ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for seminar no. 3, 9-13 February 2004

(For practical reasons some of the solutions may include problem parts that were not on the problem list for the seminar.)

EMEA, 5.3.2 (= MA I, 4.3.2)

We have

$$
D=f(p)=\frac{157.8}{p^{0.3}} \Longleftrightarrow p^{0.3}=\frac{157.8}{D} \Longleftrightarrow p=g(D)=\left(\frac{157.8}{D}\right)^{1 / 0.3},
$$

where g then is the inverse function of f.

EMEA, 5.3.9 (= MA I, 4.4.1)

(a) Let $g=f^{-1}$. Then

$$
\begin{aligned}
g(y)=x & \Longleftrightarrow f(x)=y \Longleftrightarrow\left(x^{3}-1\right)^{1 / 3}=y \Longleftrightarrow x^{3}-1=y^{3} \\
& \Longleftrightarrow x^{3}=y^{3}+1 \Longleftrightarrow x=\left(y^{3}+1\right)^{1 / 3},
\end{aligned}
$$

so $g(y)=\left(y^{3}+1\right)^{1 / 3}$. If we use x as the independent variable in g, we get $g(x)=\left(x^{3}+1\right)^{1 / 3}$. Here $D_{g}=V_{f}=\mathbb{R}$ and $V_{g}=D_{f}=\mathbb{R}$.
(b) We proceed as in part (a), but note that here the domain of f is $D_{f}=$ $(-\infty, 2) \cup(2, \infty)=\mathbb{R} \backslash\{2\}$. Hence (with $x \neq 2$),

$$
\begin{aligned}
g(y)=x & \Longleftrightarrow f(x)=y \Longleftrightarrow \frac{x+1}{x-2}=y \Longleftrightarrow x+1=y(x-2) \\
& \Longleftrightarrow(1-y) x=-2 y-1 \Longleftrightarrow x=\frac{-2 y-1}{1-y}=\frac{2 y+1}{y-1}
\end{aligned}
$$

and so $g(y)=(2 y+1) /(y-1)$. Using x as the independent variable, $g(x)=$ $(2 x+1) /(x-1)$. The domain of g is $D_{g}=R_{f}=\mathbb{R} \backslash\{1\}=(-\infty, 1) \cup(1, \infty)$ and the range of g is $R_{g}=D_{f}=\mathbb{R} \backslash\{2\}$.

Was there any danger of getting zero in the denominator of one of the fractions here? No, with $x=2$ we would get the impossible equation $x+1=y(x-2)=0$, contradicting $x=2$. In the same way we cannot have $y=1$ in the equation $(1-y) x=-2 y-1$.
(c) Here

$$
\begin{aligned}
f^{-1}(y)=x & \Longleftrightarrow y=f(x)=\left(1-x^{3}\right)^{1 / 5}+2 \Longleftrightarrow y-2=\left(1-x^{3}\right)^{1 / 5} \\
& \Longleftrightarrow(y-2)^{5}=1-x^{3} \Longleftrightarrow x^{3}=1-(y-2)^{5} \\
& \Longleftrightarrow x=\left(1-(y-2)^{5}\right)^{1 / 3},
\end{aligned}
$$

so $f^{-1}(y)=\left(1-(y-2)^{5}\right)^{1 / 3}$. With x as the free variable, $f^{-1}(x)=\left(1-(x-2)^{5}\right)^{1 / 3}$.
In this problem f and f^{-1} are defined over all of \mathbb{R}, and \mathbb{R} is also the range of both of them.
(Engelsk "range" og "domain" = norsk "verdimengde" og "definisjonsmengde".)
EMEA, 7.11.2(a) (= MA I, 6.5.1(b))
L'Hôpital's rule yields

$$
\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}=\frac{" 0 "}{0}=\lim _{x \rightarrow a} \frac{2 x}{1}=2 a
$$

But note that we don't really need l'Hôpital's rule here, because

$$
x^{2}-a^{2}=(x+a)(x-a),
$$

and therefore

$$
\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}=\lim _{x \rightarrow a}(x+a)=2 a .
$$

EMEA, 7.11.4 (= MA I, 6.5.3)

The first fraction gives an indeterminate (" $0 / 0$ ") form as $x \rightarrow 1$, but the second fraction does not. Therefore we cannot use l'Hôpital's rule to evaluate the second limit. The correct answer is

$$
\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{2 x^{2}-2 x}=\frac{" 0}{0} "=\lim _{x \rightarrow 1} \frac{2 x+3}{4 x-2}=\frac{5}{2} .
$$

Exam problem 18

We shall have to use l'Hôpital's rule twice:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x \sqrt{1+x}-x}=\stackrel{" 0}{0}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sqrt{1+x}+\frac{x}{2 \sqrt{1+x}-1}} \\
& \stackrel{*}{=} \lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right) 2 \sqrt{1+x}}{2(1+x)+x-2 \sqrt{1+x}}=\lim _{x \rightarrow 0} 2 \sqrt{1+x} \cdot \lim _{x \rightarrow 0} \frac{e^{x}-1}{2+3 x-2 \sqrt{1+x}} \\
&= 2 \lim _{x \rightarrow 0} \frac{e^{x}-1}{2+3 x-2 \sqrt{1+x}}=" \\
& " 0=2 \lim _{x \rightarrow 0} \frac{e^{x}}{3-\frac{1}{\sqrt{1+x}}}=2 \cdot \frac{1}{3-1}=1 .
\end{aligned}
$$

At $\stackrel{*}{=}$ we rearrange the fraction (multiplying the numerator and the denominator by $2 \sqrt{1+x})$, so that we shall not have to differentiate the fraction $x / 2 \sqrt{1+x}$. This transformation is not necessary, but simplifies the computation.

