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(For practical reasons, some of the solutions may include problem parts that were
not on the problem list for the seminar.)

EMEA 9.7.3 (= MA I, 10.9.3)

(a) Let us first use integration by parts to calculate the indefinite integral, using
the fact that λeλx = (d/dx)(−e−λx):∫

xλe−λx dx = x(−e−λx)−
∫

1 · e−λx dx = −xe−λx +
∫

e−λx dx

= −xe−λx − 1
λ

e−λx + C

This yields
∫ b

0
xλe−λx dx =

b

0
−xe−λx − 1

λ
e−λx

=
(−be−λb − 1

λ
e−λb

)− (−0− 1
λ

e0) =
1
λ
− be−λb − 1

λ
e−λb,

and so ∫ ∞

0
xλe−λx dx = lim

b→∞

∫ b

0
xλe−λx dx =

1
λ

.

(We are assuming here that λ is a positive constant, as in Example 1 on page 335
(page 361 in MA I). We have also used that be−λb → 0 as b → ∞. This follows
easily from using l’Hôpital’s rule for “∞/∞”-expressions on b/eλb, or from the
general result in formula (4) on page 264 (formula (4) on page 224 in MA I), with
b instead of x.)

EMEA, 15.3.1 (= LA, 3.2.4)

See the answers in the book. Note that in (d), the product AB is not defined,
since A is 2× 2 and B is 3× 2.

EMEA, 15.3.3 (= LA, 3.2.5)

See the answer in the back of the book. If you prefer to calculate A(BC) directly
instead of using the associative law, A(BC) = (AB)C, then you will need the
product

BC =


 14 −4 10

21 0 27
11 −4 13



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EMEA, 15.3.5 (= LA, 3.2.6)

(a) We know that A is an m × n matrix. Let B be a p × q matrix. The matrix
product AB is defined if and only if n = p, and BA is defined if and only if q = m.
So for both AB and BA to be defined, it is necessary and sufficient that B is an
n×m matrix.

(b) (In LA, the matrix B is called X.) We know from part (a) that if BA and

AB are defined, then B must be a 2× 2 matrix. So let B =
(

x y
z w

)
. Then

BA =
(

x y
z w

) (
1 2
2 3

)
=

(
x + 2y 2x + 3y
z + 2w 2z + 3w

)

and

AB =
(

1 2
2 3

) (
x y
z w

)
=

(
x + 2z y + 2w
2x + 3z 2y + 3w

)
.

Hence,

BA = AB ⇐⇒




x + 2y = x + 2z

2x + 3y = y + 2w

z + 2w = 2x + 3z

2z + 3w = 2y + 3w

The first and last of these four equations are true if and only if y = z, and if y = z,
then the second and third are true if and only if x = w − y. Hence, the matrices
B that commute with A are precisely the matrices of the form

B =
(

w − y y
y w

)
= w

(
1 0
0 1

)
+ y

(−1 1
1 0

)
,

where y and w can be any real numbers.

EMEA, 15.4.6 (= LA, 3.3.6)

(a) Matrix multiplication gives AA = A.

(b) By means of the equations

(I) AB = A and (II) BA = B

we get

AA
(I)
= (AB)A = A(BA)

(II)
= AB = A

and

BB
(II)
= (BA)B = B(AB)

(I)
= BA = B.

Hence, the matrices A and B are idempotent.
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EMEA, 15.5.4 (= LA, 3.5.4)

The matrix is symmetric if and only if the equations

a + 1 = a2 − 1 and 4a = a2 + 4

are both satisfied. Rearranging these equations gives

a2 − a− 2 = 0 and a2 − 4a + 4 = 0.

The roots of the first equation are a = 2 and a = −1, whereas the second has
only the double root a = 2. Therefore the given matrix is symmetric if and only
if a = 2.

EMEA, 15.6.1(b) (= LA, 4.1.1(a))

(b) We shall represent the equation system by its augmented (or extended) ma-
trix, and perform elementary row operations on that:


 1 2 1 4

1 −1 1 5
2 3 −1 1


 −1−2
←
←

∼

 1 2 1 4

0 −3 0 1
0 −1 −3 −7


 −1/3

∼

 1 2 1 4

0 1 0 −1/3
0 −1 −3 −7


 1
←

∼

 1 2 1 4

0 1 0 −1/3
0 0 −3 −22/3




−1/3

∼

 1 2 1 4

0 1 0 −1/3
0 0 1 22/9




The last matrix here represents the equation system

x1 + 2x2 + x3 = 4
x2 = −1/3

x3 = 22/9

and from this we can easily find the solution:

x1 =
20
9

, x2 = −1
3

, x3 =
22
9

.

