Problem solutions - voluntary term paper in ECON3120/4120 Mathematics 2, spring 2009

Problem 1

(a) Taking the natural logarithm on both sides we get

$$
x \ln 3+3 x \ln 2=\ln 17
$$

which gives

$$
x=\frac{\ln 17}{\ln 3+3 \ln 2}=\frac{\ln 17}{\ln 3+\ln 8}=\frac{\ln 17}{\ln 24} \approx 0.891
$$

(b) We want to solve the equation system

$$
\begin{array}{r}
4 x^{2} y^{2}-x^{2} y^{4}=0 \\
x+x y=0
\end{array}
$$

If $x=0$, then both equations are satisfied for all values of y. Now assume $x \neq 0$. The last equation the gives $y=-1$, but if we insert this in the first equation we get $4 x^{2}-x^{2}=0$, i.e. $3 x^{2}=0$, which gives $x=0$. Hence we cannot have $x \neq 0$.
Conclusion: The equation system has the solutions $(x, y)=(0, a)$, where a is arbitrary.

Problem 2

(a) Introduce $u=\sqrt{2-3 x}$ as a new variable. This gives $u^{2}=2-3 x$, so $x=$ $\left(2-u^{2}\right) / 3$ and $d x=-(2 u / 3) d u$. The integral then becomes

$$
\begin{aligned}
\int_{-2 / 3}^{1 / 3} \frac{x d x}{\sqrt{2-3 x}} & =\int_{2}^{1} \frac{2-u^{2}}{3 u}\left(-\frac{2}{3} u\right) d u=\int_{2}^{1} \frac{2 u^{2}-4}{9} d u \\
& =\left.\right|_{2} ^{1}\left(\frac{2 u^{3}}{27}-\frac{4 u}{9}\right)=\left(\frac{2}{27}-\frac{4}{9}\right)-\left(\frac{16}{27}-\frac{8}{9}\right)=-\frac{2}{27}
\end{aligned}
$$

(Note that in the integral with respect to u we uses the u-values of the limits of integration.) If we choose to calculate the indefinite integral completely in terms of x before evaluating the definite integral, we get

$$
\begin{aligned}
\int \frac{x d x}{\sqrt{2-3 x}} & =\int \frac{2 u^{2}-4}{9} d u=\frac{2 u^{3}}{27}-\frac{4 u}{9}+C \\
& =\frac{2}{27} u\left(u^{2}-6\right)+C=\frac{2}{27} \sqrt{2-3 x}(-3 x-4)+C
\end{aligned}
$$

It is also possible to use integration by parts, which in a natural way leads to

$$
\int \frac{x d x}{\sqrt{2-3 x}}=-\frac{2}{3} x(2-3 x)^{1 / 2}-\frac{4}{27}(2-3 x)^{3 / 2}+C
$$

which equals the expression we found above.
(b) Let $g(x)=\ln f(x)=\frac{e}{1+\ln x} \ln x=\frac{e \ln x}{1+\ln x}=\frac{e}{(1 / \ln x)+1}$. Because $\ln x \rightarrow$ $-\infty$ as $x \rightarrow 0^{+}$, we have $\lim _{x \rightarrow 0^{+}} g(x)=e$. Now, $f(x)=e^{g(x)}$, and because the exponential function $u \mapsto e^{u}$ is continuous, we get

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} e^{g(x)}=e^{\left(\lim _{x \rightarrow 0^{+}} g(x)\right)}=e^{e}
$$

Problem 3

(a) We use Gaussian elimination:

$$
\begin{aligned}
&\left(\begin{array}{rrrrr}
1 & 1 & 0 & -2 & 2 \\
0 & 2 & -1 & -1 & 3 \\
1 & 1 & 0 & 1 & 2
\end{array}\right) \stackrel{-1}{ } \downarrow \sim\left(\begin{array}{rrrrr}
1 & 1 & 0 & -2 & 2 \\
0 & 2 & -1 & -1 & 3 \\
0 & 0 & 0 & 3 & 0
\end{array}\right) \stackrel{-1 / 2}{ } 1 / 2 \\
& \sim\left(\begin{array}{rrrrr}
1 & 0 & 1 / 2 & -3 / 2 & 1 / 2 \\
0 & 1 & -1 / 2 & -1 / 2 & 3 / 2 \\
0 & 0 & 0 & 3 & 0
\end{array}\right) \stackrel{1}{1 / 2} \begin{array}{l}
1 / 6 \\
1 / 3
\end{array} \\
& \sim\left(\begin{array}{ccccc}
1 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 1 & -1 / 2 & 0 & 3 / 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