Exam problem 22

(a) $U^{\prime}(x)=a A e^{-a x}-b B e^{b x}, \quad U^{\prime \prime}(x)=-a^{2} A e^{-a x}-b^{2} B e^{b x}$.

The function U is differentiable everywhere, so any extreme point must be a stationary point.

$$
\begin{aligned}
U^{\prime}(x)=0 & \Longleftrightarrow b B e^{b x}=a A e^{-a x} \Longleftrightarrow \ln \left(b B e^{b x}\right)=\ln \left(a A e^{-a x}\right) \\
& \Longleftrightarrow \ln (b B)+b x=\ln (a A)-a x \\
& \Longleftrightarrow(a+b) x=\ln (a A)-\ln (b B)=\ln \left(\frac{a A}{b B}\right) \\
& \Longleftrightarrow x=\frac{1}{a+b} \ln \left(\frac{a A}{b B}\right)=x^{*} .
\end{aligned}
$$

Hence x^{*} is the only stationary point of U. Moreover, $U^{\prime \prime}(x)<0$ for all x, so $U^{\prime}(x)$ is strictly decreasing everywhere. It follows that $U^{\prime}(x)>0$ for $x<x^{*}$ and $U^{\prime}(x)<0$ for $x>x^{*}$. By the first-derivative test, x^{*} is a (global) maximum point for U. (See p. 273 in EMEA, p. 292 in MA I.)
(b) It was shown in (a) that $U^{\prime \prime}(x)<0$ for all x. Hence U is concave everywhere. The diagram shows the graph of U together with the straight line $x=x^{*}$ when $A=0.6, B=0.4, a=1, b=0.4$, and $x^{*}=(\ln 2.5) / 1.6 \approx 0.5727$.
(c) The standard rules for powers yield

$$
U(x)=-A e^{-a x}-B e^{b x}=-A e^{-a x^{*}} e^{-a\left(x-x^{*}\right)}-B e^{b x^{*}} e^{b\left(x-x^{*}\right)} .
$$

It remains to find a C such that

$$
\text { (1) } A e^{-a x^{*}}=C / a \quad \text { and } \quad \text { (2) } B e^{b x^{*}}=C / b
$$

Exam problem 22
Equation (1) gives $C=a A e^{-a x^{*}}$. We know from part (a) that $U^{\prime}\left(x^{*}\right)=0$, and so $a A e^{-a x^{*}}=b B e^{b x^{*}}$. Hence $C / b=a A e^{-a x^{*}} / b=B e^{b x^{*}}$, i.e. equation (2) is also satisfied.

The graph of U is symmetric about the vertical line $x=x^{*}$ if and only if $U\left(x^{*}+t\right)=U\left(x^{*}-t\right)$ for all t. From the formula we have just shown, it follows that if $a=b$, then

$$
U\left(x^{*}+t\right)=-\frac{C}{a} e^{-a t}-\frac{C}{b} e^{b t}=-\frac{C}{a}\left(e^{-a t}+e^{a t}\right)
$$

and so $U\left(x^{*}+t\right)=U\left(x^{*}+(-t)\right)=U\left(x^{*}-t\right)$.
(d) The formula for $U(x)$ in part (c) gives

$$
\begin{aligned}
U^{\prime}(x) & =C e^{-a\left(x-x^{*}\right)}-C e^{b\left(x-x^{*}\right)} \\
U^{\prime \prime}(x) & =-C a e^{-a\left(x-x^{*}\right)}-C b e^{b\left(x-x^{*}\right)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
U\left(x^{*}\right) & =-\frac{C}{a}-\frac{C}{b}=-C\left(\frac{1}{a}+\frac{1}{b}\right) \\
U^{\prime}\left(x^{*}\right) & =0 \quad \text { (we already found that in (a) } \\
U^{\prime \prime}\left(x^{*}\right) & =-C(a+b)
\end{aligned}
$$

The quadratic approximation to $U(x)$ around x^{*} is therefore
$U\left(x^{*}\right)+U^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2} U^{\prime \prime}\left(x^{*}\right)\left(x-x^{*}\right)^{2}=-C\left(\frac{1}{a}+\frac{1}{b}\right)-\frac{1}{2} C(a+b)\left(x-x^{*}\right)^{2}$.

