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(For practical reasons some of the solutions may include problem parts that were
not on the problem list for the seminar.)

EMEA, 5.3.2 (= MA I, 4.3.2)

We have

D = f(p) =
157.8
p0.3 ⇐⇒ p0.3 =

157.8
D

⇐⇒ p = g(D) =
(157.8

D

)1/0.3
,

where g then is the inverse function of f .

EMEA, 5.3.9 (= MA I, 4.4.1)

(a) Let g = f−1. Then

g(y) = x ⇐⇒ f(x) = y ⇐⇒ (x3 − 1)1/3 = y ⇐⇒ x3 − 1 = y3

⇐⇒ x3 = y3 + 1 ⇐⇒ x = (y3 + 1)1/3,

so g(y) = (y3 + 1)1/3. If we use x as the independent variable in g, we get
g(x) = (x3 + 1)1/3. Here Dg = Vf = R and Vg = Df = R.

(b) We proceed as in part (a), but note that here the domain of f is Df =
(−∞, 2) ∪ (2,∞) = R � {2}. Hence (with x �= 2),

g(y) = x ⇐⇒ f(x) = y ⇐⇒ x + 1
x − 2

= y ⇐⇒ x + 1 = y(x − 2)

⇐⇒ (1 − y)x = −2y − 1 ⇐⇒ x =
−2y − 1
1 − y

=
2y + 1
y − 1

,

and so g(y) = (2y + 1)/(y − 1). Using x as the independent variable, g(x) =
(2x + 1)/(x − 1). The domain of g is Dg = Rf = R � {1} = (−∞, 1) ∪ (1,∞) and
the range of g is Rg = Df = R � {2}.

Was there any danger of getting zero in the denominator of one of the fractions
here? No, with x = 2 we would get the impossible equation x + 1 = y(x − 2) = 0,
contradicting x = 2. In the same way we cannot have y = 1 in the equation
(1 − y)x = −2y − 1.
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(c) Here

f−1(y) = x ⇐⇒ y = f(x) = (1 − x3)1/5 + 2 ⇐⇒ y − 2 = (1 − x3)1/5

⇐⇒ (y − 2)5 = 1 − x3 ⇐⇒ x3 = 1 − (y − 2)5

⇐⇒ x = (1 − (y − 2)5)1/3,

so f−1(y) = (1−(y−2)5)1/3. With x as the free variable, f−1(x) = (1−(x−2)5)1/3.
In this problem f and f−1 are defined over all of R, and R is also the range

of both of them.

(Engelsk “range” og “domain” = norsk “verdimengde” og “definisjonsmengde”.)

EMEA, 7.11.2(a) (= MA I, 6.5.1(b))

L’Hôpital’s rule yields

lim
x→a

x2 − a2

x − a
=

“0
0
”

= lim
x→a

2x

1
= 2a.

But note that we don’t really need l’Hôpital’s rule here, because

x2 − a2 = (x + a)(x − a),

and therefore

lim
x→a

x2 − a2

x − a
= lim

x→a
(x + a) = 2a.

EMEA, 7.11.4 (= MA I, 6.5.3)

The first fraction gives an indeterminate (“0/0”) form as x → 1, but the second
fraction does not. Therefore we cannot use l’Hôpital’s rule to evaluate the second
limit. The correct answer is

lim
x→1

x2 + 3x − 4
2x2 − 2x

=
“0
0
”

= lim
x→1

2x + 3
4x − 2

=
5
2

.
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Exam problem 18

We shall have to use l’Hôpital’s rule twice:

lim
x→0

ex − 1 − x

x
√

1 + x − x
=

“0
0
”

= lim
x→0

ex − 1√
1 + x + x

2
√

1 + x
− 1

∗= lim
x→0

(ex − 1)2
√

1 + x

2(1 + x) + x − 2
√

1 + x
= lim

x→0
2
√

1 + x · lim
x→0

ex − 1
2 + 3x − 2

√
1 + x

= 2 lim
x→0

ex − 1
2 + 3x − 2

√
1 + x

=
“0
0
”

= 2 lim
x→0

ex

3 − 1√
1 + x

= 2 · 1
3 − 1

= 1.

At ∗= we rearrange the fraction (multiplying the numerator and the denominator
by 2

√
1 + x ), so that we shall not have to differentiate the fraction x

/
2
√

1 + x.
This transformation is not necessary, but simplifies the computation.

Exam problem 22

(a) U ′(x) = aAe−ax − bBebx, U ′′(x) = −a2Ae−ax − b2Bebx.
The function U is differentiable everywhere, so any extreme point must be a

stationary point.

U ′(x) = 0 ⇐⇒ bBebx = aAe−ax ⇐⇒ ln(bBebx) = ln(aAe−ax)
⇐⇒ ln(bB) + bx = ln(aA) − ax

⇐⇒ (a + b)x = ln(aA) − ln(bB) = ln
(aA

bB

)
⇐⇒ x =

1
a + b

ln
(aA

bB

)
= x∗.

Hence x∗ is the only stationary point of U . Moreover, U ′′(x) < 0 for all x, so
U ′(x) is strictly decreasing everywhere. It follows that U ′(x) > 0 for x < x∗ and
U ′(x) < 0 for x > x∗. By the first-derivative test, x∗ is a (global) maximum point
for U . (See p. 273 in EMEA, p. 292 in MA I.)

