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Problem solutions for seminar no. 8, 22–26 March 2004

(For practical reasons, some of the solutions may include problem parts that were
not on the problem list for the seminar.)

EMEA, 16.3.2 (= LA, 5.3.2(a))

We get +a12a23a35a41a54. (Four of the lines that connect pairs of elements are
rising to the right.)

EMEA, 16.4.2 (= LA, 5.4.2)

Direct calculation gives

|A| =
∣∣∣∣∣∣
2 1 3
1 0 1
1 2 5

∣∣∣∣∣∣
= 2 · 0 · 5− 2 · 1 · 2 + 1 · 1 · 1− 1 · 1 · 5 + 3 · 1 · 2− 3 · 0 · 1

= 0− 4 + 1− 5 + 6− 0 = −2,

|A′| =
∣∣∣∣∣∣
2 1 1
1 0 2
3 1 5

∣∣∣∣∣∣
= 2 · 0 · 5− 2 · 2 · 1 + 1 · 2 · 3− 1 · 1 · 5 + 1 · 1 · 1− 1 · 0 · 3

= 0− 4 + 6− 5 + 1− 0 = −2.

EMEA, 16.4.6 (= LA, 5.4.4)

This problem is an exercise in using some of the rules in Theorem 16.4.1 in EMEA
(LA: setning 5.1).

(a) This determinant is zero because the second column equals 2 times the first
column. We could also have used that the sum if the first and the second row
equals the third row.

(b) By adding the second column to the third, we get
∣∣∣∣∣∣
1 a b + c
1 b c + a
1 c a + b

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 a a + b + c
1 b a + b + c
1 c a + b + c

∣∣∣∣∣∣
= 0

The last inequality follows because the third column is proportional to the first.

1
v04ste08 1.3.2004 1051



(c) There is a common factor x− y in the first row, so we get
∣∣∣∣∣∣
x− y x− y x2 − y2

1 1 x + y
y 1 x

∣∣∣∣∣∣
= (x− y)

∣∣∣∣∣∣
1 1 x + y
1 1 x + y
y 1 x

∣∣∣∣∣∣
= 0,

since the new determinant has two equal rows.

EMEA, 16.5.2 (= LA, 5.5.2)

(a) Cofactor expansion along the first row gives
∣∣∣∣∣∣
0 0 a
0 b 0
c 0 0

∣∣∣∣∣∣
= 0− 0 + a

∣∣∣∣
0 b
c 0

∣∣∣∣ = a · (−bc) = −abc.

(b) Cofactor expansion again:
∣∣∣∣∣∣∣

0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0

∣∣∣∣∣∣∣
= 0− 0 + 0− a

∣∣∣∣∣∣
0 0 b
0 c 0
d 0 0

∣∣∣∣∣∣
= −a · (−bcd) = abcd,

by the result from part (a).

(c) Repeated cofactor expansion:
∣∣∣∣∣∣∣∣∣

0 0 0 0 1
0 0 0 5 1
0 0 3 1 2
0 4 0 3 4
6 2 3 1 2

∣∣∣∣∣∣∣∣∣
= 0− 0 + 0− 0 + 1

∣∣∣∣∣∣∣

0 0 0 5
0 0 3 1
0 4 0 3
6 2 3 1

∣∣∣∣∣∣∣

= 0− 0 + 0− 5

∣∣∣∣∣∣
0 0 3
0 4 0
6 2 3

∣∣∣∣∣∣
= −5 · 3

∣∣∣∣
0 4
6 2

∣∣∣∣ = −5 · 3 · (−4 · 6) = 360.

EMEA, 16.6.2 (= LA, 6.1.2)

It suffices to show (by direct calculation) that the product of the two matrices
is I3.
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EMEA, 16.7.1 (= LA, 6.2.1)

(b) Let A =




1 0 2
2 −1 0
0 2 −1


. The adjoint matrix is

adjA =




C11 C21 C31
C12 C22 C32
C13 C23 C33


 =




1 4 2
2 −1 4
4 −2 −1


 ,

and the determinant is

|A| = a11C11 + a21C21 + a31C31 = 1 · 1 + 2 · 4 + 0 · 2 = 9

(by expansion along the first column). Hence,

A−1 =
1
9
(adjA) =

1
9




1 4 2
2 −1 4
4 −2 −1


 .

EMEA, 16.8.2 (= LA, 6.3.2)

The coefficient matrix of the system and its determinant are

A =




3 1 0
1 −1 2
2 3 −1


 , |A| = −10.

Since A �= 0, the system has a unique solution for any set of right-hand sides. The
determinants D1, D2, and D3 of the matrices that we get by replacing the first,
second, and third column in A with the right-hand sides are

D1 =

∣∣∣∣∣∣
b1 1 0
b2 −1 2
b3 3 −1

∣∣∣∣∣∣
= −5b1 + b2 + 2b3 ,

D2 =

∣∣∣∣∣∣
3 b1 0
1 b2 2
2 b3 −1

∣∣∣∣∣∣
= 5b1 − 3b2 − 6b3 ,

D3 =

∣∣∣∣∣∣
3 1 b1
1 −1 b2
2 3 b3

∣∣∣∣∣∣
= 5b1 − 7b2 − 4b3 .

It is probably most convenient to calculate each of these determinants by cofactor
expansion along the column containing the bs.
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By Cramer’s rule, the solution of the system is

x1 =
D1

|A| =
5b1 − b2 − 2b3

10
=

1
2
b1 − 1

10
b2 − 1

5
b3 ,

x2 =
D2

|A| =
−5b1 + 3b2 + 6b3

10
= −1

2
b1 +

3
10

b2 +
3
5
b3 ,

x3 =
D3

|A| =
−5b1 + 7b2 + 4b3

10
= −1

2
b1 +

7
10

b2 +
2
5
b3 .

