ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for seminar no. 2, 2-6 February 2004

(For practical reasons some of the solutions may include problem parts that were not on the problem list for the seminar.)

EMEA, 6.11.10 (= MA I, 5.11.8)

In these problems we can use logarithmic differentiation. Alternatively we can write the functions in the form $f(x)=e^{g(x)}$ and then use the fact that

$$
f^{\prime}(x)=e^{g(x)} g^{\prime}(x)=f(x) g^{\prime}(x)
$$

(a) Let $f(x)=(2 x)^{x}$. Then $\ln f(x)=x \ln (2 x)$, so

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{d}{d x}(x \ln (2 x))=1 \cdot \ln (2 x)+x \cdot \frac{1}{2 x} \cdot 2=\ln (2 x)+1
$$

Hence,

$$
f^{\prime}(x)=f(x)(\ln (2 x)+1)=(2 x)^{x}(\ln x+\ln 2+1)
$$

Alternatively: $f(x)=e^{\ln f(x)}=e^{x \ln (2 x)}$ yields

$$
f^{\prime}(x)=e^{x \ln (2 x)} \frac{d}{d x}(x \ln (2 x))=(2 x)^{x}(\ln (2 x)+1)=(2 x)^{x}(\ln x+\ln 2+1)
$$

(b) We have $f(x)=x^{\sqrt{x}}=\left(e^{\ln x}\right)^{\sqrt{x}}=e^{\sqrt{x} \ln x}$, so

$$
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x} e^{\sqrt{x} \ln x} & =e^{\sqrt{x} \ln x} \cdot \frac{d}{d x}(\sqrt{x} \ln x) \\
& =x^{\sqrt{x}}\left(\frac{\ln x}{2 \sqrt{x}}+\frac{\sqrt{x}}{x}\right)=x^{\sqrt{x}}\left(\frac{\ln x+2}{2 \sqrt{x}}\right)
\end{aligned}
$$

With logarithmic differentiation we do as follows: $\ln f(x)=\sqrt{x} \ln x$, and therefore

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{d}{d x} \ln f(x)=\left(\frac{\ln x}{2 \sqrt{x}}+\frac{\sqrt{x}}{x}\right), \quad \text { etc. }
$$

(c) With $f(x)=(\sqrt{x})^{x}$ we get $\ln f(x)=x \ln \sqrt{x}=\frac{1}{2} x \ln x$, so

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{1}{2} \frac{d}{d x}(x \ln x)=\frac{\ln x+1}{2}
$$

which gives $f^{\prime}(x)=f(x) \frac{1}{2}(\ln x+1)=\frac{1}{2}(\sqrt{x})^{x}(\ln x+1)$.
(d) If we let $g(x)=x^{\left(x^{x}\right)}$, we get $\ln g(x)=x^{x} \ln x$. To find the derivative of this function, we need the derivative of x^{x}. A simple calculation gives

$$
\frac{d}{d x} x^{x}=\frac{d}{d x} e^{x \ln x}=e^{x \ln x} \cdot \frac{d}{d x}(x \ln x)=x^{x}(\ln x+1)
$$

Using logarithmic differentiation, we then find

$$
\frac{g^{\prime}(x)}{g(x)}=\frac{d}{d x}\left(x^{x} \ln x\right)=\left(x^{x}(\ln x+1)\right) \cdot \ln x+x^{x} \cdot \frac{1}{x}=x^{x}\left((\ln x)^{2}+\ln x+\frac{1}{x}\right)
$$

and consequently

$$
g^{\prime}(x)=x^{\left(x^{x}\right)} \cdot x^{x}\left((\ln x)^{2}+\ln x+\frac{1}{x}\right)=x^{\left(x^{x}+x\right)}\left((\ln x)^{2}+\ln x+\frac{1}{x}\right) .
$$

EMEA, 7.9.1 (= MA I, 6.6.1)

(a) Let $f(x)=x^{7}-5 x^{5}+x^{3}-1$. Then f is continuous everywhere, and in particular in the closed interval $[-1,1]$. Since $f(-1)=2>0$ and $f(1)=-4<0$, there must be a point c in $(-1,1)$ with $f(c)=0$. See the intermediate value theorem, Theorem 7.9.1 on p. 255 ("Skjæringssetningen", Theorem 6.6.1 on p. 226 in MA I).
(b) In the same way as part (a). We let $f(x)=x^{3}+3 x-8$ and notice that $f(-2)=-22<0$ and $f(3)=28>0$.
(c) Here we let $f(x)=\sqrt{x^{2}+1}-3 x$ and find that $f(0)=1>0$, whereas $f(1)=\sqrt{2}-3<0$.
(d) The function $f(x)=e^{x-1}-2 x$ is continuous everywhere and $f(0)=e^{-1}>0$, $f(1)=e^{0}-2=-1<0$, so the intermediate value theorem ensures that there is a zero of f in $(0,1)$.

