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(For practical reasons some of the solutions may include problem parts that were
not on the problem list for the seminar.)

EMEA, 9.2.3 (= MA I, 10.2.3)

Let F (x) = −1/2x2 = −x−2/2. Then
F ′(x) = x−3 = f(x). Since the graph of
f lies below the x-axis throughout the in-
terval in question, the area equals

−(F (−1) − F (−2)) = −
(
−1

2
+

1
8

)
=

3
8

.

y

−1

x
−1−2

With integral notation we can write this as

Area = −
∫ −1

−2

1
x3 dx = −

∫ −1

−2
x−3 dx =

−1

−2

x−2

2
=

1
2

− 1
8

=
3
8

.

EMEA, 9.4.2 (= MA I, 10.4.2)

(a) Let n be the total number of individuals. The number of individuals with
income in the interval [b, 2b] is then

N = n

∫ 2b

b

Br−2 dr = n
2b

b

−Br−1 = −nB

2b
+

nB

b
=

nB

2b
.

Their total income is

M = n

∫ 2b

b

Br−2r dr = n

∫ 2b

b

Br−1 dr = n
2b

b

B ln r = nB ln 2.

Hence the mean income is m = M/N = 2b ln 2.

(b) Total demand is

x(p) =
∫ 2b

b

nD(p, r)f(r) dr =
∫ 2b

b

nApγrδBr−2 dr =
∫ 2b

b

nABpγrδ−2 dr

=
2b

b

nABpγ rδ−1

δ − 1
= nABpγbδ−1 2δ−1 − 1

δ − 1
.
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EMEA 9.5.1 (= MA I, 10.6.1)

∫
x
↑
f

e−x

↑
g′

dx = x
↑
f

(−e−x)
↑
g

−
∫

1
↑
f ′

· (−e−x)
↑
g

dx(a)

= −xe−x +
∫

e−x dx = −xe−x − e−x + C

∫
3xe4x dx = 3x · 1

4
e4x −

∫
3 · 1

4
e4x dx =

3
4
xe4x − 3

16
e4x + C(b)

∫
(1 + x2)e−x dx = (1 + x2)(−e−x) −

∫
2x(−e−x) dx(c)

= −(1 + x2)e−x + 2
∫

xe−x dx

= −(1 + x2)e−x − 2xe−x − 2e−x + C (use (a)!)

= −(x2 + 2x + 3)e−x + C

∫
x
↑
g′

lnx
↑
f

dx =
x2

2
↑
g

lnx
↑
f

−
∫

x2

2
↑
g

1
x
↑
f ′

dx =
x2

2
lnx −

∫
x

2
dx(d)

=
x2

2
lnx − x2

4
+ C

EMEA 9.6.2 (= MA I, 10.7.2)

(b) With u = g(x) = x3 + 2 we get du = g′(x) dx = 3x2 dx and

∫
x2ex3+2 dx =

∫
eg(x) 1

3
g′(x) dx =

∫
1
3
eu du =

1
3
eu + C =

ex3+2

3
+ C.

(c) As a first attempt we could use the substitution u = g(x) = x+2, which gives
du = dx og ∫

ln(x + 2)
2x + 4

dx =
∫

lnu

2u
du,

which is not very much simpler than the original integral. But if we notice that
lnu

u
= lnu · 1

u
= lnu · d

du
lnu, then we can see that v = lnu yields dv = 1

u du and

∫
lnu

2u
du =

∫
1
2
v dv =

1
4
v2 + C =

1
4
(lnu)2 + C =

1
4
(ln(x + 2))2 + C.
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With a little experience we would have noticed straight away that

ln(x + 2)
2x + 4

=
ln(x + 2)
2(x + 2)

=
1
2

ln(x + 2)
d

dx
ln(x + 2),

which points directly to the substitution v = ln(x + 2).

EMEA 9.6.3 (= MA I, 10.7.3)

See the answers in the back of the book. Instead of the substitution used there
for part (a), we can also use v = 1 + x2, which gives dv = 2x dx and

∫ 1

0
x
√

1 + x2 dx =
∫ 1

0

√
1 + x2 · x dx =

∫ 2

1

√
v · 1

2
dv =

2

1

1
3
v3/2 =

2
√

2 − 1
3

.

Notice that the limits of integration usually change when we switch to a different
variable of integration. Since v = 1 + x2, we see that x = 0 and x = 1 correspond
to v = 1 and v = 2, respectively. (Similarly, under the substitution u =

√
1 + x2

used in the book, x = 0 and x = 1 correspond to u = 1 og u =
√

2.)

EMEA 9.6.4 (= MA I, 10.7.4)

We want to solve the equation∫ x

3

2t − 2
t2 − 2t

dt = ln
(2

3
x − 1

)
. (∗)

For the right-hand side to have meaning, we must have 2
3x > 1, that is, x > 3

2 .
We substitute a new variable in order to calculate the integral on the left-hand
side: With u = t2 − 2t, we get du = (2t − 2) dt. For t = 3 and t = x, we get u = 3
and u = x2 − 2x, respectively, so the integral becomes

∫ x

3

2t − 2
t2 − 2t

dt =
∫ x2−2x

3

du

u
=

x2−2x

3
lnu = ln

(x2 − 2x

3

)
.

