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University of Oslo / Department of Economics English version only

ECON3120/4120 Mathematics 2
November 28th 2019, 0900-1300 (4 hrs). There are 2 pages of problems to be solved.

Support material: “Rules and formulas” attachment, and both the approved calculators.

e You are required to state reasons for all your answers.

e You are permitted to use any information stated in an earlier enumerated item (e.g.
“(a)”) to solve a later one (e.g. “(c)”), regardless of whether you managed to answer
the former. A later item does not necessarily require answers from or information
given in a previous one.

Problem 1  Take for granted that the following equation system determines K and L as
continuously differentiable functions of (s, t) near the point where (s,¢, K, L) = (0,2,1,0):

tK +InK +In(1+ L)+ L? =2
sL+K?>+efl —t=0

(a) Differentiate the system (i.e., calculate differentials).

K L
(b) Calculate 8875(0,2) and 6;5(0,2).
t 2 0 -t
Problem2 TetA= (' ! , B= L2 0 ,C=|1 -1 1| and d=| 2
t 1 1 -1 1 0 1 1 3

A, B, C and d depend on the constant ¢ (real number).
Do not select a value for t; in particular, the answer to (a) will be a t-dependent matrix.

(a) Among the matrix products ABd, BCd, B2, C? and d?, pick one that is well-defined
and calculate it (for every t).
(You can pick one you find easy to calculate. A harder one is not worth higher score.)

(b) For each of A, B, C and d: calculate its determinant or point out that it does not exist.

(c) Show that for every real ¢, the equation system Cx = d has at least one solution x.
(You are not asked to solve completely, but you are allowed to solve as far as you need in
order to answer the question.)



Problem 3

(a) Show by antidifferentiation that /te_t/2 dt = C —2(t 4 2)e” /2.
(There is no score for differentiating the right-hand side.)

x
-1
(b) For the differential equation & = eim/e te~'/?, find the following particular solutions:
e

e the one satisfying z(—2) = —1

e the one satisfying z(—2) = 1.

* Inz
23/2

For full score, you must use this substitution. You can get partial score by using other

methods.

(¢) Use the substitution u = In z to calculate / dz.

e2at — 2qt 4 t4

for all ¢ > 0,
(1 + ) orallt=0

Problem 4  Define the C! function h(t) =

Here, g € (0,1) is a constant.

(a) Show that lim+ h(t) and lim h(t) both diverge to +oo, for every ¢ € (0,1).
t—0

t—+o00
2qt

e t? — 2qt
= (14 ).
In(1 + ¢2) ( T )

(b) From part (a) it follows that h/(t1) < 0 for some t1 near 0, and that h'(t2) > 0 for some
large t2. (You are not asked to show this.)
Use this to show that h has at least one stationary point t.. (Do not attempt to find t.!)

(Hint: For one of these limits, it might be useful that h(t)

(c) Take for granted that ¢, minimizes h. The minimum value V' = h(t,) depends on ¢. Find
an expression for V'(q).

Problem 5 Consider the problem
max > + (z — 1)y subject to 22 418y <45, x>2, y>1/2 (K)

(a) e State the associated Kuhn-Tucker conditions, and
e show that some multiplier must be # 0 for these conditions to be satisfied at an
admissible point (z,y). (“Admissible™ that satisfies the three constraints.)
(b) Are the Kuhn-Tucker conditions satisfied at
e the point (z1,y1) = (3,2)?
e the point (x2,y2) = (6, 1/2)?

(End of problem set. Attachment: Rules and formulas.)



Attachment: Rules and formulas

A. Exponentials and logarithms For base numbers b > 0 with b # 1:

(A1) b =1/ Pty — pr L pty b = b7 (BY)*

(A2) for x >0,y > 0: blogn® — g log, (:E . yz) = logy x + zlogy y log, © =
We write In for the natural logarithm log, where e = lim (1 + 1)" ~ 2.718281828.

n—-+00

log,. x
log,.b

B. Limits Notational convention in this course: when lim,_,,, = is never equal to a. For
example, in the definition f’(a) = limj_,o w, we let h — 0 without touching zero.
For a limit to ewist (it «converges»), it must be finite, but we write e.g. lim, o z~2 = 400
(«diverges» to +00, not converges). Limits that diverge but not to +oo are not significant in
Math 2 (example: lim, o (—1)", n runs through the natural numbers only).

