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Problem solutions for seminar no. 2, 2–6 February 2004

(For practical reasons some of the solutions may include problem parts that were
not on the problem list for the seminar.)

EMEA, 6.11.10 (= MA I, 5.11.8)

In these problems we can use logarithmic differentiation. Alternatively we can
write the functions in the form f(x) = eg(x) and then use the fact that

f ′(x) = eg(x)g′(x) = f(x)g′(x).

(a) Let f(x) = (2x)x. Then ln f(x) = x ln(2x), so

f ′(x)
f(x)

=
d

dx
(x ln(2x)) = 1 · ln(2x) + x · 1

2x
· 2 = ln(2x) + 1.

Hence,
f ′(x) = f(x)(ln(2x) + 1) = (2x)x(lnx + ln 2 + 1).

Alternatively: f(x) = eln f(x) = ex ln(2x) yields

f ′(x) = ex ln(2x) d

dx
(x ln(2x)) = (2x)x(ln(2x) + 1) = (2x)x(lnx + ln 2 + 1).

(b) We have f(x) = x
√

x =
(
eln x

)√
x = e

√
x ln x, so

f ′(x) =
d

dx
e

√
x ln x = e

√
x ln x · d

dx
(
√

x lnx)

= x
√

x

(
lnx

2
√

x
+

√
x

x

)
= x

√
x

(
lnx + 2

2
√

x

)
.

With logarithmic differentiation we do as follows: ln f(x) =
√

x lnx, and therefore

f ′(x)
f(x)

=
d

dx
ln f(x) =

(
lnx

2
√

x
+

√
x

x

)
, etc.

(c) With f(x) =
(√

x
)x we get ln f(x) = x ln

√
x = 1

2x lnx, so

f ′(x)
f(x)

=
1
2

d

dx
(x lnx) =

lnx + 1
2

which gives f ′(x) = f(x) 1
2 (lnx + 1) = 1

2 (
√

x )x(lnx + 1).
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(d) If we let g(x) = x(xx), we get ln g(x) = xx lnx. To find the derivative of this
function, we need the derivative of xx. A simple calculation gives

d

dx
xx =

d

dx
ex ln x = ex ln x · d

dx
(x lnx) = xx(lnx + 1).

Using logarithmic differentiation, we then find

g′(x)
g(x)

=
d

dx
(xx lnx) =

(
xx(lnx + 1)

) · lnx + xx · 1
x

= xx
(
(lnx)2 + lnx +

1
x

)

and consequently

g′(x) = x(xx) · xx
(
(lnx)2 + lnx +

1
x

)
= x(xx+x)((lnx)2 + lnx +

1
x

)
.

EMEA, 7.9.1 (= MA I, 6.6.1)

(a) Let f(x) = x7 − 5x5 + x3 − 1. Then f is continuous everywhere, and in
particular in the closed interval [−1, 1]. Since f(−1) = 2 > 0 and f(1) = −4 < 0,
there must be a point c in (−1, 1) with f(c) = 0. See the intermediate value
theorem, Theorem 7.9.1 on p. 255 (“Skjæringssetningen”, Theorem 6.6.1 on p. 226
in MA I).

(b) In the same way as part (a). We let f(x) = x3 + 3x − 8 and notice that
f(−2) = −22 < 0 and f(3) = 28 > 0.

(c) Here we let f(x) =
√

x2 + 1 − 3x and find that f(0) = 1 > 0, whereas
f(1) =

√
2 − 3 < 0.

(d) The function f(x) = ex−1 − 2x is continuous everywhere and f(0) = e−1 > 0,
f(1) = e0 − 2 = −1 < 0, so the intermediate value theorem ensures that there is
a zero of f in (0, 1).

EMEA, 10.2.2 (= MA I, 8.2.2)

(a) (i) 1000 · 1.0510 = 1628.8946 ≈ 1629

(ii) 1000 ·
(
1 +

0.05
12

)12·10
= 1647.0095 ≈ 1647

(iii) 1000 · e0.05·10 = 1000e0.5 = 1648.7213 ≈ 1649

(b) (i) 1000 · 1.0550 = 11467.400 ≈ 11467

(ii) 1000 ·
(
1 +

0.05
12

)12·50
= 12119.383 ≈ 12119

(iii) 1000 · e0.05·50 = 1000e2.5 = 12182.494 ≈ 12182
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Exam problem 22

(a) U ′(x) = aAe−ax − bBebx, U ′′(x) = −a2Ae−ax − b2Bebx.
The function U is differentiable everywhere, so any extreme point must be a

stationary point.

U ′(x) = 0 ⇐⇒ bBebx = aAe−ax ⇐⇒ ln(bBebx) = ln(aAe−ax)
⇐⇒ ln(bB) + bx = ln(aA) − ax

⇐⇒ (a + b)x = ln(aA) − ln(bB) = ln
(aA

bB

)

⇐⇒ x =
1

a + b
ln

(aA

bB

)
= x∗.

Hence x∗ is the only stationary point of U . Moreover, U ′′(x) < 0 for all x, so
U ′(x) is strictly decreasing everywhere. It follows that U ′(x) > 0 for x < x∗ and
U ′(x) < 0 for x > x∗. By the first-derivative test, x∗ is a (global) maximum point
for U . (See p. 273 in EMEA, p. 292 in MA I.)