EMEA, 10.2.2 (= MA I, 8.2.2)

(a) (i) $1000 \cdot 1.05^{10}=1628.8946 \approx 1629$
(ii) $1000 \cdot\left(1+\frac{0.05}{12}\right)^{12 \cdot 10}=1647.0095 \approx 1647$
(iii) $1000 \cdot e^{0.05 \cdot 10}=1000 e^{0.5}=1648.7213 \approx 1649$
(b) (i) $1000 \cdot 1.05^{50}=11467.400 \approx 11467$
(ii) $1000 \cdot\left(1+\frac{0.05}{12}\right)^{12 \cdot 50}=12119.383 \approx 12119$
(iii) $1000 \cdot e^{0.05 \cdot 50}=1000 e^{2.5}=12182.494 \approx 12182$

Exam problem 22

(a) $U^{\prime}(x)=a A e^{-a x}-b B e^{b x}, \quad U^{\prime \prime}(x)=-a^{2} A e^{-a x}-b^{2} B e^{b x}$.

The function U is differentiable everywhere, so any extreme point must be a stationary point.

$$
\begin{aligned}
U^{\prime}(x)=0 & \Longleftrightarrow b B e^{b x}=a A e^{-a x} \Longleftrightarrow \ln \left(b B e^{b x}\right)=\ln \left(a A e^{-a x}\right) \\
& \Longleftrightarrow \ln (b B)+b x=\ln (a A)-a x \\
& \Longleftrightarrow(a+b) x=\ln (a A)-\ln (b B)=\ln \left(\frac{a A}{b B}\right) \\
& \Longleftrightarrow x=\frac{1}{a+b} \ln \left(\frac{a A}{b B}\right)=x^{*} .
\end{aligned}
$$

Hence x^{*} is the only stationary point of U. Moreover, $U^{\prime \prime}(x)<0$ for all x, so $U^{\prime}(x)$ is strictly decreasing everywhere. It follows that $U^{\prime}(x)>0$ for $x<x^{*}$ and $U^{\prime}(x)<0$ for $x>x^{*}$. By the first-derivative test, x^{*} is a (global) maximum point for U. (See p. 273 in EMEA, p. 292 in MA I.)
(b) It was shown in (a) that $U^{\prime \prime}(x)<0$ for all x. Hence U is concave everywhere. The diagram shows the graph of U together with the straight line $x=x^{*}$ when $A=0.6, B=0.4, a=1, b=0.4$, and $x^{*}=(\ln 2.5) / 1.6 \approx 0.5727$.

Exam problem 22
(c) The standard rules for powers yield

$$
U(x)=-A e^{-a x}-B e^{b x}=-A e^{-a x^{*}} e^{-a\left(x-x^{*}\right)}-B e^{b x^{*}} e^{b\left(x-x^{*}\right)} .
$$

It remains to find a C such that

$$
\text { (1) } A e^{-a x^{*}}=C / a \quad \text { and } \quad \text { (2) } B e^{b x^{*}}=C / b
$$

Equation (1) gives $C=a A e^{-a x^{*}}$. We know from part (a) that $U^{\prime}\left(x^{*}\right)=0$, and so $a A e^{-a x^{*}}=b B e^{b x^{*}}$. Hence $C / b=a A e^{-a x^{*}} / b=B e^{b x^{*}}$, i.e. equation (2) is also satisfied.

The graph of U is symmetric about the vertical line $x=x^{*}$ if and only if $U\left(x^{*}+t\right)=U\left(x^{*}-t\right)$ for all t. From the formula we have just shown, it follows that if $a=b$, then

$$
U\left(x^{*}+t\right)=-\frac{C}{a} e^{-a t}-\frac{C}{b} e^{b t}=-\frac{C}{a}\left(e^{-a t}+e^{a t}\right),
$$

and so $U\left(x^{*}+t\right)=U\left(x^{*}+(-t)\right)=U\left(x^{*}-t\right)$.