Rules 1If ¢/ = lim f(z) and m = lim g(z) both exist (implying: are finite):

] T—a T—a ) ) f(x) e )
(B1)  lim (f(z) £g(z)) =LEm,  lim (f(x)g(z)) =bm,  lim o) = m M #0
Same validity if the «z — a» are replaced by z — a™ or z — a~ or £ — —00 or T — +00.
When ¢ exists and m does not, the first formula holds in the sense that ¢4[does not exist| does
not exist, £ £ (+00) = £ + oo etc.; for the second formula, we can write £ - (+00) = co - sign ¢

if £ # 0 but this inference is invalid if £ = 0. For the third, we have ¢/(+o00) = 0.

Continuity A function is continuous at some « in its domain, if lim,_,, f(z) exists and equals
f(limg_,, x) = f(a), i.e. limits can be computed inside the function. It is continuous if it is
continuous at every a in its domain. Compositions of continuous functions are continuous.
Note, in Math 2 one does not need to argue that a particular function is continuous where it
15 defined — as long as one does not make incorrect claims.

I’Hépital’s rule 1f the limits lim f(x) and lim g(x) are both zero, or both diverge to infinity:
r—a Tr—a

/
B2) tim L&) _ iy L)
z—a g(z) x—a g'(x)
Same validity if the «xz — a» are replaced by x — a™ or  — a~ or  — —00 or & — +00.
You must justify the validity when using ’'Hoépital’s rule; e.g. as the overbraces in the following

significant examples: For p > 0 and ¢ > 0, using continuity of ¥ and the differentiation rules:

(finite or infinite; the former diverges if the latter diverges)

=«+o0/ + co»
,—/ﬁ d
. xP . P ) Lxr \P . 1 p
(B3) lim — = < lim > = ( lim —% ) = < lim 7> =0P=0
z—+o00 4T —~+00 eqz/p T—+00 diqu/P T—~+00 %eqm/p
x
=«+o00/ + co»

—_——~—

Inx)P 1 1
1) g OO (g DIy LT (2 ) =
r—+oo x4 T—+00 :qu/p T—+00 Q:p@/p*l q r—+o0

=«—00/ + co»
1
nxr |p
’ =L fim 29/7
q z—0+

N I N R V. — 0P =
(B5)  lim 2% |lna|” = xlﬂ%h r—a/p zlgon+ —dg=1-a/p .

z—0t

1/x )p ‘

‘ p

(B6) lim f(x) = elimin f(2) i f(z) > 0; in particular useful if lim f(x) is «1%», «o00%», «0%».
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C. Derivatives, differentials, elasticities Provided differentiability and no division by 0:

©) L (fw) % 9(a)) = @)+ (@), Lo @) =g (TN (@)

©@ ) = S+ g L T L)
d . d .z |z d . . d 1

(C3) =T L %M—m——, e %lnm_g

For b®, respectively log, z: Write as e®!"® resp. 122 If f(z) > 0, then f'(z) = f(z)L In f(x).

) T d el 1
For inverse functions: 4= f~!(z) = GOk

Partial derivatives ng similar rules.

The differential: if z = f(x1,...,z,), we define the differential dz to be:
aanl(a?h ceyTp)dry 4+ gﬂ’; (x1,...,xy) dz,. Differentials obey rules similar to derivatives.

Elasticities: Elzf( ) = ‘r f’( ) for f(x) # 0. Can be written as El, f(z) = dénllﬂ(j)l (which

equals d lnf if f>0 and x > 0). Rules, assuming functions and arguments positive:
(4 E(ﬂ@wMW)=dmﬂ@;£gmm@)ZEJ@Hme@)
(C5) E1x< ) )+ h(@) - [Elag(x) + Ing(x) - Elh(z)]
(@ w9(S() = diﬁii) e
z(f'(z) +¢'(z) _ f(x)ELf(z) + g(z)Elyg(z)
0 m*“”*“”): f@+9@ @@

For functions of several variables, El,, denotes partial elasticity in this course.

Implicit derivatives 1f (x, z) satisfies F'(21,...,2n,2) = C, then ), F, (X, z) dx; + F(x, z) dz

F (%,
=0 and as long as F(x,z) # 0, the equation determines z = g(x) with % = —%.

