ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for seminar no. 6, 8-12 March 2004

(For practical reasons, some of the solutions may include problem parts that were not on the problem list for the seminar.)

EMEA, 15.7.3 (= LA, 2.1.5)

Using the definitions of vector addition and multiplication of a vector by a real number, we get

$$
3(x, y, z)+5(-1,2,3)=(4,1,3) \Longleftrightarrow(3 x-5,3 y+10,3 z+15)=(4,1,3)
$$

Since two vectors are equal if and only if they are component-wise equal, this vector equation is equivalent to the equation system

$$
3 x-5=4, \quad 3 y+10=1, \quad 3 z+15
$$

with the obvious solution

$$
x=3, \quad y=-3, \quad z=-4
$$

EMEA, 15.7.4 (= LA, 2.1.6)
(a) For every vector \mathbf{x} we have $\mathbf{x}+\mathbf{0}=\mathbf{x}$, so if $\mathbf{x}+\mathbf{0}=\mathbf{0}$, then $\mathbf{x}=\mathbf{0}$, which means that all components of \mathbf{x} are 0 .
(b) Since $0 \mathbf{x}=\mathbf{0}$ for every vector \mathbf{x}, this equation gives us no information about the components of \mathbf{x}.

EMEA, 15.7.6 (= LA, 2.1.9)
(Since we do not know the components of \mathbf{a} and \mathbf{b}, this is an exercise in "abstract" vector manipulation.)

$$
\begin{aligned}
4 \mathbf{x}-7 \mathbf{a}=2 \mathbf{x}+8 \mathbf{b}-\mathbf{a} & \Longleftrightarrow 4 \mathbf{x}-2 \mathbf{x}=8 \mathbf{b}-\mathbf{a}+7 \mathbf{a} \\
& \Longleftrightarrow 2 \mathbf{x}=6 \mathbf{a}+8 \mathbf{b} \Longleftrightarrow \mathbf{x}=3 \mathbf{a}+4 \mathbf{b}
\end{aligned}
$$

EMEA, 15.7.8 (= LA, 2.2.4)

The dot product (inner product, scalar product, Norwegian: prikkproduktet, indreproduktet, skalarproduktet) is

$$
(x, x-1,3) \cdot(x, x, 3 x)=x^{2}+(x-1) x+9 x=2 x^{2}+8 x=2 x(x+4)
$$

The two vectors are mutually orthogonal when their dot product equals 0 , that is, for $x=0$ and for $x=-4$.

EMEA, 15.8.2 (= LA, 2.3.2)
(a) Note: In the EMEA version of this problem, $\mathbf{x}=(1-\lambda) \mathbf{a}+\lambda \mathbf{b}$, whereas in LA, $\mathbf{x}=\lambda \mathbf{a}+(1-\lambda) \mathbf{b}$. For convenience ($=$ because of laziness), the illustration uses the definition from LA. EMEA readers please read λ as $1-\lambda$.

Problem 15.8.2
(b) As λ runs from 0 to $1, \mathbf{x}$ will trace out the line segment from \mathbf{a} to \mathbf{b} in EMEA (from \mathbf{b} to \mathbf{a} in LA). By the point-point formula for a straight line ("topunktsformelen for en rett linje"), the straight line through $\mathbf{a}=(3,1)$ and $\mathbf{b}=(-1,2)$ has the equation

$$
\begin{equation*}
y-1=\frac{2-1}{-1-3}(x-3)=-\frac{1}{4}(x-3) \Longleftrightarrow y=-\frac{1}{4} x+\frac{7}{4} \Longleftrightarrow x+4 y=7 \tag{*}
\end{equation*}
$$

For every λ in \mathbb{R} the point $(x, y)=(1-\lambda) \mathbf{a}+\lambda \mathbf{b}=(3-4 \lambda, 1+\lambda)$ satisfies $(*)$, that is, the point lies on L. Conversely, if $\left(x_{0}, y_{0}\right)$ is a point on L, then $x_{0}=7-4 y_{0}$, and if we let $\lambda=y_{0}-1$, then $(1-\lambda) \mathbf{a}+\lambda \mathbf{b}=(3-4 \lambda, 1+\lambda)=\left(7-4 y_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right)$.

EMEA 15.8.4 (= LA, 2.3.3)

(a) We get

$$
x_{1} \mathbf{a}+x_{2} \mathbf{b}=\left(x_{1}, 2 x_{1}, x_{1}\right)+\left(-3 x_{2}, 0,-2 x_{2}\right)=\left(x_{1}-3 x_{2}, 2 x_{1}, x_{1}-2 x_{2}\right) .
$$

It follows that the vector equation $x_{1} \mathbf{a}+x_{2} \mathbf{b}=(5,4,4)$ is equivalent to the equation system

$$
\begin{align*}
x_{1}-3 x_{2} & =5 \tag{1}\\
2 x_{1} & =4 \tag{2}\\
x_{1}-2 x_{2} & =4 \tag{3}
\end{align*}
$$

From (2), $x_{1}=2$, and if we substitute this value for x_{1} in (1), we get $2-3 x_{2}=5$, which yields $\underline{x_{2}=-1}$. Inserting these values for x_{1} and x_{2}, we find that they also satisfy equation (3).

Note: This check is important, because it might well happen that there were no values of x_{1} and x_{2} that would satisfy all the equations (1)-(3). We see an example of this in part (b).
(b) The vector equation $x_{1} \mathbf{a}+x_{2} \mathbf{b}=(-3,6,1)$ yields the equation system

$$
\begin{align*}
x_{1}-3 x_{2} & =-3 \\
2 x_{1} & =6 \\
x_{1}-2 x_{2} & =1
\end{align*}
$$

From (2^{\prime}) we get $x_{1}=3$, and then (1^{\prime}) yields $x_{2}=2$, but these values do not satisfy $\left(3^{\prime}\right)$. Hence there are no numbers x_{1} and x_{2} such that $x_{1} \mathbf{a}+x_{2} \mathbf{b}=(-3,6,1)$.

