On term paper \#2, ECON3120/4120 Mathematics 2, spring 2008

Problem 1 Cofactor expansion along the last row gives

$$
\begin{aligned}
\left|\mathbf{A}_{u}\right| & =-u\left|\begin{array}{cc}
1 & 1-u \\
u-1 & 3 u-1
\end{array}\right|+2 u\left|\begin{array}{cc}
1 & 2 u-1 \\
u-1 & 1
\end{array}\right| \\
& \left.=u\left(1-3 u-u^{2}+2 u-1+2-2(2 u-1)(u-1)\right)\right) \\
& =u\left(-u^{2}-u-4 u^{2}+6 u\right) \\
& =5 u^{2}(1-u) .
\end{aligned}
$$

So - regardless of the right hand side (and thus, regardless of k) - there is a unique solution whenever $u \notin\{0,1\}$. The cases $u=0$ and $u=1$ have to be treated separately.

The case $u=0$ gives

$$
\begin{array}{r}
x-y+z=0 \\
-x+y-z=k \\
0 x+0 y+0 z=0
\end{array}
$$

or - adding the first line to the second (or merely comparing those two!)

$$
\begin{array}{r}
x-y+z=0 \\
0=k
\end{array}
$$

So for $u=0$ there is no solution for $k \neq 0$, while for $k=0$ there are two degrees of freedom.
The case $u=1$ gives

$$
\begin{aligned}
x+y+z & =1 \\
y-2 z & =k \\
y-2 z & =k
\end{aligned}
$$

where the last two lines are the same, so one of them can be dropped. It is easy to see that - regardless of k - we have one degree of freedom; if we choose $z=t$, the equation system becomes

$$
\begin{aligned}
x+y & =1-2 t \\
y & =k+2 t
\end{aligned}
$$

which - for each t - has a unique solution for x and y. To summarize:

- No solution when $u=0 \neq k$
- Two degrees of freedom when $u=k=0$
- One degree of freedom when $u=1$
- Unique solution otherwise.

Notes:

- You were not asked to actually find the solution. Read the problem text!
- Nevertheless, you may perform Gaussian elimination as a tool. However, whenever you divide by something, ensure that it is nonzero. If you divide by u, then the case $u=0$ will not not be covered by your calculations, and will have to be treated separately.
- Cramer's rule does not work unless $\left|\mathbf{A}_{u}\right| \neq 0$. Example why: Consider the equations $u x=u, u y=u, u z=u$. Clearly, this system has the unique solution $x=y=z=1$ whenever $u \neq 0$, while for $u=0$ all variables are free. Now try to use Cramer's rule and see what happens.
- The problem set says «in the unknowns x, y and $z »$. That is, k and u are not unknowns.
- A «zero line» does not imply infinitely many solutions, you have to check the rest of the equation system for consistency - which is also necessary in order to find the number of degrees of freedom.

Problem 2 We are given (for $t>0, x>0$):

$$
V(t, x)=g(t) h(x) e^{-r t}-x
$$

(a) The first-order conditions are

$$
\begin{aligned}
& 0=V_{t}^{\prime}\left(t^{*}, x^{*}\right)=h\left(x^{*}\right) \cdot\left(g^{\prime}\left(t^{*}\right) e^{-r t^{*}}-r g\left(t^{*}\right) e^{-r t^{*}}\right) \\
& 0=V_{x}^{\prime}\left(t^{*}, x^{*}\right)=g\left(t^{*}\right) e^{-r t^{*}} h^{\prime}\left(x^{*}\right)-1
\end{aligned}
$$

or:

$$
\begin{aligned}
& \underline{\underline{g^{\prime}\left(t^{*}\right)}}=r g\left(t^{*}\right) \\
& \underline{\underline{h^{\prime}\left(x^{*}\right)}=e^{r t^{*}} / g\left(t^{*}\right)}
\end{aligned}
$$