If two equations F'(x,K,L) = C and G(x,K,L) = D determine continuously differentiable
functions K = K(x) and L = L(x), then the following recipe gives their partial derivatives:

o Differentiate the equation system (i.e. calculate differentials). Obtain

Fi(x,K,L)dK + Fj(x, K, L) dL + Y _ F, (x, K, L) dz; =0

Gr(x, K, L) dK + G} (x, K, L) dL+ Y G (x, K, L) dz; = 0

7
e This is a linear equation system in dK and dL, when everything else is taken as constant.
Solve it to obtain the following (you are not required to use matrix notation):

dK . %, K,L) , (FlL.(x,K,L) Fj(x,K,L)
(C8) < ) Z(G’ (x. K. L>d$l WhereA(G’K(x,K,L) G (x, K. L)

e This gives the forms dK = ", k; dz; and dL = ", \; dz;. Then 95 = k; and 2L = \;.
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D. Optimization etc. Several of the following statements omit a requirement that the set
S be «convexy, as that is beyond Mathematics 2. (Convex subsets of R = the intervals.)

Some terminology: «open» resp. «closed» set: includes none resp. all of its boundary points.
A «maximumy resp. «minimumy for f: an x* (i.e. a point) such that for all x we have
f(x) < f(x*) (resp. > f(x*)). The output f(x*) is called the maximum /minimum value.

b2

E.g., the max/min for f(x) = ax® + bz +c (if a # 0), is z* = 5—;’; the max/min value is ¢ — 7.

Two existence theorems: Let f be (defined and) continuous on the entire set S.
(D1) The extreme walue theorem: If S C R™ is closed, bounded and nonempty, then the

continuous function f has both a maximum and a minimum over S.

(D2) The intermediate value theorem: If n =1 and S = [a, b] (interval, endpoints contained),
then the continuous function f attains every value between f(a) and f(b) at least once.

Convex and concave function of one variable: Let f be C', defined on an interval.
f is convex (respectively: concave) if f’ is nondecreasing (resp. nonincreasing) everywhere.
If f is also C2, then it is convex (respectively: concave) if f”/ > 0 (resp. < 0) everywhere.

Convex and concave function of two variables: Let f be C? on S C R2.

Let h(z,y) = fi.(z,y) fr,(x,y) — ( :’C’y(:c,y))2 (the so-called Hessian determinant.)

(D3) Ifand only if h>0 and f;, >0 and fy, >0 onallof S, then f is convex on S
(D4) Ifand onlyif h>0 and f;, <0 and fy, <0 onallof S, then f is concave on S

If h(x,y) > 0 at some given point, then f; (z,y) and f (z,y) are nonzero and of same sign:

)
(D5) If h(z,y) > 0 and f. (z,y) > 0 then f is strictly convex on some open set around (z,y)
)

(D6) If h(z,y) > 0> f2 (x,y) then f is strictly concave on some open set around (z,y)

Convex and concave function of n variables: The following are sufficient (but not necessary)
for convexity/concavity. Let a > 0 and § > 0 be constants.

(D7) 1If f and g are both convex (resp. concave), then af + B¢ is convex (resp. concave)

Unconstrained optimization (i.c. on open set S). First-order condition: stationary point, i.e.
Of /0x; equal zero at x*, all i = 1,...,n. Assuming stationary point x*:

e Global second-order condition: If the function is convex (resp. concave), a stationary
point x* is a global min (resp. global max).

e Local second-order condition for n = 2 variables: Let (z*,y*) be a stationary point.
If (D5) (resp. (D6)) holds at (z*,y*), it is a strict local min (resp. strict local max).
If h(z*,y*) < 0, it is neither (a «saddle point»); if h(x*, y*) = 0, Math 2 cannot classify.

e 1 variable, f/(z*) =0: f"(z*) > 0 = strict local min. f”(z*) < 0 = strict local max.

e For 1 variable, the first-derivative test (a sign diagram is possibly useful):
Increase x across x*. If f'(x) changes sign from negative to positive (resp. positive to
negative), then z* is local min (resp. local max). If furthermore z* is the only change
of sign of f’ in the domain of f, the min (resp. max) is global.
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Constrained optimization Problem type: max f(x) subject to constraints g;(x) < b; or = b,
(m constraints, n variables) Form the Lagrangian L(x) = f(x) — >_72; Aj(g;(x) — bj).

