Department of Economics

March 2004
Arne Strøm

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for seminar no. 7, 15-19 March 2004

(For practical reasons, some of the solutions may include problem parts that were not on the problem list for the seminar.)

EMEA 9.7.3 (= MA I, 10.9.3)

(a) Let us first use integration by parts to calculate the indefinite integral, using the fact that $\lambda e^{\lambda x}=(d / d x)\left(-e^{-\lambda x}\right)$:

$$
\begin{aligned}
\int x \lambda e^{-\lambda x} d x & =x\left(-e^{-\lambda x}\right)-\int 1 \cdot e^{-\lambda x} d x=-x e^{-\lambda x}+\int e^{-\lambda x} d x \\
& =-x e^{-\lambda x}-\frac{1}{\lambda} e^{-\lambda x}+C
\end{aligned}
$$

This yields

$$
\begin{aligned}
\int_{0}^{b} x \lambda e^{-\lambda x} d x & =\left.\right|_{0} ^{b}-x e^{-\lambda x}-\frac{1}{\lambda} e^{-\lambda x} \\
& =\left(-b e^{-\lambda b}-\frac{1}{\lambda} e^{-\lambda b}\right)-\left(-0-\frac{1}{\lambda} e^{0}\right)=\frac{1}{\lambda}-b e^{-\lambda b}-\frac{1}{\lambda} e^{-\lambda b}
\end{aligned}
$$

and so

$$
\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda} .
$$

(We are assuming here that λ is a positive constant, as in Example 1 on page 335 (page 361 in MA I). We have also used that $b e^{-\lambda b} \rightarrow 0$ as $b \rightarrow \infty$. This follows easily from using l'Hôpital's rule for " ∞ / ∞ "-expressions on $b / e^{\lambda b}$, or from the general result in formula (4) on page 264 (formula (4) on page 224 in MA I), with b instead of x.)

EMEA, 15.3.1 (= LA, 3.2.4)
See the answers in the book. Note that in (d), the product $\mathbf{A B}$ is not defined, since \mathbf{A} is $2 \times \underline{2}$ and \mathbf{B} is $\underline{3} \times 2$.

EMEA, 15.3.3 (= LA, 3.2.5)
See the answer in the back of the book. If you prefer to calculate $\mathbf{A}(\mathbf{B C})$ directly instead of using the associative law, $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$, then you will need the product

$$
\mathbf{B C}=\left(\begin{array}{rrr}
14 & -4 & 10 \\
21 & 0 & 27 \\
11 & -4 & 13
\end{array}\right)
$$

EMEA, 15.3.5 (= LA, 3.2.6)
(a) We know that \mathbf{A} is an $m \times n$ matrix. Let \mathbf{B} be a $p \times q$ matrix. The matrix product $\mathbf{A B}$ is defined if and only if $n=p$, and $\mathbf{B A}$ is defined if and only if $q=m$. So for both $\mathbf{A B}$ and $\mathbf{B A}$ to be defined, it is necessary and sufficient that \mathbf{B} is an $n \times m$ matrix.
(b) (In LA, the matrix \mathbf{B} is called \mathbf{X}.) We know from part (a) that if $\mathbf{B A}$ and $\mathbf{A B}$ are defined, then \mathbf{B} must be a 2×2 matrix. So let $\mathbf{B}=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$. Then

$$
\mathbf{B A}=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & 3
\end{array}\right)=\left(\begin{array}{cc}
x+2 y & 2 x+3 y \\
z+2 w & 2 z+3 w
\end{array}\right)
$$

and

$$
\mathbf{A B}=\left(\begin{array}{cc}
1 & 2 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
x+2 z & y+2 w \\
2 x+3 z & 2 y+3 w
\end{array}\right) .
$$