This shows that we can choose arbitrary values for x_{3}, for instance, and the solutions are then

$$
x_{1}=\frac{1}{2}-\frac{1}{2} a, \quad x_{2}=\frac{3}{2}+\frac{1}{2} a, \quad x_{3}=a, \quad x_{4}=0
$$

where a is arbitrary.
(b) Direct calculation gives

$$
\mathbf{A} \mathbf{A}^{\prime}=\left(\begin{array}{lll}
6 & 4 & 0 \\
4 & 6 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

If we let $\mathbf{B}=\left(\begin{array}{rrr}17 & -12 & 4 \\ -12 & 18 & -6 \\ 4 & -6 & 20\end{array}\right)$, then
$\left(\mathbf{A A}^{\prime}\right) \mathbf{B}=\left(\begin{array}{ccc}54 & 0 & 0 \\ 0 & 54 & 0 \\ 0 & 0 & 54\end{array}\right)=54 \mathbf{I}_{3}$,
and it follows that $\left(\mathbf{A A}^{\prime}\right)^{-1}=\frac{1}{54} \mathbf{B}$.
For every matrix \mathbf{A} the product $\mathbf{A A}^{\prime}$ is symmetric because it is equal to its own transpose: $\left(\mathbf{A A}^{\prime}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{\prime} \mathbf{A}^{\prime}=\mathbf{A} \mathbf{A}^{\prime}$. Moreover, we know that if a symmetric matrix has an inverse, then the inverse matrix is also symmetric. (See formula (15.5.2)(4) and Theorem 16.6.1(c) in EMEA or formula (3.22)(4) and Theorem 6.1(c) in LA.)

Problem 4

(a) The equation $\dot{x}-2 x=k-2 t$ is a linear differential equation of order 1 , and we can find the solution by using formula (9.9.5) in EMEA or (1.4.5) in MA II, with $a=-2$ and $b(t)=k-2 t$. That gives

$$
x=e^{2 t}\left(C+\int e^{-2 t}(k-2 t) d t\right)
$$

Integration by parts yields

$$
\begin{aligned}
\int e^{-2 t}(k-2 t) d t & =\int(k-2 t) e^{-2 t} d t \\
& =(k-2 t)\left(-\frac{1}{2}\right) e^{-2 t}-\int(-2)\left(-\frac{1}{2}\right) e^{-2 t} d t \\
& =(k-2 t)\left(-\frac{1}{2}\right) e^{-2 t}-\int e^{-2 t} d t=\left(t-\frac{k}{2}\right) e^{-2 t}+\frac{1}{2} e^{-2 t}
\end{aligned}
$$

and the general solution of the differential equation is therefore

$$
x=C e^{2 t}+t+\frac{1-k}{2} .
$$

(b) We differentiate both sides of the equation (cf. formula (9.3.6) in EMEA or formula (10.3.9) in MA I) and get

$$
\dot{x}=2 x(t)+1-2 t .
$$

This is precisely the equation in part (a) with $k=1$. Hence,

$$
x(t)=C e^{2 t}+t
$$

for a suitable value of C. Equation $(* *)$ in the problem shows that we must have

$$
x(0)=2 \cdot 0+0+1-0=1
$$

It follows that $C=1$ and $x(t)=e^{2 t}+t$. A simple calculation confirms that this function does satisfy $(* *)$.