(b) It was shown in (a) that U ′′(x) < 0 for all x. Hence U is concave everywhere.
The diagram shows the graph of U together with the straight line x = x∗ when
A = 0.6, B = 0.4, a = 1, b = 0.4, and x∗ = (ln 2.5)/1.6 ≈ 0.5727.

(c) The standard rules for powers yield

U(x) = −Ae−ax − Bebx = −Ae−ax∗
e−a(x−x∗) − Bebx∗

eb(x−x∗).

It remains to find a C such that

(1) Ae−ax∗
= C/a and (2) Bebx∗

= C/b.
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Exam problem 22

Equation (1) gives C = aAe−ax∗
. We know from part (a) that U ′(x∗) = 0, and

so aAe−ax∗
= bBebx∗

. Hence C/b = aAe−ax∗
/b = Bebx∗

, i.e. equation (2) is also
satisfied.

The graph of U is symmetric about the vertical line x = x∗ if and only if
U(x∗ + t) = U(x∗ − t) for all t. From the formula we have just shown, it follows
that if a = b, then

U(x∗ + t) = −C

a
e−at − C

b
ebt = −C

a
(e−at + eat),

and so U(x∗ + t) = U(x∗ + (−t)) = U(x∗ − t).

(d) The formula for U(x) in part (c) gives

U ′(x) = Ce−a(x−x∗) − Ceb(x−x∗)

U ′′(x) = −Cae−a(x−x∗) − Cbeb(x−x∗)

Hence,

U(x∗) = −C

a
− C

b
= −C

(1
a

+
1
b

)
,

U ′(x∗) = 0 (we already found that in (a),
U ′′(x∗) = −C(a + b).

The quadratic approximation to U(x) around x∗ is therefore

U(x∗) + U ′(x∗)(x − x∗) +
1
2
U ′′(x∗)(x − x∗)2 = −C

(1
a

+
1
b

)
− 1

2
C(a + b)(x − x∗)2.

Exam problem 27

Let f(x) = 3√x + 1−√
x − 3. Then f(7) = 3√8−√

4 = 2−2 = 0, and our problem
is to find

lim
x→7

f(x) − f(7)
x − 7

.
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But this is simply f ′(7). (You did recognize the Newton quotient, didn’t you?)
Now,

f ′(x) =
1
3
(x + 1)−2/3 − 1

2
(x − 3)−1/2 =

1
3( 3

√
x + 1 )2

− 1
2
√

x − 3
,

and so

f ′(7) =
1

3( 3
√

8 )2
− 1

2
√

4
=

1
3 · 22 − 1

2 · 2
= −1

6
.

Of course, we could have used l’Hôpital’s rule:

lim
x→7

f(x)
x − 7

=
“0
0
”

= lim
x→7

f ′(x)
1

= f ′(7) = −1
6

,

which would involve virtually the same operations.

Exam problem 68

(a) The derivative of h is

h′(x) =
ex(2 + e2x) − ex2e2x

(2 + e2x)2
=

ex(2 − e2x)
(2 + e2x)2

.

The sign of h′(x) is determined by the factor 2 − e2x, and we find that

h′(x)




> 0 for x < 1
2 ln 2

= 0 for x = 1
2 ln 2

< 0 for x > 1
2 ln 2

Therefore h is (strictly) increasing in (−∞, 1
2 ln 2 ] and (strictly) decreasing in

[ 1
2 ln 2,∞). Thus we see that h has a global maximum point at x = 1

2 ln 2 = ln
√

2,
but no other global or local extreme points.

(b) The function h is strictly increasing in the interval (−∞, 0). Since lim
x→−∞ h(x)

= 0 and lim
x→0−

h(x) = h(0) = 1/3, the restriction of h to (−∞, 0) has an inverse

function p : (0, 1/3) → (−∞, 0).
Then y = p(x) ⇐⇒ [h(y) = x and y < 0]. Furthermore,

h(y) = x ⇐⇒ ey

2 + e2y
= x ⇐⇒ (2 + e2y)x = ey ⇐⇒ x

(
ey
)2 − ey + 2x = 0.

The last equation is a quadratic equation for ey with the roots

ey =
1 ± √

1 − 8x2

2x
.
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Now, if 0 < x < 1/3, then 2x < 2/3, and

1 +
√

1 − 8x2

2x
>

1
2x

>
3
2

> 1.

Since we are looking for a y < 0, we must have ey < 1, and so we get

y = p(x) = ln

(
1 − √

1 − 8x2

2x

)
= ln

(
1 −

√
1 − 8x2

)
− ln(2x).

(c) The function f will be differentiable everywhere and

f ′(x) =
g′(x)

(
2 + (g(x))2

)− g(x)2g(x)g′(x)(
2 + (g(x))2

)2 =
g′(x)

(
2 − (g(x))2

)
(
2 + (g(x))2

)2 .

Since g′(x) > 0 for all x, the sign of f ′(x) is determined by the factor
(
2−(g(x))2

)
.

Even though g is strictly increasing, it is certainly possible to have |g(x)| <
√

2 for
all x. (We could for instance have g(x) = ex/(1 + ex).) If such is the case, then
f ′(x) > 0 for all x. On the other hand we could also have |g(x)| >

√
2 for all x,

and then f ′(x) < 0 everywhere.
Thus the function f need not have any stationary point; in particular, it need

not have a maximum point. It is also clear that for suitable choices of g it possible
to have both strictly increasing and strictly decreasing functions f .
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