Hence,

$$
\mathbf{B A}=\mathbf{A B} \Longleftrightarrow\left\{\begin{aligned}
x+2 y & =x+2 z \\
2 x+3 y & =y+2 w \\
z+2 w & =2 x+3 z \\
2 z+3 w & =2 y+3 w
\end{aligned}\right.
$$

The first and last of these four equations are true if and only if $y=z$, and if $y=z$, then the second and third are true if and only if $x=w-y$. Hence, the matrices \mathbf{B} that commute with \mathbf{A} are precisely the matrices of the form

$$
\mathbf{B}=\left(\begin{array}{cc}
w-y & y \\
y & w
\end{array}\right)=w\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+y\left(\begin{array}{rr}
-1 & 1 \\
1 & 0
\end{array}\right),
$$

where y and w can be any real numbers.
EMEA, 15.4.6 (= LA, 3.3.6)
(a) Matrix multiplication gives $\mathbf{A A}=\mathbf{A}$.
(b) By means of the equations

$$
\text { (I) } \quad \mathbf{A B}=\mathbf{A} \quad \text { and } \quad \text { (II) } \quad \mathbf{B A}=\mathbf{B}
$$

we get

$$
\mathbf{A} \mathbf{A} \stackrel{(\mathrm{I})}{=}(\mathbf{A B}) \mathbf{A}=\mathbf{A}(\mathbf{B A}) \stackrel{(\mathrm{II})}{=} \mathbf{A B}=\mathbf{A}
$$

and

$$
\mathbf{B B} \stackrel{(\mathrm{II})}{=}(\mathbf{B A}) \mathbf{B}=\mathbf{B}(\mathbf{A B}) \stackrel{(\mathrm{I})}{=} \mathbf{B} \mathbf{A}=\mathbf{B}
$$

Hence, the matrices \mathbf{A} and \mathbf{B} are idempotent.

EMEA, 15.5.4 (= LA, 3.5.4)
The matrix is symmetric if and only if the equations

$$
a+1=a^{2}-1 \quad \text { and } \quad 4 a=a^{2}+4
$$

are both satisfied. Rearranging these equations gives

$$
a^{2}-a-2=0 \quad \text { and } \quad a^{2}-4 a+4=0
$$

The roots of the first equation are $a=2$ and $a=-1$, whereas the second has only the double root $a=2$. Therefore the given matrix is symmetric if and only if $a=2$.

EMEA, 15.6.1(b) ($=$ LA, 4.1.1(a))
(b) We shall represent the equation system by its augmented (or extended) matrix, and perform elementary row operations on that:

$$
\begin{aligned}
\left(\begin{array}{rrrr}
1 & 2 & 1 & 4 \\
1 & -1 & 1 & 5 \\
2 & 3 & -1 & 1
\end{array}\right) \stackrel{-1-2}{\leftarrow} & \sim\left(\begin{array}{rrrr}
1 & 2 & 1 & 4 \\
0 & -3 & 0 & 1 \\
0 & -1 & -3 & -7
\end{array}\right)-1 / 3 \\
\sim\left(\begin{array}{rrrr}
1 & 2 & 1 & 4 \\
0 & 1 & 0 & -1 / 3 \\
0 & -1 & -3 & -7
\end{array}\right) \stackrel{1}{\longleftarrow} & \sim\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & -3 & -22 / 3
\end{array}\right)-1 / 3 \\
& \sim\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & 22 / 9
\end{array}\right)
\end{aligned}
$$

The last matrix here represents the equation system

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{2} & =-1 / 3 \\
x_{3} & =22 / 9
\end{aligned}
$$

and from this we can easily find the solution:

$$
x_{1}=\frac{20}{9}, \quad x_{2}=-\frac{1}{3}, \quad x_{3}=\frac{22}{9} .
$$

Of course, as an alternative we could continue the Gaussian elimination process:

$$
\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & 22 / 9
\end{array}\right) \stackrel{-}{-2} \sim\left(\begin{array}{cccc}
1 & 0 & 1 & 14 / 3 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & 22 / 9
\end{array}\right) \underset{-1}{\sim} \sim\left(\begin{array}{cccc}
1 & 0 & 0 & 20 / 9 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & 22 / 9
\end{array}\right)
$$

Here the solution is immediately clear.

