Universitetet i Oslo / Økonomisk institutt / NCF

ECON3120/4120 - Mathematics 2: Problems for seminar 6, Mar. 27 & 31, Apr. 2 2008

- **1** (Exam problem 30/5-05)
- (a) Calculate the determinant of $\mathbf{A}_t = \begin{pmatrix} 0 & t & 1 \\ 4 & -2 & 8 \\ 1 & 1 & 1 \end{pmatrix}$
- (b) Find x, y and z such that

$$\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ z & 0 \end{pmatrix} - \begin{pmatrix} x & y \\ z & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix}$$

- 2 Exam problem 142.
- **3** Find the general solution of the differential equation

$$\dot{x} + \frac{2}{t}x = e^t$$

Find, in particular, the integral curve passing through (t, x) = (1, 1).

4 Given the matrix

$$\mathbf{A}_t = \begin{pmatrix} 1 & t & 0 \\ -2 & -2 & -1 \\ 0 & 1 & t \end{pmatrix}$$

- (a) Calculate $|\mathbf{A}_t|$ and show that \mathbf{A}_t^{-1} exists for all *t*.
- (b) Show that for a certain value of t we have $\mathbf{A}_t^3 = \mathbf{I}_3$, where \mathbf{I}_3 is the identity matrix of order 3.
- (c) Find the inverse of A_1 .
- (d) Suppose that A and B are invertible $n \times n$ -matrices. Show that if $\mathbf{A'A} = \mathbf{I}_n$, then $(\mathbf{A'BA})^{-1} = \mathbf{A'B}^{-1}\mathbf{A}$.