Equation (∗) then yields

x2 − 2x

3
=

2
3
x − 1 ⇐⇒ x2 − 2x = 2x − 3 ⇐⇒ x2 − 4x + 3 = 0. (∗∗)

The roots of equation (∗∗) are x1 = 3 and x2 = 1. Here x2 is unusable as a solution
of the original equation, because we have seen that we must have x > 3/2. (Also,
the integral on the left would then become

∫ 1

3

2t − 2
t2 − 2t

dt =
∫ 1

3

(1
t

+
1

t − 2

)
dt,

which does not converge.)
Thus we are left with the solution x = 3, and it is easy to check that this is

indeed a solution of (∗). (Both sides of the equation become equal to 0.)
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Exam problem 40

(a)
∫

(1 − x2)2 dx =
∫

(1 − 2x2 + x4) dx = x − 2
3
x3 +

1
5
x5 + C

∫ PL

PN

(a − bP 1−α) dP =
PL

PN

(aP − b

2 − α
P 2−α)(b)

= a(PL − PN ) − b

2 − α
(P 2−α

L − P 2−α
N )

Exam problem 53

∫ 2

0
2x2(2 − x)2 dx =

∫ 2

0
(8x2 − 8x3 + 2x4) dx(a)

=
2

0

(8
3
x3 − 2x4 +

2
5
x5

)

=
8
3

· 8 − 2 · 16 +
2
5

· 32

=
32
15

= 2
2
15

y

1

2

x
1 2

A

B

O

We can see from the figure that the area between the graph and the x-axis over the
interval [0, 2] must be approximately equal to the area of the triangle OAB, where
the point O, A, and B are (0, f(0)) = (0, 0), (2, f(2)) = (2, 0), and (1, f(1)) =
(1, 2), respectively. The area of this triangle is exactly 2.

(b) Here we shall not try to find the function x. (That would require knowledge
of trigonometric and inverse trigonometric functions.) Instead we shall try to see
if there is some other way to find the information we need in order to show that
t = 0 is a minimum point for x. It turns out to be fairly easy in this case. In
fact, ẋ(t) < 0 for t < 0 and ẋ(t) > 0 for t > 0. Hence, x is strictly decreasing
in (−∞, 0] and strictly increasing in [0, ∞), so t = 0 must be a global minimum
point for x = x(t). Note that this gives x(t) ≥ x(0) = 0 for all t.

Furthermore,

ẍ =
d

dt

(
(1 + x2)t

)
= 2xẋt + (1 + x2) = 2x(1 + x2)t2 + (1 + x2).

Since x(t) ≥ 0 for all t, we have ẍ(t) ≥ 1 > 0 for all t. It follows that x is (strictly)
convex.
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Exam problem 77

(i) We first calculate the indefinite integral. Integration by parts gives
∫

x(2 + x)1/3 dx = x
3
4
(2 + x)4/3 − 3

4

∫
(2 + x)4/3 dx

= x
3
4
(2 + x)4/3 − 9

28
(2 + x)7/3 + C

The definite integral is then

∫ 6

−1
x(2 + x)1/3 dx =

6

−1

(
3x

4
(2 + x)4/3 − 9

28
(2 + x)7/3

)

=
9
2
84/3 − 9

28
87/3 −

(
−3

4
− 9

28

)
=

447
14

≈ 31.92,

where we have used that 81/3 = 3√8 = 2.
Alternatively, we can use substitution and calculate as follows: Introduce

u = (2 + x)1/3 as a new variable. That gives x = u3 − 2, dx = 3u2 du, and
∫

x(2 + x)1/3 dx =
∫

(u3 − 2)u3u2 du =
∫

(3u6 − 6u3) du

=
3
7
u7 − 6

4
u4 + C =

3
7
(2 + x)7/3 − 3

2
(2 + x)4/3 + C.

(This is indeed equal to the indefinite integral we found above, although it does
not look that way at first glance.)

We the calculate the definite integral as before. However, we can also use
formula (2) on page 333 in EMEA (page 355 in MA I). That will give us

∫ 6

−1
x(2 + x)1/3 =

∫ 2

1
(3u6 − 6u3) du =

2

1

(
3
7
u7 − 3

2
u4

)

etc.

(ii) Here we use the substitution z = 3√x = x1/3, which gives x = z3 and
dx = 3z2 dz. The integral then becomes

∫
e

3√x dx =
∫

ez3z2 dz = 3
∫

z2ez dz.

In order to find the last integral, we use integration by parts twice:
∫

z2ez dz = z2ez −
∫

2zez dz = z2ez − (
2zez −

∫
2ez dz

)

= z2ez − 2zez +
∫

2ez dz = z2ez − 2zez + 2ez + C.
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Then ∫
e

3√x dx = 3(z2ez − 2zez + 2ez + C) = (3x2/3 − 6x1/3 + 6)e
3√x + C1,

where C1 = 3C.
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