EMEA, 15.6.3 (= LA, 4.1.3)
We use Gaussian elimination (the variable names above the first matrix only serve to remind us which variables the coefficients belong to):

$$
\begin{aligned}
& \sim\left(\begin{array}{rrrrc}
1 & 1 / 2 & 2 & 3 / 2 & 1 / 2 \\
0 & 1 / 2 & 0 & -1 / 2 & c^{2}-1 / 2 \\
0 & 5 / 2 & 0 & -5 / 2 & 3 c-1 / 2
\end{array}\right) \stackrel{\longleftrightarrow}{-1} \begin{array}{l}
-5 \\
\longleftarrow
\end{array} 2 \\
& \sim\left(\begin{array}{rrrrc}
1 & 0 & 2 & 2 & 1-c^{2} \\
0 & 1 & 0 & -1 & 2 c^{2}-1 \\
0 & 0 & 0 & 0 & -5 c^{2}+3 c+2
\end{array}\right)
\end{aligned}
$$

The interchange of rows in step 2 is not necessary, but it helps us reduce the amount of calculation with fractions.

We can tell from the last matrix that the system has solutions if and only if $-5 c^{2}+3 c+2=0$, that is, if and only if $c=1$ or $c=-2 / 5$.

For these particular values of c we get

$$
\begin{aligned}
w & =1-c^{2}-2 y-2 z=1-c^{2}-2 a-2 b \\
x & =2 c^{2}-1+z=2 c^{2}-1+b \\
y & =a \\
z & =b
\end{aligned}
$$

where a and b are arbitrary numbers.
If we had not interchanged the rows in step 2 above, we would have ended with, among other things,

$$
w=\frac{3-3 c}{5}-2 a-2 b \quad \text { and } \quad x=\frac{6 c-1}{5}-b
$$

which looks quite different. But for the admissible values of c, that is, for $c=1$ and for $c=-2 / 5$, this gives precisely the same answers as above, because we then have $c^{2}=(3 c+2) / 5$.

EMEA, 16.1.2 (= LA, 5.1.2)

See the answer in the back of the book. The area of the shaded parallelogram equals the area of the rectangle with corners in $(0,0),(3,0),(3,6)$ and $(0,6)$ (draw a picture!).

EMEA, 16.1.3 (= LA, 5.1.3)
(a) Cramer's rule gives

$$
x_{1}=\frac{\left|\begin{array}{ll}
8 & -1 \\
5 & -2
\end{array}\right|}{\left|\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right|}=\frac{-16+5}{-6+1}=\frac{11}{5}, \quad x_{2}=\frac{\left|\begin{array}{cc}
3 & 8 \\
1 & 5
\end{array}\right|}{\left|\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right|}=\frac{15-8}{-5}=-\frac{7}{5}
$$

EMEA, 16.1.6 (= LA, 5.1.6)
We have

$$
\begin{aligned}
Y-C & =I_{0}+G_{0} \\
-b Y+C & =a
\end{aligned}
$$

and if we use Cramer's rule on this equation system, we get

$$
\begin{aligned}
& Y=\frac{\left|\begin{array}{cr}
I_{0}+G_{0} & -1 \\
a & 1
\end{array}\right|}{\left|\begin{array}{cr}
1 & -1 \\
-b & 1
\end{array}\right|}=\frac{I_{0}+G_{0}+a}{1-b}, \\
& C=\frac{\left|\begin{array}{cc}
1 & I_{0}+G_{0} \\
-b & a
\end{array}\right|}{\left|\begin{array}{rr}
1 & -1 \\
-b & 1
\end{array}\right|}=\frac{a+b\left(I_{0}+G_{0}\right)}{1-b} .
\end{aligned}
$$

(It is also easy to solve this system without using Cramer's rule: From the first equation we get $Y=C+I_{0}+G_{0}$ and if we substitute this expression for Y in $C=a+b Y$, we get

$$
\begin{aligned}
C & =a+b\left(C+I_{0}+G_{0}\right) \\
(1-b) C & =a+b\left(I_{0}+G_{0}\right) \\
C & =\frac{a+b\left(I_{0}+G_{0}\right)}{1-b}
\end{aligned}
$$

and so on.)

