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Problem 1

(a) Taking the natural logarithm on both sides we get
rIn3+3xn2=1In17,

which gives
In17 In17 B In17

T M3+3m2 mm3+m8 In2d

(b) We want to solve the equation system

~ 0.891.

4x2y2 o x2y4 =0
x+xy =0
If x = 0, then both equations are satisfied for all values of y. Now assume x # 0.

The last equation the gives y = —1, but if we insert this in the first equation we
get 422 — 22 = 0, i.e. 322 = 0, which gives x = 0. Hence we cannot have = # 0.

Conclusion: The equation system has the solutions (z,y) = (0,a), where a is
arbitrary.

Problem 2

(a) Introduce u = /2 — 3x as a new variable. This gives u?> = 2 — 3z, so x =
(2 —u?)/3 and dz = —(2u/3) du. The integral then becomes

3 zdx Yo—w?/ 2 Loy? —4
—2/3 RV 2 — 3x 2 3u 3 2 9
1<2u3 4u> B ( 2 4> (16 8) 2
S\27 9/ \27 9 27 9/ 27
(Note that in the integral with respect to u we uses the u-values of the limits of

integration.) If we choose to calculate the indefinite integral completely in terms
of x before evaluating the definite integral, we get

/ xdx /2u2—4d 2u? 4u+C
- — U= —— —
V2 —3x 9 27 9

2 2

:2—7u(u2—6)—|—C:2—7\/2—3x(—3m—4)+0.
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It is also possible to use integration by parts, which in a natural way leads to

d 2 4
—;E_—léx = —glL‘(Q — 3%)1/2 — §(2 — 3.T)3/2 —+ C,

which equals the expression we found above.

elnx e

e
b) Let | | = = . B |
( ) € 9( ) nf( ) 1+ing nx 1+ na (1/1nx)—|—1 ecause lnx —

—o0 as ¢ — 0T, we have hm+ g(z) = e. Now, f(z) = e9®), and because the
z—0

exponential function v +— e is continuous, we get

1 ~ lim e9®) — elim, ot 9(2) _ e
A ) =l e = ‘

Problem 3

(a) We use Gaussian elimination:

11 0—22—1 11 -2 2\ +—
02 -1 -1 3 02——13—1/21/2
11 0 1 2 0 0 30

10 1/2—3/21/2

~ 1o 1 —1/2 —1/2 3/2 ﬂ

00 0 1/2/61/3

10 1/201/2

~ (0o 1 —1/2 0 3/2

00 0 1 0

This shows that we can choose arbitrary values for xg, for instance, and the solu-
tions are then

11 3 n 1 0
$1—2 2(1, x2_2 2@, I3 =a, x4=2V,
where a is arbitrary.
(b) Direct calculation gives
6 4 0
AA' =14 6 1
0 1 3
17 —-12 4
I[fwelet B= | —12 18 —6 |, then
4 -6 20
54 0 0
(AA)DB=| 0 54 0 | =541,
0 0 54
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and it follows that (AA’)™t = & B.

For every matrix A the product AA’ is symmetric because it is equal to
its own transpose: (AA’) = (A’)A’ = AA’. Moreover, we know that if a
symmetric matrix has an inverse, then the inverse matrix is also symmetric. (See
formula (15.5.2)(4) and Theorem 16.6.1(c) in EMEA or formula (3.22)(4) and
Theorem 6.1(c) in LA.)

Problem 4

(a) The equation & — 2z = k — 2t is a linear differential equation of order 1, and
we can find the solution by using formula (9.9.5) in EMEA or (1.4.5) in MA TII,
with @ = —2 and b(t) = k — 2t. That gives

r=e* <C + /e_2t(k —2t) dt) :

Integration by parts yields

/egt(k —2t)dt = /(k —2t)e 2t dt
—k-20(-)e = [ (D) (-g)e e
1

— _ _1 —2t_/ -2t _ _E —2t + -2t
= (k —2t)( 2)6 e ?dt = (t 2)6 +5e,

and the general solution of the differential equation is therefore

1—k
:L':C’e%-l—t—l—T.

(b) We differentiate both sides of the equation (cf. formula (9.3.6) in EMEA or
formula (10.3.9) in MA I) and get

&= 22(t)+1—2t.
This is precisely the equation in part (a) with & = 1. Hence,
x(t) = Ce?' +t
for a suitable value of C'. Equation (xx) in the problem shows that we must have
2(0)=2-0+0+1-0=1.
It follows that C' = 1 and z(t) = €?! +t. A simple calculation confirms that this

function does satisfy (xx).
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Problem 5
(a) We have

4a 4a

— —w_l 1 — _ —x‘

f'(=)

T

Because lim, ,oo(1 —e7%) =1 —limy 300 * =1—-0=1, we get lim,_,, f(z) =

—OQ.

(b) For x > 0 we have e™ < 1, and therefore 1 —e™® > 0. It follows that if
a <0, then

B 4a
 1+4a?

f(x) (1—e*)—x<—2x<0 forall z>0.
Hence, the equation f(z) = 0 cannot have any positive solution if a < 0.
We could also argue as follows: If z > 0, then e < 1, and we have
4a x

f@)=0 = —m=1"= = 4a = (1 + a?)

1—e %’

The expression on the right-hand side of the last equation is positive, and therefore
a must also be positive.

Although the condition a > 0 is necessary for f(z) = 0 to have a positive
solution, it is far from sufficient. We shall see below that positive solutions exist
only when a lies in a certain interval.

If a > 0, then f”(x) < 0 for all z. Then f’(x) is strictly decreasing and f is
strictly concave. We also know that f(z) will be < 0 for x sufficiently large. Thus,
when a > 0, the equation f(x) = 0 has a solution z¢ > 0 if and only if f/(0) > 0
(see the figure).

F(0)>0

f(0)=0
f(0) <0

Possible behaviors of f(x) when a > 0.

4
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We have

f(0)>0 < >1 <= 4a>1+a*> < a*—4a+4<3

1+ a2
— (a-2)2<3 <= —V3<a—-2<V3
— 2-V3<a<2+V3.

Hence, the equation f(x) = 0 has a positive solution if and only if a belongs to

the interval (2 — V3,2 + \/§)

(¢) If a <0, then f(x) < 0= f(0) for all z > 0, so f(z) attains its largest value
for x =z, =0.

If @ > 0, then f is strictly concave and the following holds:

(1) If f/(0) <0, then f is strictly decreasing in all of [0, 00), and the maximum
point is 1 = 0.

(2) If f'(0) > 0, then f will first increase, and then decrease (remember that
f(x) = —o0 as * — o0). Then f(x) will attain its largest value at z = x1, where
x1 is the unique stationary point of f. We have

4a 4a

! =0 < "' = & 1 =In—-—.
@) ¢ 14 a? R g

Conclusion:

4a )

$1:{1n1+a2 1f2—\/§<a<2—|—\/§,
0 otherwise.

(We found in part (b) that f/(0) > 0 if and only if 2 — /3 < a < 2 ++/3.)

(d) There are two possibilities to be considered:
(1) If 21 =0, then f(z1) = f(0) =0 and e®* —1—a2; =€ —1-0=0.
4a

(2) If 1 > 0, then x4 :lnm, and we get
a
da —x T —x T
f(x1>:m(1—€ 1)—$1:€1(1—6 1)—$1:€1—1—1'1.

27 papers were handed in and were graded on a scale from 0 to 100. The highest
score was 83 and the lowest was 15. The average was 58.6 points. A score of 45
points or less must be considered as very weak.

S
InnleveringVO9Fasit 30.4.2009 578