Problem 5

(a) We have

$$
f^{\prime}(x)=\frac{4 a}{1+a^{2}} e^{-x}-1, \quad f^{\prime \prime}(x)=-\frac{4 a}{1+a^{2}} e^{-x}
$$

Because $\lim _{x \rightarrow \infty}\left(1-e^{-x}\right)=1-\lim _{x \rightarrow \infty} e^{-x}=1-0=1$, we get $\lim _{x \rightarrow \infty} f(x)=$ $-\infty$.
(b) For $x>0$ we have $e^{-x}<1$, and therefore $1-e^{-x}>0$. It follows that if $a \leq 0$, then

$$
f(x)=\frac{4 a}{1+a^{2}}\left(1-e^{-x}\right)-x \leq-x<0 \quad \text { for all } x>0 .
$$

Hence, the equation $f(x)=0$ cannot have any positive solution if $a \leq 0$.
We could also argue as follows: If $x>0$, then $e^{-x}<1$, and we have

$$
f(x)=0 \quad \Longleftrightarrow \quad \frac{4 a}{1+a^{2}}=\frac{x}{1-e^{-x}} \Longleftrightarrow 4 a=\left(1+a^{2}\right) \frac{x}{1-e^{-x}}
$$

The expression on the right-hand side of the last equation is positive, and therefore a must also be positive.

Although the condition $a>0$ is necessary for $f(x)=0$ to have a positive solution, it is far from sufficient. We shall see below that positive solutions exist only when a lies in a certain interval.

If $a>0$, then $f^{\prime \prime}(x)<0$ for all x. Then $f^{\prime}(x)$ is strictly decreasing and f is strictly concave. We also know that $f(x)$ will be <0 for x sufficiently large. Thus, when $a>0$, the equation $f(x)=0$ has a solution $x_{0}>0$ if and only if $f^{\prime}(0)>0$ (see the figure).

Possible behaviors of $f(x)$ when $a>0$.

We have

$$
\begin{aligned}
f^{\prime}(0)>0 & \Longleftrightarrow \frac{4 a}{1+a^{2}}>1 \Longleftrightarrow 4 a>1+a^{2} \Longleftrightarrow a^{2}-4 a+4<3 \\
& \Longleftrightarrow(a-2)^{2}<3 \Longleftrightarrow-\sqrt{3}<a-2<\sqrt{3} \\
& \Longleftrightarrow 2-\sqrt{3}<a<2+\sqrt{3}
\end{aligned}
$$

Hence, the equation $f(x)=0$ has a positive solution if and only if a belongs to the interval $(2-\sqrt{3}, 2+\sqrt{3})$.
(c) If $a \leq 0$, then $f(x)<0=f(0)$ for all $x>0$, so $f(x)$ attains its largest value for $x=x_{1}=0$.

If $a>0$, then f is strictly concave and the following holds:
(1) If $f^{\prime}(0) \leq 0$, then f is strictly decreasing in all of $[0, \infty)$, and the maximum point is $x_{1}=0$.
(2) If $f^{\prime}(0)>0$, then f will first increase, and then decrease (remember that $f(x) \rightarrow-\infty$ as $x \rightarrow \infty)$. Then $f(x)$ will attain its largest value at $x=x_{1}$, where x_{1} is the unique stationary point of f. We have

$$
f^{\prime}\left(x_{1}\right)=0 \Longleftrightarrow e^{x_{1}}=\frac{4 a}{1+a^{2}} \Longleftrightarrow x_{1}=\ln \frac{4 a}{1+a^{2}}
$$

Conclusion:

$$
x_{1}= \begin{cases}\ln \frac{4 a}{1+a^{2}} & \text { if } 2-\sqrt{3}<a<2+\sqrt{3} \\ 0 & \text { otherwise }\end{cases}
$$

(We found in part (b) that $f^{\prime}(0)>0$ if and only if $2-\sqrt{3}<a<2+\sqrt{3}$.)
(d) There are two possibilities to be considered:
(1) If $x_{1}=0$, then $f\left(x_{1}\right)=f(0)=0$ and $e^{x_{1}}-1-x_{1}=e^{0}-1-0=0$.
(2) If $x_{1}>0$, then $x_{1}=\ln \frac{4 a}{1+a^{2}}$, and we get

$$
f\left(x_{1}\right)=\frac{4 a}{1+a^{2}}\left(1-e^{-x_{1}}\right)-x_{1}=e^{x_{1}}\left(1-e^{-x_{1}}\right)-x_{1}=e^{x_{1}}-1-x_{1} .
$$

27 papers were handed in and were graded on a scale from 0 to 100 . The highest score was 83 and the lowest was 15 . The average was 58.6 points. A score of 45 points or less must be considered as very weak.