(the latter valid because $g>0$.)
(b) We are given that $V_{t x}^{\prime \prime}\left(t^{*}, x^{*}\right)=0$, so the second-order test will be satisfied if $V_{t t}^{\prime \prime}\left(t^{*}, x^{*}\right)<$ 0 and $V_{x x}^{\prime \prime}\left(t^{*}, x^{*}\right)<0$.
Consider first the latter: $V_{x x}^{\prime \prime}(t, x)=g(t) e^{-r t} h^{\prime \prime}(x)$, and since $g(t)>0$, this has the same sign as $h^{\prime \prime}$. So if $h^{\prime \prime}\left(x^{*}\right)<0$, then $V_{x x}^{\prime \prime}\left(t^{*}, x^{*}\right)<0$.
For $V_{t t}^{\prime \prime}$, we have

$$
\begin{aligned}
V_{t t}^{\prime \prime}(t, x) & =h(x) \cdot \frac{d}{d t}\left[\left(g^{\prime}(t)-r g(t)\right) e^{-r t}\right] \\
& =h(x) \cdot\left[\left(g^{\prime \prime}(t)-r g^{\prime}(t)\right) e^{-r t}-r\left(g^{\prime}(t)-r g(t)\right) e^{-r t}\right] \\
& =h(x) \cdot\left[g^{\prime \prime}(t)-r g^{\prime}(t)-r\left(g^{\prime}(t)-r g(t)\right)\right] e^{-r t}
\end{aligned}
$$

which - since $h e^{-r t}>0$ - has the same sign as the expression in the brackets. Now the proposition we are asked to show does not involve g^{\prime}, so we use the hint and substitute $g^{\prime}\left(t^{*}\right)=r g\left(t^{*}\right)$ from the first-order condition. Then at the stationary point we get that $0>V_{t t}^{\prime \prime}\left(t^{*}, x^{*}\right)$ if

$$
\begin{aligned}
0 & >g^{\prime \prime}\left(t^{*}\right)-r g^{\prime}\left(t^{*}\right)-r\left(g^{\prime}\left(t^{*}\right)-r g\left(t^{*}\right)\right) \\
& =g^{\prime \prime}\left(t^{*}\right)-r \cdot r g\left(t^{*}\right)-0
\end{aligned}
$$

so that the second-order condition will hold if

$$
r^{2} g\left(t^{*}\right)>g^{\prime \prime}\left(t^{*}\right)
$$

which is precisely what we were asked to show.
(c) We are given $g(t)=e^{\sqrt{t}}$ and $h(x)=\ln (x+1)$, which are both positive functions. We have $g^{\prime}(t)=g(t) / 2 \sqrt{t}$ and $h^{\prime}(x)=1 /(x+1)$, so the first-order conditions become

$$
\begin{aligned}
& \text { For } t^{*}: \quad \frac{1}{2 \sqrt{t}} g\left(t^{*}\right)=r g\left(t^{*}\right) \\
& \text { implying } \quad t^{*}=1 / 4 r^{2} \\
& \text { For } x^{*}: \quad \frac{1}{x^{*}+1}=e^{r t^{*}} e^{-\sqrt{t^{*}}} \\
& =e^{\frac{1}{4 r}-\frac{1}{2 r}} \\
& =e^{-\frac{1}{4 r}} \\
& \text { implying } \quad x^{*}=e^{1 / 4 r}-1
\end{aligned}
$$

For the second-order conditions, we easily see that $h^{\prime \prime}(x)=-(x+1)^{-2}$ which is <0 for any x (hence also for x^{*}), so we only need to verify $r^{2} g\left(t^{*}\right)>g^{\prime \prime}\left(t^{*}\right)$. Now the second derivative is

$$
\begin{aligned}
g^{\prime \prime}(t) & =\frac{1}{2} g^{\prime}(t) t^{-1 / 2}+\left(-\frac{1}{4}\right) g(t) t^{-3 / 2} \\
& =\frac{1}{4}\left(2 g(t) t^{-1 / 2} \cdot \frac{1}{2} t^{-1 / 2}-g(t) t^{-3 / 2}\right) \\
& =\frac{1}{4} g(t) t^{-3 / 2}\left(t^{1 / 2}-1\right)
\end{aligned}
$$

so that the statement $r^{2} g\left(t^{*}\right)>g^{\prime \prime}\left(t^{*}\right)$ is equivalent to

$$
\begin{aligned}
r^{2} g\left(t^{*}\right) & >\frac{1}{4} g\left(t^{*}\right) \cdot\left(t^{*}\right)^{-3 / 2} \cdot\left(\left(t^{*}\right)^{1 / 2}-1\right) \\
& \mathbb{} \text { (because } g>0) \\
r^{2} & >\frac{1}{4}\left(4 r^{2}\right)^{3 / 2} \cdot\left(\frac{1}{2 r}-1\right)
\end{aligned}
$$

The right hand side is equal to $2 r^{3}\left(\frac{1}{2 r}-1\right)=r^{2}-2 r^{3}$, which is $<r^{2}$ when $2 r^{3}>0$ (and $r>0$ is given). So the second-order test implies local maximum, for all $r>0$.