Of course, as an alternative we could continue the Gaussian elimination process:

 1 2 1 4

0 1 0 −1/3
0 0 1 22/9


 ←−2 ∼


 1 0 1 14/3

0 1 0 −1/3
0 0 1 22/9


 ←
−1

∼

 1 0 0 20/9

0 1 0 −1/3
0 0 1 22/9




Here the solution is immediately clear.
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EMEA, 15.6.3 (= LA, 4.1.3)

We use Gaussian elimination (the variable names above the first matrix only serve
to remind us which variables the coefficients belong to):




w x y z

2 1 4 3 1
1 3 2 −1 3c
1 1 2 1 c2




−1/2 1/2
←
←

∼

 1 1/2 2 3/2 1/2

0 5/2 0 −5/2 3c− 1/2
0 1/2 0 −1/2 c2 − 1/2


 ←
←

∼

 1 1/2 2 3/2 1/2

0 1/2 0 −1/2 c2 − 1/2
0 5/2 0 −5/2 3c− 1/2


 ←−1 −5 2

←

∼

 1 0 2 2 1− c2

0 1 0 −1 2c2 − 1
0 0 0 0 −5c2 + 3c + 2




The interchange of rows in step 2 is not necessary, but it helps us reduce the
amount of calculation with fractions.

We can tell from the last matrix that the system has solutions if and only if
−5c2 + 3c + 2 = 0, that is, if and only if c = 1 or c = −2/5.

For these particular values of c we get

w = 1− c2 − 2y − 2z = 1− c2 − 2a− 2b

x = 2c2 − 1 + z = 2c2 − 1 + b

y = a

z = b

where a and b are arbitrary numbers.
If we had not interchanged the rows in step 2 above, we would have ended

with, among other things,

w =
3− 3c

5
− 2a− 2b and x =

6c− 1
5
− b,

which looks quite different. But for the admissible values of c, that is, for c = 1
and for c = −2/5, this gives precisely the same answers as above, because we then
have c2 = (3c + 2)/5.

EMEA, 16.1.2 (= LA, 5.1.2)

See the answer in the back of the book. The area of the shaded parallelogram
equals the area of the rectangle with corners in (0, 0), (3, 0), (3, 6) and (0, 6) (draw
a picture!).

4
v04ste07 1.3.2004 1032



EMEA, 16.1.3 (= LA, 5.1.3)

(a) Cramer’s rule gives

x1 =

∣∣∣∣ 8 −1
5 −2

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
=
−16 + 5
−6 + 1

=
11
5

, x2 =

∣∣∣∣ 3 8
1 5

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
=

15− 8
−5

= −7
5

.

EMEA, 16.1.6 (= LA, 5.1.6)

We have
Y − C = I0 + G0

−bY + C = a,

and if we use Cramer’s rule on this equation system, we get

Y =

∣∣∣∣ I0 + G0 −1
a 1

∣∣∣∣∣∣∣∣ 1 −1
−b 1

∣∣∣∣
=

I0 + G0 + a

1− b
,

C =

∣∣∣∣ 1 I0 + G0
−b a

∣∣∣∣∣∣∣∣ 1 −1
−b 1

∣∣∣∣
=

a + b(I0 + G0)
1− b

.

(It is also easy to solve this system without using Cramer’s rule: From the first
equation we get Y = C + I0 + G0 and if we substitute this expression for Y in
C = a + bY , we get

C = a + b(C + I0 + G0)
(1− b)C = a + b(I0 + G0)

C =
a + b(I0 + G0)

1− b

and so on.)
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Exam problem 5

(a) Expansion along the first row gives

|A| =
∣∣∣∣∣∣

a b 0
−b a b
0 −b a

∣∣∣∣∣∣ = a

∣∣∣∣ a b
−b a

∣∣∣∣− b

∣∣∣∣−b b
0 a

∣∣∣∣ = a(a2 + b2)− b(−ab) = a3 + 2ab2.

Matrix multiplication gives

AA =


 a2 − b2 2ab b2

−2ab a2 − 2b2 2ab
b2 −2ab a2 − b2


 .

(b) We have

(C′BC)′ = C′B′(C′)′ = C′(−B)C = −C′BC.

(c) Since A′ =


 a −b 0

b a −b
0 b a


, the matrix A is skew-symmetric, that is, A′ =

−A, if and only if a = 0.

Exam problem 52

(a) Direct calculation yields

AA′ =
(

21 11
11 10

)
, |AA′| = 89, (AA′)−1 =

1
89

(
10 −11
−11 21

)
.

(b) No, it is no coincidence. For any matrix A, the product AA′ is symmetric,
since

(AA′)′ = (A′)′A′ = AA′.

Furthermore, the inverse of a symmetric matrix is always symmetric.

(c) Since 1 is a 1 ×m matrix and X is m × n, the product
1
m

1 ·X is a 1 × n

matrix, that is, a row vector of dimension n. We get

1
m

1 ·X =
1
m

(1, 1, . . . , 1)




x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

xm1 xm2 . . . xmn


 =

1
m

(x11 + x21 + · · ·+ xm1, x12 + x22 + · · ·+ xm2, . . . , x1n + x2n + · · ·+ xmn)

and the ith component of this vector,
x1i + x2i + · · ·+ xmi

m
, is the arithmetic mean

of the m observations of quantity no. i.
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