Conditions — on the exam, they must be written out!

e Equality-only constraints, m < n: The Lagrange conditions for a point x* to solve the
problem, are that there exist numbers Aq,..., A, such that x is a stationary point for
L, and the constraints hold. n + m equations for x and the ;.

These conditions are the same for the problem with «miny in place of «max».

e Inequality-only constraints: The Kuhn—Tucker conditions for x* to maximize, are that

there exist nonnegative numbers A\; > 0,..., A\, > 0, such that x* is a stationary point
for L, and that if g;(x*) < b; then A\; = 0. That is:

oL
(D8) (x*) = 0 for every ¢, and for every j: A; > 0 and if g;(x*) < b; then \; =0

&vi
Also the constraints must hold, and you are free to include them or not if asked for the
«Kuhn-Tucker conditions». (Equivalent formulations are OK.)

Necessity/sufficiency etc.:

e In this course you can take the Lagrange / Kuhn—Tucker conditions as necessary.

e Sufficient conditions: Suppose x* satisfies the Lagrange resp. Kuhn—Tucker conditions
with numbers A, ..., \,,. Then x* solves the maximization problem if:

(DY) x* maximizes L subject to to the constraints.
This in particular holds if L is concave in X.

e If condition (D9) can not be used, then you can compare values provided you have
established existence (e.g. by the extreme value theorem (D1)).

e (Omitted at least in 2019: Local second-order condition for the Lagrange problem.
(D10) Equation number advances by one for placeholder.)

Value functions, derivatives (envelope theorem), shadow prices. 1f f depends on x (choice
variable) and r (exogenous), then — assuming maximum exists — the maximum value maxy f(x,r)
is a function V(r), and the (possibly) maximum (point) x* depends on r as well.

The same applies when there are (possibly r-dependent) constraints.

The envelope theorem: in the (possibly constrained) optimization problem, suppose f, the g;
and the b; depend on r. To the precision level of this course:

oV 0 ., (0 b
a1 = g2y 40 = o0 (1 40 = 5 0)

(D11)

The formula holds for stationary saddle points too, not just max/min. Special cases:
e Unconstrained: m = 0, remove the sum to get %(r> = gTJ,:(x*, r).
e Unconstrained, one variable: It also holds for endpoint max/min.

e If there is no r-dependence in f nor g; nor b;, then the value depends on the b; constants,
V =V (b). Then gl‘)j (b) = A; (the shadow price interpretation).
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E. Integration. All functions on this page are of a single variable ¢, bounded and piecewise
continuous — until specified otherwise in the Leibniz rule.

Terminology. If F' = f on the domain of f, then F is an antiderivative of f. The indefinite

integral [ f(t) dt equals F(t) + C, i.e. the general antiderivative of f; here, C is an arbitrary
constant. The definite integral f;f(t) dt equals F'(b) — F(a).

Area. Whenb > a and f > 0on (a,b), the definite integral f; f(t)dt equals the area delimited
by the first axis and the graph of f between a and b. When f can take either sign, it equals
the part of the area above the axis, minus the part of the area under the axis.

Rules. Derivatives rules (see (C1)-(C3)) can be applied in reverse. For «, 8 constant:

(E1) Sums and scalings: / (af(t) + Bg(t))dt = a/f(t)dt + B/g(t)dt
(E2) except:/ (f(t) - f(t))dt = /0 dt = C (rather than zero)
(E3) Integration by parts: /f’(t)g(t) dt = f(t)g(t) — /f(t)g'(t) dt
(E4) Integration by substitution: /f’(u(t))u’(t) dt = /f(u) du = F(u(t))+ C
b u(b)

(E5) ... in definite integrals: / f(u(®)d/(t) dt = / f(u) du

a u(a)
You will not be asked to integrate <<(t)7ﬁ» when a # 3, but if it ShOWS up due to your own
calculations: rewrite into =% - 4 g%g 75 (When o = j3: write ( )2 as -+ ﬁ)

Extension: improper integrals. The above assumes bounded integrand and bounded interval.
Otherwise, the integral is defined as limits, provided they exist. When the integrand f is
unbounded only near a and/or near b > a:

c S
(E6) /b f(t)dt = lim / f(t)dt + Sh—gl* / f(t)dt (both limits need to exist)

R—at Jp

If f unbounded only near ¢ € (a,b), apply (E6) on each term [ f(t) dt and fcb f(t) dt
For infinite intervals:

b b 400
e [ swa=gm [roa [ rwa= g [

These rules/definitions can be combined by splitting into integrals with only one limit transi-
tion each. E.g. f_JrOOOO f@)ydt= [ f(t)dt+ f+oo ) dt for any c.