Notes: Most of you fared well on problem 2. It has been given as an exam problem, and turned out difficult there, probably because of the time frame - the problem requires a bit of work, though maybe not much sheer brilliance. Typical errors were calculation mistakes, forgetting the second derivative test in 2c, and taking $x^{*}=0$ even though V is not defined there.

Problem 3

(a) To differentiate the equation system

$$
\begin{aligned}
x \cdot y \cdot z \cdot u e^{-u} \cdot v e^{v} & =2 \\
1 x+2 y+3 z+4 u+5 v & =6
\end{aligned}
$$

we first observe that $\frac{d}{d w}\left(w e^{k w}\right)=e^{k w}+k w e^{k w}=e^{k w}(1+k w)$, useful for the differentiation wrt. u and v. We proceed to get the following answer:

$$
\begin{cases}y z u e^{-u} v e^{v} d x+x z u e^{-u} v e^{v} d y+x y u e^{-u} v e^{v} d z & \\ +x y z e^{-u}(1-u) v e^{v} d u+x y z u e^{-u} e^{v}(1+v) d v & =0 \\ d x+2 d y+3 d z+4 d u+5 d v & =0 \\ \hline \hline\end{cases}
$$

(b) First, we note that we can simplify the first equation by dividing by the common nonzero factor $e^{-u} e^{v}$ (indeed you may even divide by $x y z u e^{-u} v e^{v}$, but I will not base the following on that trick). To find a general expression for v_{x}^{\prime}, we also note that the $d y$ and $d z$ terms will not be interesting; however, a look at part (c) reveals that we also want u_{z}^{\prime} (although only in the point). So let us proceed fairly generally to get

$$
\underbrace{\left(\begin{array}{cc}
x y z(1-u) v & x y z u(1+v) \\
4 & 5
\end{array}\right)}_{\mathbf{A}}\binom{d u}{d v}=-\binom{y z u v}{1} d x-\binom{x z u v}{2} d y-\binom{x y u v}{3} d z
$$

or, equivalently - since (locally near P) we have $|\mathbf{A}|=x y z(5(1-u) v-4 u(1+v)) \neq 0$

$$
\binom{d u}{d v}=\underbrace{\frac{-1}{|\mathbf{A}|} \overbrace{\left(\begin{array}{cc}
5 & -x y z u(1+v) \tag{*}\\
-4 & x y z(1-u) v
\end{array}\right)}^{\text {adj } \mathbf{A}}}_{-\mathbf{A}^{-1}}\left\{\binom{y z u v}{1} d x+\binom{x z u v}{2} d y+\binom{x y u v}{3} d z\right\}
$$

If we perform matrix multiplication, v_{x}^{\prime} will be the $d x$ coefficient of the $d v$ line:

$$
\begin{aligned}
v_{x}^{\prime} & =\frac{-1}{|\mathbf{A}|} \overbrace{(-4, x y z(1-u) v)}^{\text {second }(« d v\rangle-\text { row of adj A }}\binom{y z u v}{1} \\
& =\frac{4 y z u v-x y z(1-u) v}{5 x y z(1-u) v-4 x y z u(1+v)} \\
& =\frac{v}{x} \frac{4 u-x+x u}{5 v-5 u v-4 u-4 u v)} \\
& =\underline{\frac{v}{x} \frac{4 u-x+x u}{5 v-9 u v-4 u}}
\end{aligned}
$$

(c) The new point is found by keeping x and y constant, and reducing z by 0.1 . That is, $d x=d y=0, d z=-1 / 10$. Besides, we are only interested in an approximation from point $P:(x, y, z, u, v)=(2,-1,-1,1,1)$, not a general expression. Inserting these coordinates, the first ($« d u->$) line of $(*)$ becomes

$$
\begin{aligned}
d u & =[\overbrace{\frac{-1}{|\mathbf{A}|}(5, \quad-x y z u(1+v))}^{\text {first line of }-\mathbf{A}^{-1}}\left\{\binom{y z u v}{1} 0+\binom{x z u v}{2} 0+\binom{x y u v}{3}\left(\frac{-1}{10}\right)\right\}]_{P} \\
& =\frac{1}{16}\left(\begin{array}{ll}
5,-4)\binom{-2}{3}\left(\frac{-1}{10}\right) \\
& =\frac{11}{80}
\end{array}\right. \text { (11 }
\end{aligned}
$$