Exam problem 27

Let $f(x)=\sqrt[3]{x+1}-\sqrt{x-3}$. Then $f(7)=\sqrt[3]{8}-\sqrt{4}=2-2=0$, and our problem is to find

$$
\lim _{x \rightarrow 7} \frac{f(x)-f(7)}{x-7}
$$

But this is simply $f^{\prime}(7)$. (You did recognize the Newton quotient, didn't you?) Now,

$$
f^{\prime}(x)=\frac{1}{3}(x+1)^{-2 / 3}-\frac{1}{2}(x-3)^{-1 / 2}=\frac{1}{3(\sqrt[3]{x+1})^{2}}-\frac{1}{2 \sqrt{x-3}}
$$

and so

$$
f^{\prime}(7)=\frac{1}{3(\sqrt[3]{8})^{2}}-\frac{1}{2 \sqrt{4}}=\frac{1}{3 \cdot 2^{2}}-\frac{1}{2 \cdot 2}=-\frac{1}{6} .
$$

Of course, we could have used l'Hôpital's rule:

$$
\lim _{x \rightarrow 7} \frac{f(x)}{x-7}=\frac{" 0 "}{0}=\lim _{x \rightarrow 7} \frac{f^{\prime}(x)}{1}=f^{\prime}(7)=-\frac{1}{6}
$$

which would involve virtually the same operations.

Exam problem 68

(a) The derivative of h is

$$
h^{\prime}(x)=\frac{e^{x}\left(2+e^{2 x}\right)-e^{x} 2 e^{2 x}}{\left(2+e^{2 x}\right)^{2}}=\frac{e^{x}\left(2-e^{2 x}\right)}{\left(2+e^{2 x}\right)^{2}} .
$$

The sign of $h^{\prime}(x)$ is determined by the factor $2-e^{2 x}$, and we find that

$$
h^{\prime}(x) \begin{cases}>0 & \text { for } x<\frac{1}{2} \ln 2 \\ =0 & \text { for } x=\frac{1}{2} \ln 2 \\ <0 & \text { for } x>\frac{1}{2} \ln 2\end{cases}
$$

Therefore h is (strictly) increasing in $\left(-\infty, \frac{1}{2} \ln 2\right]$ and (strictly) decreasing in $\left[\frac{1}{2} \ln 2, \infty\right)$. Thus we see that h has a global maximum point at $x=\frac{1}{2} \ln 2=\ln \sqrt{2}$, but no other global or local extreme points.
(b) The function h is strictly increasing in the interval $(-\infty, 0)$. Since $\lim _{x \rightarrow-\infty} h(x)$ $=0$ and $\lim _{x \rightarrow 0^{-}} h(x)=h(0)=1 / 3$, the restriction of h to $(-\infty, 0)$ has an inverse function $p:(0,1 / 3) \rightarrow(-\infty, 0)$.

Then $y=p(x) \Longleftrightarrow[h(y)=x$ and $y<0]$. Furthermore,

$$
h(y)=x \Longleftrightarrow \frac{e^{y}}{2+e^{2 y}}=x \Longleftrightarrow\left(2+e^{2 y}\right) x=e^{y} \Longleftrightarrow x\left(e^{y}\right)^{2}-e^{y}+2 x=0 .
$$

The last equation is a quadratic equation for e^{y} with the roots

$$
e^{y}=\frac{1 \pm \sqrt{1-8 x^{2}}}{2 x}
$$

Now, if $0<x<1 / 3$, then $2 x<2 / 3$, and

$$
\frac{1+\sqrt{1-8 x^{2}}}{2 x}>\frac{1}{2 x}>\frac{3}{2}>1
$$

Since we are looking for a $y<0$, we must have $e^{y}<1$, and so we get

$$
y=p(x)=\ln \left(\frac{1-\sqrt{1-8 x^{2}}}{2 x}\right)=\ln \left(1-\sqrt{1-8 x^{2}}\right)-\ln (2 x)
$$

(c) The function f will be differentiable everywhere and

$$
f^{\prime}(x)=\frac{g^{\prime}(x)\left(2+(g(x))^{2}\right)-g(x) 2 g(x) g^{\prime}(x)}{\left(2+(g(x))^{2}\right)^{2}}=\frac{g^{\prime}(x)\left(2-(g(x))^{2}\right)}{\left(2+(g(x))^{2}\right)^{2}} .
$$

Since $g^{\prime}(x)>0$ for all x, the sign of $f^{\prime}(x)$ is determined by the factor $\left(2-(g(x))^{2}\right)$. Even though g is strictly increasing, it is certainly possible to have $|g(x)|<\sqrt{2}$ for all x. (We could for instance have $g(x)=e^{x} /\left(1+e^{x}\right)$.) If such is the case, then $f^{\prime}(x)>0$ for all x. On the other hand we could also have $|g(x)|>\sqrt{2}$ for all x, and then $f^{\prime}(x)<0$ everywhere.

Thus the function f need not have any stationary point; in particular, it need not have a maximum point. It is also clear that for suitable choices of g it possible to have both strictly increasing and strictly decreasing functions f.