The Leibniz rule for differentiating integral expressions. Let f be a function of two variables
(z,t) and note that for purposes of integration wrt. ¢, x is treated as constant. The formula

v(z)
ﬂnoﬁ:f@wwmmm—f@mwwmm+/‘ f(at) dt

u(z)

d v(x)
E R
(E8) ar o

is valid in Mathematics 2; also for improper integrals with infinity treated as constant.

Rules and formulas, page V



F. Differential equations. A particular solution is a function that satisfies the differential
equation. The general solution is the set of all particular solutions. You are expected to verify
any proposed particular solution. To find solutions, you are expected to handle the following
two types of (ordinary first-order) differential equations for the unknown x = x(t):

Linear differential equations i(t) + a(t)z(t) = b(t). Let A be an antiderivative of a Then
4 (AW (1)) = (&(t) + a(t)z(t))e V), which = b(t)e®), and so eABz(t) = [b(t)erD) dt and

(F1) z(t) = Ce A 4 =AW /b(t>eA(t) dt

Writing a constant C' allows the integral to be any antiderivative and so the right-hand side is
the sum of any given particular solution e~ fb t) dt and the general solution Ce=A®)
of the corresponding homogeneous equation (obtalned by replacing b by the zero function).
For a particular solution: find C. Example with ¢y and z(tp) = x¢ given: if a # 0 and b are
constants, then z(t) = (zo — b/a)e~**=%) + b/a is of the form (F1) and satisfies 2(tg) = zo.

Separable differential equations i(t) = f(t)g(z(t)) (or, which can be rewritten that way).
Note, g depends on z only. The general solution is found by (i) any zero z of g is a constant
particular solution x(t) = z, and (ii) for g # 0, separate into % = f(t) dt, integrate

(F2) / g(lx) de = /f(t) dt  which yields  H(z) = F(t)+ C,

solving the resulting algebraic equation for z and collecting the contributions from (i) and (ii).
For a particular solution satisfying x(tg) = xo: If g(xo) = 0 (case (i)), the particular solution
is z(t) = xp. Otherwise (case (ii)), find C as H(zo) — F(to) and solve for z.

G. Approximations. Taylor polynomials. Let f be a C* function of a single variable.
Its kth order approzimation around t = a, is the kth order polynomial

G pralt) = fla) + /(@) (¢ = @) + 3 (@)t — )+ 2 fP(a) - (¢ — )t

where fU) denotes the jth derivative ( ) f and j! denotes j-(j—1)-----1. If f is also C*¥*! then
for each t there exists a ¢ between t and a such that f(t) —pr.a(t) = fE(c)- (t—a)k+l,

1
(k+1)!

In n variables: when k = 2, we have

92 f
(G2) f(x) +Z ZZ (x5 — aj)m(a)

=1 j=1
or in matrix notatlon, Where the « denotes dot product:

(G3) f(x)~ fla)+Vf(a)z+3z- (Haz) where z = x — a (column vector),

Vf(a) = (fi(a),..., fr(a)) is the gradient (the row vector of first derivatives) at a
% f
5z (@)
Ox; Ox;j
For k = 1, delete the quadratic terms to get f(x) ~ f(a) + > i (i — ai)%(a).
For k > 2 in n variables: To approximate f at a given x near a, let g(¢t) = f(tx+ (1 —t)a), so
that f(x) = ¢g(1) and f(a) = ¢g(0); then, use the single-variable approximation around ¢ = 0.