Exam problem 37

(a) From the definition of a 3× 3 determinant we get

|A| =
∣∣∣∣∣∣
0 1 0
0 1 1
1 0 1

∣∣∣∣∣∣
= 0 · 1 · 1− 0 · 1 · 0 + 1 · 1 · 1− 1 · 0 · 1 + 0 · 0 · 0− 0 · 1 · 1 = 1.

(A more efficient procedure would be to use cofactor expansion along the first row
or the first column.) Matrix multiplication yields

A2 =




0 1 0
0 1 1
1 0 1







0 1 0
0 1 1
1 0 1


 =




0 1 1
1 1 2
1 1 1




A3 = A ·A2 =




1 1 2
2 2 3
1 2 2




Then, by direct calculation we get A3 − 2A2 + A− I = 0.

(b) Simple matrix calculation yields

A(A− I)2 = A(A− I)(A− I) = A(A2 − I ·A−A · I + I2)

= A(A2 − 2A + I) = A3 − 2A2 + A,

and by the last result in part (a), A3 − 2A2 + A = I. Hence, A(A− I)2 = I, and
(A− I)2 is therefore the inverse matrix of A.

Exam problem 45

Direct calculation shows that

AB =




1 0 0
a + b 2a + 1/4 + 3b 4a + 3/2 + 2b

0 0 1




The matrix A is the inverse of B if and only if AB = I3, that is, if and only if

a + b = 0, 2a + 3b = 3/4, 4a + 2b = −3/2.
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The first of these equations gives b = −a, and if we substitute −a for b in the
second equation, we get −a = 3/4, so a = −3/4 and b = 3/4. These values of a
and b also satisfy the last equation. (It is important to check that!)

Exam problem 50

(a) Expand the determinant of the system along the first row:
∣∣∣∣∣∣
1 1 −1
k 3 −2
6 2k −3k

∣∣∣∣∣∣
=

∣∣∣∣
3 −2
2k −3k

∣∣∣∣−
∣∣∣∣
k −2
6 −3k

∣∣∣∣ + (−1)
∣∣∣∣
k 3
6 2k

∣∣∣∣

= (−9k + 4k)− (−3k2 + 12)− (2k2 − 18)

= k2 − 5k + 6 = (k − 2)(k − 3).

The system has a unique solution if and only if the determinant is �= 0, that is, if
and only if k �= 2 and k �= 3.

(b) For k = 3 we have the system

x + y − z = 2
3x + 3y − 2z = 1
6x + 6y − 9z = 0

−3 −6
←
←

With the elementary row operations indicated, we get the equation system

x + y − z = 2
z = −5

−3z = −12

which has no solution (the last two equations are contradict each other).
We could also formulate the argument in an apparently simpler fashion, with-

out explicitly mentioning elementary operations: From the first equation in the
original system we get x + y = z + 2. The other two equations then give

3(z + 2)− 2z = 1
6(z + 2)− 9z = 0

which in turn gives
z = −5

−3z = −12

and this system obviously has no solution. (But of course this is really the same
argument as above.)

Exam problem 62

(a) The determinant of Aa is

|Aa| =
∣∣∣∣∣∣

1 −a −a
−a 1 −a
−a −a 1

∣∣∣∣∣∣
= 1

∣∣∣∣
1 −a
−a 1

∣∣∣∣− (−a)
∣∣∣∣
−a −a
−a 1

∣∣∣∣ + (−a)
∣∣∣∣
−a 1
−a −a

∣∣∣∣

= −2a3 − 3a2 + 1.
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It is easy to see that −2a3 − 3a2 + 1 = 0 for a = 1/2. Hence, a − 1/2 is a factor
in −2a3 − 3a2 + 1. Polynomial division gives

(−2a3 − 3a2 + 1)÷ (a− 1/2) = −2a2 − 4a− 2 = −2(a + 1)2,

so |Aa| = −2(a + 1)2(a− 1/2), and

|Aa| �= 0 ⇐⇒ a �= −1 and a �= 1/2.

Thus, Aa has an inverse precisely when a is different from −1 and 1/2.

Note: In English, division of a by b is usually written as a÷ b rather than a : b.

(b) Let B = k




1− a a a
a 1− a a
a a 1− a


. The product of Aa and B is

AaB =




1 −a −a
−a 1 −a
−a −a 1


 · k




1− a a a
a 1− a a
a a 1− a




= k




1− a− 2a2 0 0
0 1− a− 2a2 0
0 0 1− a− 2a2




= k(1− a− 2a2)




1 0 0
0 1 0
0 0 1




= k(1− a− 2a2) I3 = k(1 + a)(1− 2a) I3.

This shows that if we choose k = 1/(1−a− 2a2), then B is the inverse of Aa, and
this works for all values of a except −1 and 1/2.

(c) Let x = (x1, x2, x3)′. Then

A−1
a x = k




1− a a a
a 1− a a
a a 1− a







x1
x2
x3


 = k




(1− a)x1 + ax2 + ax3
ax1 + (1− a)x2 + ax3
ax1 + ax2 + (1− a)x3


 .

If 0 < a < 1/2, then k is positive, and then all components of A−1
a x are positive

if the components x1, x2, and x3 of x are positive.
(Actually, it is sufficient to note that the elements of A−1

a are positive when
a ∈ (0, 1/2). Then it follows directly from the definition of matrix multiplication
that all components of A−1

a x will be positive when the components of x are posi-
tive. Note that if a ∈ (1/2, 1), then all elements of Aa will be negative, since k < 0
for these values of a.)
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