Exam problem 5

(a) Expansion along the first row gives
$|\mathbf{A}|=\left|\begin{array}{ccc}a & b & 0 \\ -b & a & b \\ 0 & -b & a\end{array}\right|=a\left|\begin{array}{cc}a & b \\ -b & a\end{array}\right|-b\left|\begin{array}{cc}-b & b \\ 0 & a\end{array}\right|=a\left(a^{2}+b^{2}\right)-b(-a b)=a^{3}+2 a b^{2}$.
Matrix multiplication gives

$$
\mathbf{A A}=\left(\begin{array}{ccc}
a^{2}-b^{2} & 2 a b & b^{2} \\
-2 a b & a^{2}-2 b^{2} & 2 a b \\
b^{2} & -2 a b & a^{2}-b^{2}
\end{array}\right)
$$

(b) We have

$$
\left(\mathbf{C}^{\prime} \mathbf{B C}\right)^{\prime}=\mathbf{C}^{\prime} \mathbf{B}^{\prime}\left(\mathbf{C}^{\prime}\right)^{\prime}=\mathbf{C}^{\prime}(-\mathbf{B}) \mathbf{C}=-\mathbf{C}^{\prime} \mathbf{B C}
$$

(c) Since $\mathbf{A}^{\prime}=\left(\begin{array}{ccc}a & -b & 0 \\ b & a & -b \\ 0 & b & a\end{array}\right)$, the matrix \mathbf{A} is skew-symmetric, that is, $\mathbf{A}^{\prime}=$ $-\mathbf{A}$, if and only if $a=0$.

Exam problem 52

(a) Direct calculation yields

$$
\mathbf{A A}^{\prime}=\left(\begin{array}{ll}
21 & 11 \\
11 & 10
\end{array}\right), \quad\left|\mathbf{A A}^{\prime}\right|=89, \quad\left(\mathbf{A A}^{\prime}\right)^{-1}=\frac{1}{89}\left(\begin{array}{rr}
10 & -11 \\
-11 & 21
\end{array}\right)
$$

(b) No, it is no coincidence. For any matrix \mathbf{A}, the product $\mathbf{A A}^{\prime}$ is symmetric, since

$$
\left(\mathbf{A} \mathbf{A}^{\prime}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{\prime} \mathbf{A}^{\prime}=\mathbf{A} \mathbf{A}^{\prime}
$$

Furthermore, the inverse of a symmetric matrix is always symmetric.
(c) Since $\mathbf{1}$ is a $1 \times m$ matrix and \mathbf{X} is $m \times n$, the product $\frac{1}{m} \mathbf{1} \cdot \mathbf{X}$ is a $1 \times n$ matrix, that is, a row vector of dimension n. We get

$$
\begin{aligned}
& \frac{1}{m} \mathbf{1} \cdot \mathbf{X}=\frac{1}{m}(1,1, \ldots, 1)\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & & \vdots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right)= \\
& \frac{1}{m}\left(x_{11}+x_{21}+\cdots+x_{m 1}, x_{12}+x_{22}+\cdots+x_{m 2}, \ldots, x_{1 n}+x_{2 n}+\cdots+x_{m n}\right)
\end{aligned}
$$

and the i th component of this vector, $\frac{x_{1 i}+x_{2 i}+\cdots+x_{m i}}{m}$, is the arithmetic mean of the m observations of quantity no. i.