H, is the Hessian matriz at a: the n x n matrix with elements h;; =
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H. Linear algebra and linear equation systems. This note denotes matrices by bold-
face capitals or denotes them by their elements: a matrix A = (aij)z‘,j of m rows and n columns
has order m x m. Minuscle boldface v indicates order m x 1, a column vector. Order 1 x n
means a row vector and is denoted by u’ where u is n x 1 and the prime symbol ' denotes
matrix transpose: if A = (aij)m. is m x n, then A’ = B is the n x m matrix with b;; = aj;.
We write 0 = 0, ,, for a matrix with all elements being zero and I = I,, for the (square) n xn
matrix with elements = 1 on the main diagonal (i.e. if i = j) and 0 elsewhere.

If A is 1x1 we typically don’t distinguish between the matrix A and the number a11.

Scaling and addition. A matrix (and hence a vector) can be scaled by a number ¢, by scaling
each element with ¢. We write —A for (—1)A. Two matrices of the same order (hence also
two vectors of the same order) are added element-wise.

Rules for scalings and sums. Scalings and sums of m X n matrices obey the rules A+0 = A;
A+B=B+A;(A+B)+C=A+(B+C) (so we drop the parentheses); A + (—A) = 0;
t(A+B) =tA +1tB; (s +t)A = sA +tA. Subtraction is defined as A — B = A + (—B).

Products. For n-vectors u and v, the dot product u- v is defined as ujv1 + - - - + U, v,. Also
we define u’ - v/ = u - v for row vectors of same order.

The matrix product AB is defined iff A resp. B have orders m X n resp. n X p, and is the
m x p matrix C = (¢;;) with ¢;; = r;-bj, where r/, is the ith row of A and bj is the jth column
of B. «Matriz divisions is not defined, though a 1 x 1 might be considered as a number.

Rules: products and transposition. Provided the matrix orders admit the operations, we have
(AB)C = A(BC) (so we drop these parentheses); I,,A = AL, = A; A(B+C) = AB+ AC;
(A+B)C=AC+BC; (A" =A; (A+B)=A"+B'; (tA) =tA’; and, (AB) = B’'A’.

Linear equation systems, general facts. A linear equation system AX = B has either no
solution, unique (= precisely one) solution, or infinitely many solutions.

If some solution X* exists, the general solution — i.e. the set of all solutions — is of the form
X* plus the general solution of corresponding homogeneous equation system AX = 0.

A homogeneous system AX = 0 has at least one solution, namely the trivial solution X = 0.

Gaussian elimination. On the augmented coefficient matrix (A : B), delete on sight null rows
(i.e. equations that say zero = zero), and apply the elementary row operations:

e Interchanging rows (i.e. equations);

e Scaling a row (i.e. an eq.) by a nonzero number (this to get leading 1’s);

e Adding a scaling of one row (i.e. an eq.) to another (this to eliminate below leading 1’s)

If and when an equation reads zero = something nonzero, you can declare «no solution».

Otherwise: If and when you have arrived at row-echelon form where each row has a leading 1
somewhere on the left-hand side, the corresponding variable numbers will be determined once
the remaining d € {0, 1, ...} variables are chosen freely; «solution with d degrees of freedom».
Special case: d = 0 and unique solution. Then you can eliminate all the way to the left-hand
side being I. That is, an equation system of the form IX = M, with unique solution X = M.

Rules and formulas, page VII



Determinants and rules for determinants. 1If A is n x n, we can define its determinant, a
function denoted det(A) or |A|. We say that |A| has order n (or even nxn). The full definition
is omitted (not needed!), but: |A|is the sum of n! terms, each being + the product of precisely
one element from each row&column, the «+» chosen according to (H7) and |L,| = 1.

Let A and B both be n x n. Then the following rules apply:

(H1) The cofactor expansion rule determines an order n determinant as a sum of n deter-
minants each of order n — 1: For n = 1, the determinant is the (only!) element of the
matrix. For n > 1, let k;; be the cofactor of element i, j, defined as (—1)"™/ times the
(n—1) x (n — 1) determinant formed by deleting row ¢ and column j from the matrix.

e Fix any row i; then  |A| = ankii + - + ainkin

This is called cofactor expansion along the ith row. (Fact: independent of choice of i.)

(H2) |A'] = |A|. Hence cofactor expansion can be performed by arbitrary column as well:
|A| = aik1j + - - + anjkn; (cofactor expansion along jth column), any j =1,...,n.

(H3) [AB| = |A] - [B].
(H4) If A has arow (/a column) of zeroes, or two proportional rows (/columns), then |A| = 0.