So the approximate value for u is $u \approx 1+\frac{11}{80}=\underline{\underline{91}}$

Notes:

- Some of you did this in an unnecessarily cumbersome fashion - not a problem if you get it right, but could take too much time on an exam.
- In (a), you were only asked to find differentials, not to solve for $(d u, d v)$. However, those of you who did that in part (a), did not have to do so in problem (b) and (c).
- (b):《General» expression means with $x, y, z u, v$, not with the numbers.
- (c): Quite a few of you only calculated $d u$ at P, not $u(2,-1,-1)+d u$. Read the problem.

Problem 4 We are given the problem (for strictly positive A, B and C)
$\max _{(x, y)} 4 e^{x}+\frac{1}{2} A x^{2} y^{2}+e^{3 y} \quad$ subject to $\quad x^{2}+B y^{2} \leq C, \quad x \geq 0 \quad$ and $\quad y \geq 0$.
(a) The Lagrangian is (note the signs!):

$$
L(x, y)=4 e^{x}+\frac{1}{2} A x^{2} y^{2}+e^{3 y}-\lambda\left(x^{2}+B y^{2}\right)+\mu x+\nu y .
$$

The Kuhn-Tucker conditions are (corrected from version 1!):

$$
\begin{align*}
& 0=4 e^{x}+A x y^{2}-2 \lambda x+\mu \tag{1}\\
& 0=3 e^{3 y}+A x^{2} y-2 \lambda B y+\nu \tag{2}\\
& \lambda \geq 0 \quad \text { with } \lambda=0 \text { if } x^{2}+B y^{2}<C \tag{3}\\
& \mu \geq 0 \quad \text { with } \mu=0 \text { if } x>0 \tag{4}\\
& \nu \geq 0 \quad \text { with } \nu=0 \text { if } y>0 \tag{5}
\end{align*}
$$

(b) To prove that $x^{2}+B y^{2}=C$ and $x y \neq 0$, we shall show a contradiction if not:

- If $x=0$ then (1) becomes $0=4 e^{x}+\mu$, which is impossible since $e^{x}>0$ and $\mu \geq 0$.
- If $y=0$ then (2) becomes $0=3 e^{3 y}+\nu$, impossible by a similar argument.
- If $x^{2}+B y^{2} \neq C$ (that is, $<C$), then $\lambda=0$ by (3). In the same manner as above, the right hand side of (1) will be the sum of nonnegative terms $4 e^{x}+A x y^{2}+\mu$ where the exponential is strictly positive. (There would be a similar contradiction in (2) too.) So it is impossible that $x^{2}+B y^{2} \neq C$.

Arguably it is more striking to re-write (1), (2) into

$$
\begin{align*}
2 \lambda x & =4 e^{x}+A x y^{2}+\mu \tag{1’}\\
2 \lambda B y & =3 e^{3 y}+A x^{2} y+\nu \tag{2'}
\end{align*}
$$

and observe that both right hand sides are strictly positive; hence we cannot have $x y \lambda=0$, unifying all three bullet points in one elegant operation which one is probably unlikely to spot until long after one has completed a proof in the first place.
Notes: (a) was easy. Part (b) was plagued by weird logic:

- You cannot from (1) write $2 \lambda=\left(4 e^{x}+A x y^{2}+\mu\right) / x$ without assuming $x \neq 0$. And assuming what you wanted to prove, destroys the entire argument - then you have to check $x=0$ separately afterwards (which you should have done in the first place!)
- «Assume not»: you must understand that the negation of «P and Q and R » is «not P or not Q or not R» (where «or» means «and/or»). You must falsify each $x=0$, $y=0, x^{2}+B y^{2}<C$. (Indeed, $x=y=0$ and $x^{2}+B y^{2}<C$ implies $(x, y)=(0,0)$.)
- Some of you seem to think that if $x=0$ then $\mu>0$. Wrong - they can both hold with equality (but not both with inequality! Mind the difference!)

