: If and only if A is invertible, the unique solution of Ax = b is given by
xi = Di/|A| where Di is the determinant formed by replacing column #i of A by b.
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I. Miscellaneous topics

The quadratic equation Provided a 6= 0, the equation ax2 + bx+ c = 0 has the solutions

x =
−b±

√
b2 − 4ac

2a
though no real solution if b2 < 4ac(I1)

Homogeneous functions. A function f of n variables x = (x1, . . . , xn) is called homogeneous
of degree d if for all t > 0 and all x in the domain of f , we have:

f(tx) = f(tx1, . . . , txn) is de�ned and equals tdf(x).(I2)

In particular, its domain D must be so that x ∈ D ⇔ tx ∈ D for all t > 0. For such a domain
and a C1 function, the following are equivalent:

f homogeneous of degree d ⇐⇒ x1
∂f

∂xi
(x) + · · ·+ xn

∂f

∂xn
(x) = d · f(x) on D(I3)

which provided f(x) 6= 0, is equivalent to El1f(x) + · · ·+ Elnf(x) = d on D.
If f is C1 and homogeneous of degree d, then each ∂f

∂xi
is homogeneous of order d− 1.

If furthermore f is C2, then ∂2f
∂xi ∂xj

homogeneous of order d− 2, every i, j, and

n∑

i=1

n∑

j=1

xixj
∂2f

∂xi ∂xj
(x) = d · (d− 1) · f(x)(I4)

Homothetic functions. Let D ⊆ Rn such that x ∈ D ⇔ tx ∈ D for all t > 0. A function f
de�ned on D is homothetic if

whenever f(u) = f(v), then f(tu) = f(tv) for all t > 0.(I5)

Any homogeneous function is homothetic. If h is homothetic and g is a strictly increasing
function of a single variable, then f(x) = g(h(x)) is also homothetic.

The elasticity of substitution. Fix a level curve F (K,L) = C of a function F of two variables.
The elasticity of substitution σL,K between K and L, measures the relative change in L/K

per relative change in the marginal rate of substitution RL,K =
F ′K(K,L)

F ′L(K,L)
along the level curve:

σL,K = ElRL,K

L

K
=

d ln L
K

d ln
F ′K(K,L)

F ′L(K,L)

where (K,L) such that F (K,L) = C.(I6)

The elasticity of substitution can also be written as:

σL,K =
F ′KF

′
L

KL
· KF

′
K + LF ′L
B

where B = −F ′′KK(F ′L)2 + 2F ′KF
′
LF
′′
KL − F ′′LL(F ′K)2(I7)

The latter denominator B equals

∣∣∣∣∣
0 F ′K F ′L
F ′K F ′′KK F ′′KL

F ′L F ′′KL F ′′LL

∣∣∣∣∣ (the �bordered Hessian� determinant).
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