(b) It was shown in (a) that U ′′(x) < 0 for all x. Hence U is concave everywhere.
The diagram shows the graph of U together with the straight line x = x∗ when
A = 0.6, B = 0.4, a = 1, b = 0.4, and x∗ = (ln 2.5)/1.6 ≈ 0.5727.

y

x

x = x∗

y = U(x)

-3

-2

-1

-1 1 2 3

Exam problem 22

(c) The standard rules for powers yield

U(x) = −Ae−ax − Bebx = −Ae−ax∗
e−a(x−x∗) − Bebx∗

eb(x−x∗).

It remains to find a C such that

(1) Ae−ax∗
= C/a and (2) Bebx∗

= C/b.

Equation (1) gives C = aAe−ax∗
. We know from part (a) that U ′(x∗) = 0, and

so aAe−ax∗
= bBebx∗

. Hence C/b = aAe−ax∗
/b = Bebx∗

, i.e. equation (2) is also
satisfied.
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The graph of U is symmetric about the vertical line x = x∗ if and only if
U(x∗ + t) = U(x∗ − t) for all t. From the formula we have just shown, it follows
that if a = b, then

U(x∗ + t) = −C

a
e−at − C

b
ebt = −C

a
(e−at + eat),

and so U(x∗ + t) = U(x∗ + (−t)) = U(x∗ − t).

Exam problem 32

f ′(x) =
(xe2x)′ · (x + 1) − xe2x · (x + 1)′

(x + 1)2
(a)

=
e2x(1 + 2x)(x + 1) − xe2x

(x + 1)2
=

e2x(2x2 + 2x + 1)
(x + 1)2

.

The domain of f is Df = R � {−1} = (−∞,−1) ∪ (−1,∞). The function is dif-
ferentiable throughout its domain, so any local extreme points must be stationary
points of f . The equation 2x2 + 2x + 1 = 0 has no real roots, and therefore f has
no local extreme points. (If we try the formula for solving quadratic equations,

we get x =
−1 ± √

4 − 8
4

.)

We also have 2x2 + 2x + 1 = x2 + (x + 1)2 > 0 for all x, so f ′(x) > 0 for all
x �= −1. This shows that f is strictly increasing in each of the intervals (−∞,−1)
and (−1,∞).

(b) It is clear that limx→−1 xe2x = −e−2 < 0. When investigating the right-hand
limit limx→(−1)+ f(x), we need to determine what happens when x is close to but
greater than −1. In particular, x+1 will then be positive and close to 0. It follows
that

lim
x→(−1)+

f(x) = lim
x→(−1)+

xe2x

x + 1
= −∞.

In a similar fashion we find that

lim
x→(−1)−

f(x) = lim
x→(−1)−

xe2x

x + 1
= ∞,

since x + 1 is negative all the time as x tends to −1 from the left.
Further,

lim
x→−∞ f(x) = lim

x→−∞

( x

x + 1
· e2x

)
= 1 · 0 = 0

and
lim

x→∞ f(x) = lim
x→∞

( x

x + 1
· e2x

)
= ∞,

since limx→−∞ x/(x + 1) = limx→∞ x/(x + 1) = 1.
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(c) The second derivative of f is

f ′′(x) =
d

dx

(
e2x(2x2 + 2x + 1)

(x + 1)2

)

=

[
2e2x(2x2 + 2x + 1) + e2x(4x + 2)

]
(x + 1)2 − e2x(2x2 + 2x + 1)2(x + 1)

(x + 1)4

= · · · =
e2x(4x3 + 8x2 + 8x + 2)

(x + 1)3
=

e2x

(x + 1)3
g(x),

where g(x) = 4x3 + 8x2 + 8x + 2. Then f ′′(x) = 0 ⇐⇒ g(x) = 0.
Since g(− 1

2 ) = − 1
2 < 0 and g(0) = 2 > 0, there is a point x0 in (− 1

2 , 0)
such that g(x0) = 0. Moreover, g′(x) = 12x2 + 16x + 8 = 4x2 + 8(x + 1)2 > 0
for all x. This shows that g is strictly increasing over the entire real line, and
therefore g(x) < 0 for x < x0 and g(x) > 0 for x > x0. Hence x0 is the only zero
of g.

Since f ′′(x) changes sign around x = x0, x0 must be an inflection point of f ,
and since x0 is the only zero of f ′′, there are no other inflection points.

(d) The function f is convex in intervals where f ′′ ≥ 0, and concave in intervals
where f ′′ ≤ 0. We know that −1 < x0 and that

(x + 1)3
{

< 0 if x < −1,
> 0 if x > −1,

g(x)
{

< 0 if x < x0,
> 0 if x > x0.

A sign diagram for f ′′(x) = e2xg(x)/(x + 1)3 then shows that f is convex over
(−∞,−1), concave over (−1, x0] and convex again over [x0,∞).

y

-3

-2

-1

1

2

3

x
-4 -3 -2 -1 1 2 3 4

Exam problem 32 (d). The graph of f(x) =
xe2x

x + 1
.
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