Exam problem 32

$$
\begin{align*}
f^{\prime}(x) & =\frac{\left(x e^{2 x}\right)^{\prime} \cdot(x+1)-x e^{2 x} \cdot(x+1)^{\prime}}{(x+1)^{2}} \tag{a}\\
& =\frac{e^{2 x}(1+2 x)(x+1)-x e^{2 x}}{(x+1)^{2}}=\frac{e^{2 x}\left(2 x^{2}+2 x+1\right)}{(x+1)^{2}} .
\end{align*}
$$

The domain of f is $D_{f}=\mathbb{R} \backslash\{-1\}=(-\infty,-1) \cup(-1, \infty)$. The function is differentiable throughout its domain, so any local extreme points must be stationary points of f. The equation $2 x^{2}+2 x+1=0$ has no real roots, and therefore f has no local extreme points. (If we try the formula for solving quadratic equations, we get $x=\frac{-1 \pm \sqrt{4-8}}{4}$.)

We also have $2 x^{2}+2 x+1=x^{2}+(x+1)^{2}>0$ for all x, so $f^{\prime}(x)>0$ for all $x \neq-1$. This shows that f is strictly increasing in each of the intervals $(-\infty,-1)$ and $(-1, \infty)$.
(b) It is clear that $\lim _{x \rightarrow-1} x e^{2 x}=-e^{-2}<0$. When investigating the right-hand limit $\lim _{x \rightarrow(-1)^{+}} f(x)$, we need to determine what happens when x is close to but greater than -1 . In particular, $x+1$ will then be positive and close to 0 . It follows that

$$
\lim _{x \rightarrow(-1)^{+}} f(x)=\lim _{x \rightarrow(-1)^{+}} \frac{x e^{2 x}}{x+1}=-\infty
$$

In a similar fashion we find that

$$
\lim _{x \rightarrow(-1)^{-}} f(x)=\lim _{x \rightarrow(-1)^{-}} \frac{x e^{2 x}}{x+1}=\infty
$$

since $x+1$ is negative all the time as x tends to -1 from the left.
Further,

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(\frac{x}{x+1} \cdot e^{2 x}\right)=1 \cdot 0=0
$$

and

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}\left(\frac{x}{x+1} \cdot e^{2 x}\right)=\infty
$$

since $\lim _{x \rightarrow-\infty} x /(x+1)=\lim _{x \rightarrow \infty} x /(x+1)=1$.
(c) The second derivative of f is

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left(\frac{e^{2 x}\left(2 x^{2}+2 x+1\right)}{(x+1)^{2}}\right) \\
& =\frac{\left[2 e^{2 x}\left(2 x^{2}+2 x+1\right)+e^{2 x}(4 x+2)\right](x+1)^{2}-e^{2 x}\left(2 x^{2}+2 x+1\right) 2(x+1)}{(x+1)^{4}} \\
& =\cdots=\frac{e^{2 x}\left(4 x^{3}+8 x^{2}+8 x+2\right)}{(x+1)^{3}}=\frac{e^{2 x}}{(x+1)^{3}} g(x),
\end{aligned}
$$

where $g(x)=4 x^{3}+8 x^{2}+8 x+2$. Then $f^{\prime \prime}(x)=0 \Longleftrightarrow g(x)=0$.
Since $g\left(-\frac{1}{2}\right)=-\frac{1}{2}<0$ and $g(0)=2>0$, there is a point x_{0} in $\left(-\frac{1}{2}, 0\right)$ such that $g\left(x_{0}\right)=0$. Moreover, $g^{\prime}(x)=12 x^{2}+16 x+8=4 x^{2}+8(x+1)^{2}>0$ for all x. This shows that g is strictly increasing over the entire real line, and therefore $g(x)<0$ for $x<x_{0}$ and $g(x)>0$ for $x>x_{0}$. Hence x_{0} is the only zero of g.

Since $f^{\prime \prime}(x)$ changes sign around $x=x_{0}, x_{0}$ must be an inflection point of f, and since x_{0} is the only zero of $f^{\prime \prime}$, there are no other inflection points.
(d) The function f is convex in intervals where $f^{\prime \prime} \geq 0$, and concave in intervals where $f^{\prime \prime} \leq 0$. We know that $-1<x_{0}$ and that

$$
(x+1)^{3}\left\{\begin{array} { l l }
{ < 0 } & { \text { if } x < - 1 , } \\
{ > 0 } & { \text { if } x > - 1 , }
\end{array} \quad g (x) \left\{\begin{array}{ll}
<0 & \text { if } x<x_{0} \\
>0 & \text { if } x>x_{0}
\end{array}\right.\right.
$$

A sign diagram for $f^{\prime \prime}(x)=e^{2 x} g(x) /(x+1)^{3}$ then shows that f is convex over $(-\infty,-1)$, concave over $\left(-1, x_{0}\right]$ and convex again over $\left[x_{0}, \infty\right)$.

Exam problem $32(\mathrm{~d})$. The graph of $f(x)=\frac{x e^{2 x}}{x+1}$.