LA, 2.4.2

(a) The norms are

$$
\begin{aligned}
\|\mathbf{a}\| & =\sqrt{(-1)^{2}+2^{2}}=\sqrt{5} \\
\|\mathbf{b}\| & =\sqrt{3^{2}+1^{2}}=\sqrt{10} \\
\|\mathbf{a}+\mathbf{b}\| & =\|(2,3)\|=\sqrt{2^{2}+3^{2}}=\sqrt{13}
\end{aligned}
$$

Here $\|\mathbf{a}\|,\|\mathbf{b}\|$ og $\|\mathbf{a}+\mathbf{b}\|$ are the length of three sides $O P, P Q$ og $O Q$ of the triangle $O Q P$ in the figure. Since the length of each side in a proper triangle is less than the sum of the lengths of the other two, it is clear that $\|\mathbf{a}+\mathbf{b}\|$ must be less than $\|\mathbf{a}\|+\|\mathbf{b}\|$. (We would have equality if P were lying on the straight line segment from O to Q.)

Problem 2.4.2(a) in LA
(b) The dot product is $\mathbf{a} \cdot \mathbf{b}=(-1) \cdot 3+2 \cdot 1=-1$, so $|\mathbf{a} \cdot \mathbf{b}|=1$. The product of the norms is $\|\mathbf{a}\|\|\mathbf{b}\|=\sqrt{50}=5 \sqrt{2}$. Thus the Cauchy-Schwarz inequality $|\mathbf{a} \cdot \mathbf{b}| \leq\|\mathbf{a}\|\|\mathbf{b}\|$ does hold in this case.

LA, 2.4.5

(a) $(a, b) \cdot(-b, a)=-a b+b a=0 \Longrightarrow(a, b) \perp(-b, a)$.
(b) The dot product of the two vectors is 0 in this case too:
$\left(a_{1}, a_{2}, a_{3}\right) \cdot\left(a_{2}-a_{3}, a_{3}-a_{1}, a_{1}-a_{2}\right)=a_{1}\left(a_{2}-a_{3}\right)+a_{2}\left(a_{3}-a_{1}\right)+a_{3}\left(a_{1}-a_{2}\right)=0$.

Exam problem 88

(a) (i) Integration by parts yields

$$
\int 3 x e^{-x / 2} d x=3 x\left(-2 e^{-x / 2}\right)+\int 6 e^{-x / 2} d x=-6 x e^{-x / 2}-12 e^{-x / 2}+C
$$

(ii) The substitution $u=9+\sqrt{x}$ gives $x=(u-9)^{2}$ and $d x=2(u-9) d u$. As x runs from 0 to $25, u$ runs from 9 to 14 , and so we have

$$
\int_{0}^{25} \frac{1}{9+\sqrt{x}} d x=\int_{9}^{14} \frac{2(u-9)}{u} d u=\int_{9}^{14}\left(2-\frac{18}{u}\right) d u=10-18 \ln \frac{14}{9} .
$$

(iii) We introduce $u=\sqrt{t+2}$ as a new variable and get $t=u^{2}-2$ and $d t=2 u d u$. This yields

$$
\begin{aligned}
\int_{2}^{7} t \sqrt{t+2} d t & =\int_{2}^{3}\left(u^{2}-2\right) u \cdot 2 u d u=\int_{2}^{3}\left(2 u^{4}-4 u^{2}\right) d u \\
& =\left.\right|_{2} ^{3}\left(\frac{2}{5} u^{5}-\frac{4}{3} u^{3}\right)=\left(\frac{486}{5}-\frac{108}{3}-\frac{64}{5}+\frac{32}{3}\right)=\frac{886}{15}
\end{aligned}
$$

Exam problem 137

(a) $\int_{4}^{9} \frac{(\sqrt{x}-1)^{2}}{x} d x=\int_{4}^{9} \frac{x-2 \sqrt{x}+1}{x} d x=\int_{4}^{9}\left(1-2 x^{-1 / 2}+\frac{1}{x}\right) d x$ $=\left.\right|_{4} ^{9}(x-4 \sqrt{x}+\ln x)=9-4 \cdot 3+\ln 9-4+4 \cdot 2-\ln 4=1+\ln \frac{9}{4}$
(b) We introduce the new variable $u=1+\sqrt{x}$. Then $u-1=\sqrt{x},(u-1)^{2}=x$, and $2(u-1) d u=d x$. When $x=0$, then $u=1$, and when $x=1$, then $u=2$. Hence

$$
\begin{aligned}
I & =\int_{1}^{2}(\ln u) 2(u-1) d u=2 \int_{1}^{2} u \ln u d u-2 \int_{1}^{2} \ln u d u \\
& =2\left(\left.\right|_{1} ^{2} \frac{1}{2} u^{2} \ln u-\int_{0}^{1} \frac{1}{2} u^{2} \frac{1}{u} d u\right)-\left.2\right|_{1} ^{2}(u \ln u-u) \\
& =\left.\right|_{1} ^{2}\left(u^{2} \ln u-\frac{1}{2} u^{2}\right)-\left.2\right|_{1} ^{2}(u \ln u-u) \\
& =4 \ln 2-2-0+\frac{1}{2}-2(2 \ln 2-2+1)=\frac{1}{2}
\end{aligned}
$$