(H5) If B is formed from A by scaling one single row (/column) by ¢, then |B| = t|A].
In particular, [tA| = t"|A| (scaling all n rows by t).

(H6) If B is formed from A by adding to row #i a scaling of another row #¢ # i (/to column
#J a scaling of another column #/¢ # j), then |B| = |A|.

(H7) If B is formed from A by interchanging two rows (/two columns), then |B| = —|A|.

Inverses and rules for inverses. Cramér’s rule. A matrix M is called the inverse of A and
denoted A~!, if AM = MA = 1. Then we call A invertible. It must necessarily be square.

The following rules apply if A is n x n (otherwise it cannot be invertible) and B has n rows:

(H8) If AM = I, or MA =1, then A is invertible with A~! uniquely given by M.
If so, then (since (AM)' = M'A’ also is = I,,): A’ will be invertible with inverse M’.

(H9) If A is invertible, then M = A~! is invertible, and with inverse (A~!)~! = A. Also, for
any natural number k: A* will be invertible with inverse (A=) (this denoted A~F).

(H10) A is invertible if and only if |A| # 0. If so, then (by (H3)) |[A~!| = 1/|A].

(H11) AB is invertible if and only if A and B are both invertible. If so, (AB)™! = B~1A~L.
If furthermore ¢ # 0 then tA = A(tI) is invertible with inverse (t 1T} Al =+ 1 AL

(H12) Formula: Let K = (k;;) be the matrix of cofactors of A (i.e.: each k;; as defined in (H1)).
Then AK’' = |A| I. So (by (H8) and (H10)): if A is invertible, then A~! = ﬁ K'.

(H13) If and only if A is invertible, then the equation system AX = B has a unique solution
(of same order n x p as B, since A is square), and given by X = A~!B. In particular:
AX =T has unique solution X = A~! (by (HS8)) iff A invertible, no solution if not.

(H14) Cramér’s rule: If and only if A is invertible, the unique solution of Ax = b is given by
x; = D;/|A| where D; is the determinant formed by replacing column #4i of A by b.
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I. Miscellaneous topics

The quadratic equation Provided a # 0, the equation az? + bz + ¢ = 0 has the solutions

_ —bE Vb —dac

5 though no real solution if b < 4ac
a

(T1) x

Homogeneous functions. A function f of n variables x = (z1,...,x,) is called homogeneous
of degree d if for all t > 0 and all x in the domain of f, we have:

(12) f(tx) = f(tzy, ... txy,) is defined and equals t%f(x).

In particular, its domain D must be so that x € D < tx € D for all t > 0. For such a domain
and a C! function, the following are equivalent:

of
6@

which provided f(x) # 0, is equivalent to Ely f(x) + - -+ + El, f(x) = d on D.
If fis C' and homogeneous of degree d, then each % is homogeneous of order d — 1.

(X)‘i‘""i‘%n(.ii(x):d-f(x) on D

(I3)  f homogeneous of degree d <= 1

If furthermore f is C2, then 822({% homogeneous of order d — 2, every i, j, and

n o n an
(14) szl‘jﬁ(x):d'(d—l)'ﬂx)

i=1 j=1

Homothetic functions. Let D C R"™ such that x € D < tx € D for all t > 0. A function f
defined on D is homothetic if

(I5) whenever f(u) = f(v), then f(tu) = f(tv) forall ¢ > 0.

Any homogeneous function is homothetic. If h is homothetic and g is a strictly increasing
function of a single variable, then f(x) = g(h(x)) is also homothetic.

The elasticity of substitution. Fix a level curve F(K, L) = C of a function F' of two variables.

The elasticity of substitution oy, x between K and L, measures the relative change in L/K

per relative change in the marginal rate of substitution Ry, x = ?f((gf)) along the level curve:
L )

L dlnk
(16) oLx=Elp, —~=—"DK __ where (K, L) such that F(K, L) = C.
’ RS N SLLE2:
F1(K.L)

The elasticity of substitution can also be written as:

F.F KF, +LF
(I7) oLk = gLL - K; L where B = —Fj(F})? +2F} F,Fy — F/ (Fi)?
0 Fj. F
The latter denominator B equals Fi. Fil. Fip (the «bordered Hessian» determinant).
Fr Fgp FIp
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